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Abstract

Decentralized access of several dynamic devices access-
ing a stationary wireless network can be modelled by the
multi-player multi-armed bandit framework. It can model
Internet of Things networks, and many different learning
strategies have been proposed recently. Instead of choos-
ing a specific algorithm offline, we propose to use an on-
line aggregation algorithm to automatically let each object
decide, on the fly, the best algorithm to use in a certain set-
ting. Simulation results justify the interest of our proposal
in different problems.
Keywords: Cognitive Radio, Reinforcement Learning, Multi-
Player Bandits, Multi-Armed Bandits, Expert Aggregation.

1 Introduction

The model of Opportunistic Spectrum Access (OSA, [1])
for Cognitive Radio (CR, [2]), considers one Secondary
User (SU) trying to use a licensed radio network, slot-
ted both in time and frequency, and occupied by Primary
Users (PU). The network usage from the PU determines
the availability patterns of the radio channels, and the goal
of the SU is to communicate as efficiently as possible,
without interfering with the PU. Thus at each step, a SU
first senses one channel, and only transmits if this channel
is unoccupied by a PU. A common model in the litera-
ture is to describe the PU impact on the availability of the
K channels in the following way: channels are indepen-
dent and identically distributed (i.i.d.), and their qualities
follow parametric distributions, e.g., Bernoulli of means
µ1, . . . ,µK ∈ [0,1] for availabilities when dealing with bi-
nary sensing feedback. The SU has to select the best ex-
pected channel each time to maximize its throughput, or if
successful communications are seen as rewards, the SU has
to maximize its cumulative rewards, as in the Multi-Armed
Bandit (MAB) problem [3].

MAB learning algorithms are known to be useful for the
OSA setting [1], and UCB algorithms and other variants
(e.g., kl-UCB or Bayes-UCB, [4, 3]) have been success-
fully applied to both numerically and physically simulated
CR problems [5]. The performance of such learning al-
gorithm A can be measured by different criteria. It is
common in the bandit literature to study the regret [3],

R̃A
T = µ∗T −∑

T
t=1 r(t) which compares the reward in re-

wards between the algorithm A and the full-knowledge
strategy which always picks the best arm, i.e., the most
available of mean µ∗. Good algorithms are expected to
have slow-growing expected regret, but other criterion in-
clude the best arm pull frequency, or when applied to the
CR problem, the throughput of the SU.

Many different learning algorithms have been proposed by
the machine learning community [3], and most of them de-
pend on several parameters, for instance α > 0 for UCB,
the prior for Thompson sampling, the kl function for kl-
UCB etc. Every time a new MAB algorithm A is intro-
duced, it is compared and benchmarked on some bandit
instances, parameterized by µµµ = (µ1, . . . ,µK), usually by
focusing on its expected regret RT = Eµµµ [R̃T ]. For a known
and specific instance, simulations help to select the best al-
gorithm in a pool of algorithms. But when one wants to
tackle an unknown real-world problem, one expects to be
efficient against any problem, of any kind, size and com-
plexity. Ideally one would like to use an algorithm that can
be applied identically against any problem, or at least any
problem within a certain class. To choose the best algo-
rithm, two approaches can be followed: either extensive
benchmarks are done beforehand – if this is possible – to
select the algorithm and its optimal parameters, or an adap-
tive algorithm is used to learn on the fly its parameters.

For the development of CR, a crucial step is actually to in-
sert multiple M ≥ 2 smart devices in the same background
traffic. With the presence of a central controller that can
assign the devices to separate channels, this amounts to
choosing at each time step several arms of a MAB in order
to maximize the global rewards, and can thus be viewed as
an application of the multiple-play bandit. Due to the com-
munication cost implied by a central controller, a more rel-
evant model is the decentralized multi-player multi-armed
bandit model [6], in which devices select arms individu-
ally and radio collisions may occur, which yield a zero re-
ward. The goal for every player is to select one of the M
best arms, as much as possible, without colliding too of-
ten with other devices. A first difficulty relies in the well-
known trade-off between exploration and exploitation: de-
vices need to explore all arms to estimate their means while
trying to focus on the best arms to gain as much rewards as
possible. The decentralized setting considers no exchange



of information between devices, that only know K and M,
and to avoid collisions, devices should furthermore find
orthogonal configurations (i.e., the M devices use the M
best arms without any collision), without communicating.
Hence, in that case the trade-off is to be found between
exploration, exploitation and low collisions.

Combining two of our recent works, we propose to use our
aggregation algorithm Aggregator from [7], in combina-
tion with different multi-player MAB algorithms from [6]
and [8]. We present below our mathematical model, then
our contribution is stated as a three-part proposal, and the
iconic UCB algorithm is presented. Simulation are pre-
sented for the two cases of M < K and M = K devices.

2 Multi-Player Stationary Bandit Model

We consider K ≥ 2 radio channels, also called arms, of dif-
ferent characteristics, unknown to M ≥ 2 identical objects
that have to communicate to a fixed gateway, in a decen-
tralized and autonomous manner. Following the classical
OSA model [1], the radio protocol is slotted in both time
and frequency. At each time step t ∈ N∗, each device tries
to communicate in a channel A(t)∈ {1, . . . ,K}. The device
is a SU: it first senses (only) one channel k at a time, and
can use it to communicate only if it was sensed free from
any PU (i.e., PU have full priority over the SU).

We choose to restrict to a stochastic model: after choos-
ing the arm k, it is assumed that the sensing provides a
reward rk(t), randomly drawn from a certain distribution
depending on the arm index. Rewards are assumed to be
bounded in [0,1], and generally they follow one-parameter
exponential families. We restrict to Bernoulli distributions,
for sake of simplicity, meaning that arm k has a parameter
µk ∈ [0,1]. Rewards are drawn from B(µk), rk(t)∼ B(µk),
which can be simply interpreted by the SU: it is 1 if the
channel k is not used by any PU during the time slot t, and
is 0 otherwise.

The multi-player MAB setting considers M ≤ K devices
[8], that have to make decisions at some pre-specified
time instants. At time step t ∈ N∗, device j selects an
arm A j(t), independently from the other devices’ selec-
tions. A collision occurs at time t if at least two de-
vices choose the same arm. A collision occurs at time t
for device j if C j(t) := {∃ j′ 6= j : A j′(t) = A j(t)}. Each
device j then receives (and observes) the binary rewards
r j(t) := YA j(t),t 1(C j(t)) ∈ {0,1}. In words, it receives the
reward of the selected arm if it is the only one to select
this arm, and a reward zero otherwise. Other models for
rewards reward have been proposed, but we focus on full
reward occlusion. This common setup is relevant to model
the OSA problem: the device first checks for the presence
of primary users in the chosen channel. If this channel is
free (YA j(t),t = 1), the transmission is successful (r j(t) = 1)

if no collision occurs with other smart devices (C j(t)).

A multi-player MAB strategy is a tuple ρ = (ρ1, . . . ,ρM)
of arm selection strategies for each of the M devices, and

the goal is to propose a strategy that maximizes the total
reward of the system, under some constraints. First, each
device j should adopt a sequential strategy ρ j, that decides
which arm to select at time t based on previous observa-
tions.

The performance of a multi-player strategy is measured us-
ing the mean regret, i.e., the performance gap with respect
to the best possible strategy. The regret of strategy ρ at
horizon T is the difference between the cumulated reward
of an oracle strategy, assigning in this case the M devices
to the M best channels, and the cumulated reward of strat-
egy ρ . Denote the best mean by µ∗1 , the second best µ∗2 etc.
The regret is then defined as

RT (µµµ,M,ρ) :=

(
M

∑
k=1

µ
∗
k

)
T −Eµ

[
T

∑
t=1

M

∑
j=1

r j(t)

]
. (1)

Maximizing the expected sum of the global reward of the
system is equivalent to minimizing the regret, and the sim-
ulation results below present regret plots of various decen-
tralized multi-player algorithms. It is known that any pol-
icy in this setting cannot beat the (asymptotic) lower-bound
RT = Ω(log(T )) [6]. The algorithms we compare typically
achieve the lower-bound up-to constant factors: they have
logarithmic regret profiles as seen in the simulation plots,
and MCTopM-kl-UCB actually achieves the best known
regret upper-bound [8], in the form of RT = O(log(T ))
with a constant proportional to KM2 and depending on the
difficulty of the problem (i.e., of the gaps between succes-
sive means µ∗i −µ∗i+1).

3 Three Blocks for our Proposal

Our proposal consist in using: 1) classical single-player
index policies for channel selection, 2) collision avoidance
strategies for the multi-player aspect, 3) and an aggrega-
tion algorithm that each device implements, to select on
the fly either the best index-policy or the best collision-
avoidance (or possibly both, but we do not include more
simulations due to space constraints).

3.1 Single-Player Index Policies

Upper Confidence Bounds algorithms [3] use a confidence
interval on the unknown mean µk of each arm, which can
be viewed as adding a “bonus” exploration to the empirical
mean. They follow the “optimism-in-face-of-uncertainty”
principle: at each step, they play according to the best
model, as the statistically best possible arm (i.e., the high-
est UCB) is selected. UCB is called an index policy. In our
model, every dynamic device implements its own UCB al-
gorithm, independently. Algorithm 1 presents the pseudo-
code of UCB.

More formally, for one device, let Nk(t) be the number of
times channel k was selected up-to time t ≥ 1, Nk(t) =
∑

t
τ=11(A(τ) = k). The empirical mean estimator µ̂k(t) of

channel k is defined as the mean reward obtained by select-
ing it up to time t, µ̂k(t) = 1/Nk(t)∑

t
τ=1 rk(τ)1(A(τ) = k).



For UCB, the confidence term is given by [9] Bk(t) =√
log(t)/(2Nk(t)), giving the upper confidence bound

Uk(t) = µ̂k(t)+Bk(t), which is used by the device to de-
cide the channel for communicating at time step t + 1:
A(t +1) = argmax1≤k≤K Uk(t).

for t = 1, . . . ,T do // At every time step
Compute Uk(t) = µ̂k(t)+Bk(t);
Transmit in channel A(t)∼ argmaxk Uk(t);
Observe reward rA(t)(t) ∈ {0,1};
Update internal data Nk(t), µ̂k(t), Bk(t).

end
Algorithm 1: A base building block, the UCB algorithm.

Other algorithms The kl-UCB algorithm is similar, but
instead it uses a Kullback-Leibler divergence function to
compute a statistically better UCB [4]. The Thompson
sampling (TS) [10] algorithm is Bayesian: it maintains a
posterior distribution on each means (e.g., Beta posteriors
for Bernoulli arms), updated after each observation, and
chooses an arm by sampling a random mean from each
posterior and playing the arm with highest mean. Both
UCB, kl-UCB and TS have been proved to be efficient for
stationary bandit problems, and were used in the experi-
ments in both of previous papers [7, 8].

3.2 Collision Avoidance Strategies

Each object uses an index policy on its own, using the sens-
ing information to estimate the quality of each channel,
and use a collision avoidance strategy to deal with other
devices. We consider three strategies, ρRand from [6], and
RandTopM and MCTopM from our recent work [8]. For
one object, the ρRand strategy consists in using a dynamic
rank in u ∈ {1, . . . ,M} and selecting the u-th best arm (as
given by the index policy) instead of the best one. When
facing a collision, a new uniform rank is selected.

Our algorithms work similarly but they are more direct:
the object still plays always in a set of its estimate of the
M best arms, but instead of relying on a rank to select its
arm it simply plays one of the M best arms. As long as
the chosen channel is still one of the best one, and no col-
lision is observed, the device keeps using it. MCTopM is
a modification of RandTopM: after a good transmission,
a device can fix itself on a channel and ignore further col-
lisions as long as its channel is still estimated as one of the
best M channels. MCTopM performs theoretically better
and usually empirically outperforms the two others.

3.3 Online Algorithms Selection

We assume to have N ≥ 2 MAB algorithms, A1, . . . ,AN ,
and let Aaggr be an aggregation algorithm, which runs the
N algorithms in parallel (with the same slotted time), and
use them to choose its channels based on a voting from
their N decisions. Aaggr depends on a pool of algorithms
and a set of parameters. A good aggregation algorithm
Aaggr performs almost as well as the best of the Aa, with a
good choice of its parameters, independently of the MAB

problem, and Aaggr performs similarly to the best of the
Aa. The aggregation algorithm maintains a probability
distribution π t on the N algorithms Aa, starting from a
uniform distribution: π t

a is the probability of trusting the
decision made by algorithm Aa at time t. Aaggr then sim-
ply performs a weighted vote on its algorithms: it decides
whom to trust by sampling a ∈ {1, . . . ,N} from π t , then
follows Aa’s decision.

Our proposal is called Aggregator, and it is detailed in
Algorithm 1 in [7]. It is easy to implement, it requires
no parameter to tune and it was showed to out-perform all
the others state-of-the-art expert aggregation algorithm for
stationary problems.

4 Experiments on Simulated Problems

We focus on an example of a i.i.d. MAB problems, with
K = 9 channels divided in three groups: 2 very bad arms
(µ = 0.01,0.02), 4 average arms (µ = 0.3 to 0.6) and
3 very good arms (µ = 0.78,0.8,0.82). Horizon is T =
10000 (but it is unknown by the objects), and simulations
are repeated 1000 times, to estimate the expected regret,
RT is plotted below, as a function of T . We compare the
performance of M = 3 and then M = 9 objects (resp. in
Figures 1 and 2), using one index policy along with one
collision-avoidance protocol. We also simulate objects that
use aggregation with Aggregator applied on one of the two
levels. As expected, the objects using Aggregator perform
worst than the best combination of algorithms, but better
than some combination, in the two cases. Without know-
ing before-hand which combination is the best, the aggre-
gation approach appears as a robust solution.

We present in Figure 3 a different problem with µµµ = and
M = 6 devices. The conclusions are similar.

5 Conclusion

Aggregation algorithms can be useful in the framework of
multi-player MAB applied for decentralized Cognitive Ra-
dio models. For the real-world application of our model,
tuning parameters before-hand is no longer possible when
facing unknown problem instances, and thus an adaptive
algorithm is preferable. Our algorithm Aggregator was
proved to be useful to let each object decide automatically
its preferred strategy.

Future works Our combined approach does not have the-
oretical guarantees yet, exploring the theoretical develop-
ments is left as a future work. We will also work on a
hardware implementation of our proposal.
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Multi-players M=3 : Cumulated centralized regret, averaged 4 times
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4), B(0.5), B(0.6), B(0.7) ∗ , B(0.8) ∗ , B(0.9) ∗ ]

3×  Aggr(rhoRand, RandTopM, MCTopM) UCB
3×  Aggr(rhoRand, RandTopM, MCTopM) kl-UCB
3×  Aggr(rhoRand, RandTopM, MCTopM) MOSS
3×  rhoRand UCB
3×  rhoRand kl-UCB
3×  rhoRand MOSS
3×  rhoRand Aggr(UCB, kl-UCB, MOSS)
3×  RandTopM UCB
3×  RandTopM kl-UCB
3×  RandTopM MOSS
3×  RandTopM Aggr(UCB, kl-UCB, MOSS)
3×  MCTopM UCB
3×  MCTopM kl-UCB
3×  MCTopM MOSS
3×  MCTopM Aggr(UCB, kl-UCB, MOSS)
Besson & Kaufmann lower-bound = 33.5 log(t)

Anandkumar et al.'s lower-bound = 17.8 log(t)

Centralized lower-bound = 11.2 log(t)

Figure 1. Comparing different strategies of M = 3 objects accessing K = 9 channels.
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Multi-players M=9 : Cumulated centralized regret, averaged 4 times
9 arms: [B(0.1) ∗ , B(0.2) ∗ , B(0.3) ∗ , B(0.4) ∗ , B(0.5) ∗ , B(0.6) ∗ , B(0.7) ∗ , B(0.8) ∗ , B(0.9) ∗ ]

9×  Aggr(rhoRand, RandTopM, MCTopM) UCB
9×  Aggr(rhoRand, RandTopM, MCTopM) kl-UCB
9×  Aggr(rhoRand, RandTopM, MCTopM) MOSS
9×  rhoRand UCB
9×  rhoRand kl-UCB
9×  rhoRand MOSS
9×  rhoRand Aggr(UCB, kl-UCB, MOSS)
9×  RandTopM UCB
9×  RandTopM kl-UCB
9×  RandTopM MOSS
9×  RandTopM Aggr(UCB, kl-UCB, MOSS)
9×  MCTopM UCB
9×  MCTopM kl-UCB
9×  MCTopM MOSS
9×  MCTopM Aggr(UCB, kl-UCB, MOSS)
Besson & Kaufmann lower-bound = 0 log(t)

Anandkumar et al.'s lower-bound = 0 log(t)

Centralized lower-bound = 0 log(t)

Figure 2. The simpler setting with M = 9 objects.

Open Source The code in Python 3 used for the
simulations and the figures [11], is open-sourced
at https://GitHub.com/SMPyBandits/SMPyBandits
and documented at https://SMPyBandits.GitHub.io.
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