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1. Introduction
Multi-Armed Bandit (MAB) problems are well-studied sequential decision making
problems in which an agent repeatedly chooses an action (the “arm” of a one-armed
bandit) in order to maximize some total reward (Robbins, 1952; Lai and Robbins,
1985). Initial motivation for their study came from the modeling of clinical trials,
as early as 1933 with the seminal work of Thompson (1933). In this example, arms
correspond to different treatments with unknown, random effect. Since then, MAB
models have been proved useful for many more applications, that range from cog-
nitive radio (Jouini et al., 2009) to online content optimization (e.g., news article
recommendation (Li et al., 2010), online advertising (Chapelle and Li, 2011), A/B
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Testing (Kaufmann et al., 2014; Yang et al., 2017)), or portfolio optimization (Sani
et al., 2012).

While the number of patients involved in a clinical study (and thus the number of
treatments to select) is often decided in advance, in other contexts the total number
of decisions to make (the horizon T ) is unknown. It may correspond to the total
number of visitors of a website optimizing its displays for a certain period of time, or
to the number of attempted communications in a smart radio device. In such cases, it
is thus crucial to devise anytime algorithms, that is algorithms that do no rely on the
knowledge of this horizon T to sequentially select arms. A general way to turn any
base algorithm into an anytime algorithm is the use of the so-called Doubling Trick,
first proposed by Auer et al. (1995), that consists in repeatedly running the base
algorithm with increasing horizons. Motivated by the frequent use of this technique
and the absence of a generic study of its effect on the algorithm’s efficiency, this paper
investigates in details two families of doubling sequences (geometric and exponential),
and shows that the former should be avoided for stochastic problems.

More formally, a MAB model is a set of K arms, each arm k being associated to
a (unknown) reward stream (Yk,t)t∈N. Fix T a finite (possibly unknown) horizon. At
each time step t ∈ {1, . . . , T} an agent selects an arm A(t) ∈ {1, . . . , K} and receives
as a reward the current value of the associated reward stream, r(t) := YA(t),t. The
agent’s decision strategy (or bandit algorithm) AT := (A(t), t ∈ {1, . . . , T}) is such
that A(t) can only rely on the past observations A(1), r(1), . . . , A(t− 1), r(t− 1), on
external randomness and (possibly) on the knowledge of the horizon T . The objective
of the agent is to find an algorithm A that maximizes the expected cumulated rewards,
where the expectation is taken over the possible randomness used by the algorithm
and the possible randomness in the generation of the rewards stream. In the oblivious
case, in which the reward streams are independent of the algorithm’s choice, this is
equivalent to minimizing the regret, defined as

RT (AT ) := max
k∈{1,...,K}

E

[
T∑
t=1

(
Yk,t − YA(t),t

)]
. (1)

This quantity, referred to as pseudo-regret in Bubeck et al. (2012), quantifies the
difference between the expected cumulated reward of the best fixed action, and that
of the strategy AT . For the general adversarial bandit problem (Auer et al., 2002b),
in which the rewards streams are arbitrary (picked by an adversary), a worst-case
lower bound has been given. It says that for every algorithm, there exists (stochastic)
reward streams such that the regret is larger than (1/20)

√
KT (Auer et al., 2002b).

Besides, the EXP3 algorithm has been shown to have a regret of order
√
KT log(K).

Much smaller regret may be obtained in stochastic MAB models, in which the
reward stream from each arm k is assumed to be i.i.d., from some (unknown) distri-
bution νk, with mean µk. In that case, various algorithms have been proposed with
problem-dependent regret upper bounds of the form C(ν) log(T ), where C(ν) is a
constant that only depend on the arms distributions. Different assumptions on the
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arms distributions lead to different problem-dependent constants. In particular, un-
der some parametric assumptions (e.g., Gaussian distributions, exponential families),
asymptotically optimal algorithms have been proposed and analyzed (e.g., kl-UCB
(Cappé et al., 2013) or Thompson sampling (Agrawal and Goyal, 2012; Kaufmann
et al., 2012)), for which the constant C(ν) obtained in the regret upper bound matches
exactly that of the lower bound given by Lai and Robbins (1985). Under the non-
parametric assumption that the νk are bounded in [0, 1], the regret of the UCB1 algo-
rithm (Auer et al., 2002a) is of the above form with C(ν) = 8×

∑
k:µk>µ∗(µ∗ −µk)

−1,
where µ∗ = maxk µk is the mean of the best arm. Like in this last example, all
the available constants C(ν) become very large on “hard” instances, in which some
arms are very close to the best arm. On such instances, C(ν) log(T ) may be much
larger than the worst-case (1/20)

√
KT , and distribution-independent guarantees may

actually be preferred.
The MOSS algorithm, proposed by Audibert and Bubeck (2009), is the first

stochastic bandit algorithm to enjoy a problem-dependent logarithmic regret and
to be optimal in a minimax sense, as its regret is proved to be upper bounded by√
KT , for bandit models with rewards in [0, 1]. However the corresponding constant

C(ν) is proportional to K/∆min, where ∆min = mink(µ
∗ − µk) is the minimal gap,

which worsen the constant of UCB1. Another drawback of MOSS is that it is not
anytime. These two shortcoming have been overcame recently in two different works.
On the one hand, the MOSS-anytime algorithm (Degenne and Perchet, 2016) is min-
imax optimal and anytime, but its problem-dependent regret does not improve that
of MOSS. On the other hand, the kl-UCB++ algorithm (Ménard and Garivier, 2017)
is simultaneously minimax optimal and asymptotically optimal (i.e., it has the best
problem-dependent constant C(ν)), but it is not anytime. A natural question is thus
to know whether a Doubling Trick could overcome this limitation.

This question is the starting point of our comprehensive study of the Doubling
Trick: can a single Doubling Trick be used to preserve both problem-dependent (loga-
rithmic) regret and minimax (square-root) regret? We answer this question partially,
by showing that two different types of Doubling Trick may actually be needed. In
this paper, we investigate how algorithms enjoying regret guarantees of the generic
form

∀T ≥ 1, RT (AT ) ≤ c T γ(log(T ))δ + o(T γ
(
log(T ))δ

)
(2)

may be turned into an anytime algorithm enjoying similar regret guarantees with an
appropriate Doubling Trick. This does not come for free, and we exhibit a “price
of Doubling Trick”, that is a constant factor larger than 1, referred to as a constant
manipulative overhead.

The rest of the paper is organized as follows. The Doubling Trick is formally de-
fined in Section ??, along with a generic tool for its analysis. In Section ??, we present
upper and lower bounds on the regret of algorithms to which a geometric Doubling
Trick is applied. Section ?? investigates regret guarantees that can be obtained for
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a “faster” exponential Doubling Trick. Experimental results are then reported in
Section 5. Complementary elements of proofs are deferred to the appendix.
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Note: the simulation code used for the experiments is using Python 3. It is open-
sourced at https://GitHub.com/SMPyBandits/SMPyBandits and fully documented
at
https://SMPyBandits.GitHub.io.
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Appendix A. Omitted Proofs
We include here the proofs omitted in the main document.

7


	Introduction
	FIXME
	FIXME
	FIXME
	Numerical Experiments
	Conclusion
	Omitted Proofs

