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Abstract—Internet of Things (IoT) and in particular Low
Power Wide Area (LPWA) technologies are being developed to
enable long-range Machine-to-Machine (M2M) communications.
It is considered a main driver for a vast variety of applications,
where the need to fit a growing number of end-devices requires
to design novel and more efficient access schemes. For instance,
in smart grid communications, simple access schemes lead us
to an increase of the latency, the number of collisions, and the
power consumption. We consider devices communicate with the
gateway using a wireless ALOHA-based protocol, and taking
as inputs for the learning process, the number of successful
transmitted packets and retransmissions. In this article, we
propose and evaluate different learning strategies based on Multi-
Arm Bandit (MAB) algorithms that allow the devices to improve
their access to the network, while taking into account the impact
of encountered collisions. Our heuristics try to retransmit in a
different channel in case of collision in a channel first chosen
by a UCB algorithm, a well-known MAB strategy. Empirical
results show that approaches based UCB obtain a significant
improvement in terms of successful transmission probabilities,
even if the naive UCB is good and outperforms other strategies.

Index Terms—ALOHA Networks, Internet of Things, Retrans-
missions, Multi-armed Bandits, Reinforcement Learning.

I. INTRODUCTION

Nowadays, the Internet of Things (IoT) is considered a
promising technology that will support the communications
among a large number of devices, as it has become evident
with the increasing demand of smart grids and smart cities
projects. Nevertheless, the development of IoT networks also
require the redesign of the entire paradigm of the legacy
technology, since new research aspects such as the lower power
consumption and low signaling need to be considered.

In this context, the LPWAN [1] technology has been con-
ceived for providing the aforementioned features. For instance,
LoRaWAN and SigFox technologies have been adopted in the
monitoring of large scale systems (e.g., smart grids), where a
large number of devices compete for the transmission of their
packets, in unlicensed ISM bands (e.g., 433.5 MHz in Europe).
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Then, the improvement of the network performance in these
unlicensed bands require to conceive novel MAC mechanisms.

One important concern in the MAC design is to reduce
the Packet Loss Ratio (PLR) due to the interference caused
by the collisions among the devices within the network and
those following different standards. In fact, the number of
collisions increases as more devices without coordination share
the same band. Hence, novel access mechanisms considering
the collisions need to be addressed to avoid degrading the
network performance, while at the same time targeting features
of IoT networks.

In this regard, Multi-Arm Bandit (MAB) algorithms [2]
have been recently proposed as a solution and in particular
in LPWA networks [3], [4], [5]. For instance in [5], the non-
stationarity introduced by the presence of more than one intel-
ligent object is addressed by MAB algorithms. In that work,
low-cost algorithms following two well-known approaches,
such as the Upper-Confidence Bound (UCB) [6], and the
Thompson Sampling (TS) algorithms [7] have reported good
results. Other recent directions include theoretical analysis of
application of MAB algorithms for slotted wireless protocols
in a decentralized manner, see [8] and references therein, but
in this work we focus on a more programmatic approach.

The aim of this paper is to assess the performance of MAB
algorithms [2], used for frequency selection in IoT networks.
In particular, and compared to the literature, we focus on the
impact of the retransmissions on the performance of learning
algorithms. Indeed, in the case where learning algorithms are
used for frequency selection, IoT devices tend to focus on
a single channel, which increases the probability of having
several successive collisions. The contributions of this paper
can be summarized as follows:

• We first propose a closed form approximation for the
probability of having a second collision after a collision
has occurred in one channel,

• Then, we introduce several heuristics so as to cope with
retransmissions,

• We finally conduct simulations in order to compare the
performance of the proposed heuristics with the naive
uniform random approach and the simple UCB strategy



(non aware of retransmissions).
Finally, our proposal is applied in a decentralized manner,

and with a low complexity that do not require any modification
on network side, and it could be applied with a very low extra
cost in real embedded hardware. Implementation of the model
and our proposals on real hardware [9] is left as a future work.

The rest of the paper is organized as follows: first the
system model is introduced in Section II. Section IV describes
more formally the MAB learning algorithms. Our contributions
mainly consist in heuristics, presented in Section V, while
numerical results are presented in Section VI. Conclusions are
given in Section VII.

II. SYSTEM MODEL

We suppose an IoT network made of one gateway (i.e., base
station), and of a large number of end-devices that regularly
send short data packets to the gateway. The base station listens
to a fixed set of K channels (K > 1), in which devices can
transmit their packets. As in [3], we suppose that the network
is made of two types of devices:
• We have a set of static end-devices. These devices are

low-cost devices and are only able to use one channels.
They use the same gateway as others. However, as we
consider an IoT standard which operates in unlicensed
bands, it could be considered that they communicate with
another gateway or are using another standard, without
changing much the model and our conclusion.

• We also have dynamic devices which have the possibility
to use all the K available channels.

The IoT network considered here is a slotted ALOHA proto-
col [10], where each device has a probability p > 0 to transmit
a packet in a slot (first transmission). In case of collision, a
device retransmits this packet after a random waiting time,
uniformly distributed in [[0;m−1]], where m ∈ N∗ is the length
of the back-off interval. We denote by Mt ∈ N∗ the maximum
number of transmissions for each packet. We assume that,
in the case where more than two devices are transmitting a
packet in the same slot, all the packets are lost and must be
retransmitted.

With such assumptions, we can model the behavior of end-
devices using the Markov chain [11] of Figure 1.

We consider K > 1 orthogonal radio channels (also called
arms) of different characteristics, being unknown to the device.
The radio protocol is slotted in both time and frequency,
meaning that at each time step t ∈ N, the device, tries to
communicate in a channel C(t) ∈ {1, . . . ,K}. In our model,
the device chooses one channel k at a time, and use it to
communicate, and waits for the gateway to send back an
acknowledgement (Ack).

In the stochastic model considered in this paper, after
choosing the arm k, receiving an acknowledgement provides
a reward rk(t), randomly drawn from a certain distribution
depending on the arm index. Rewards are assumed to be
bounded in [0, 1], and generally they follow one-parameter
exponential families (a well-known example being any family

Fig. 1. The considered Markov model for the behavior of all the end-devices
in the network. Transition are labeled by their probabilities, see [11].

of Gaussian distributions with a fixed variance). We present our
algorithm by restricting to Bernoulli distributions1 for sake of
simplicity, meaning that arm k has a parameter µk ∈ [0, 1] and
rewards are drawn from B(µk), rk(t) ∼ B(µk), which can be
simply interpreted by the device: it is 1 if the channel k is
not used by any other device during the time slot t, and is 0
otherwise.

III. MOTIVATIONS FOR THE PROPOSED APPROACH

We can justify why the proposed approach is interesting.

A. Analytic derivation

When MAB learning algorithms are used for the purpose of
channel selection in an IoT network, the devices that imple-
ment them are learning to make most of their transmissions
in only one channel. See for instance the numerical results
presented in [5], or [12] for a different application example.
However, in the case with many devices following the behavior
described by Figure 1, if they are using the same channel, the
probability pc1 to have a collision at the second transmission
could be much higher than pc, the probability of having a
collision at the first transmission.

The aim of this section is to propose an approximation
for pc1 as a function of pc in order to assess the difference
between these probabilities. To do so, we suppose that a device
had a collision after transmitting a packet for the first time
(transmission #0) and we compute the probability to have a
collision at the second transmission (transmission #1).

Hypotheses We make two realistic hypotheses.
(H1) The probability to have a collision at the second trans-

mission, pc1, can be decomposed into the probability of
having a collision with a packet transmitted by devices
involved in the collision at the first transmission, which

1 The model is similar for other distributions, and we also tested our
proposal with Gaussian distributions, with finite support in [0, 1], and similar
conclusions were observed. Non-discrete rewards rk(t) are interpreted as a
relative communication efficiency, instead of binary available/busy informa-
tion, but we do not cover this aspect in more details in this work.



is denoted pca, and the probability of having a collision
with a packet transmitted by other devices, not involved
in the previous collision. The number of devices involved
in the previous collision is supposed to be small enough,
compared to the number of devices in the channel, to
consider that this second probability is equal to pc.

(H2) Mt is supposed to be large enough to consider that
devices are hardly ever in this state. With this hypothesis,
if a device is involved in the previous collision it
retransmits its packet after a random back-off time.

We assume a steady state for the Markov chain of Figure 1
[11]. Let us consider one device in the channel. We denote
xit the probability that it is transmitting a packet for the i+ 1
time in a given slot (for i ∈ {0, · · · ,Mt − 1}), and xt =∑Mt−1
i=0 xit the probability that it is transmitting in a given

slot. The probability that this device has a collision at the first
transmission is denoted pc and satisfies

pc = 1− (1− xt)N−1 ⇐⇒ xt = 1− (1− pc)
1

N−1 . (1)

Moreover, the probability pc(k) that it has a collision with
k packets sent by k different devices (k ≥ 1), at the first
transmission, is equal to

pc(k) =

(
N − 1

k

)
xkt (1− xt)N−1−k . (2)

After a collision at the first transmission, the device re-
transmits its packet after a random back-off interval. Using
hypothesis (H1), the probability that it has a collision at the
second transmission is

pc1 = pca + (1− pca) pc. (3)

So, we need to express pca, the probability to have a
collision with a packet involved in the previous collision,
as a function of pc. Assuming hypothesis (H2), pca is the
probability that a device involved in the previous collision
choose the same back-off interval. Thus pca is

pca =

N−1∑
k=1

pca(k), (4)

where pca(k) is the probability that, knowing that the device
had a collision at transmission #0, it had a collision with k
packets, and that at least one of the k devices involved in the
previous collision choose the same back-off interval. And thus

pca =

1

pc

N−1∑
k=1

(
N − 1

k

)
xkt (1− xt)N−1−k

[
1−

(
1− 1

m

)k]
.

(5)

We now use (H1) once again, assuming that the number of
devices involved in the first collision is small compared to N−
1, the first terms of the sum of equation (5) are predominant.

Moreover, for these terms, k is small compared to N − 1, so
N − 1− k ≈ N − 1. So,

pca =1− 1

pc

N−1∑
k=1

(
N − 1

k

)
xkt (1− xt)N−1−k

(
1− 1

m

)k
,

=1− (1− xt)N−1

pc

N−1∑
k=1

(
N − 1

k

)
xkt

(
1− 1

m

)k
. (6)

We can use the binomial theorem to compute the sum in
(6), and we obtain the expression of pca

pca =
1

pc
−(

1

pc
− 1

)[
1 +

(
1− (1− pc)

1
N−1

)(
1− 1

m

)]N−1
. (7)

pc1 can finally be computed by inserting equation (7) in (3).

B. Numerical validation

In order to assess the proposed approximation, we suppose
a channel in which all the devices have the same behavior. In
this single channel, the ALOHA protocol is using a maximum
number of transmissions of each message of Mt = 10, a back-
off interval of maximum length m = 10, and a probability of
transmission of p = 10−3. Figure 2 shows the probability of
collision in the channel, versus N the number of devices.
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Fig. 2. Proposed approximation for the probability of collision at the second
transmission. Our approximation is particularly precise for small values of N .

We can see in Figure 2 that the proposed approximation
is precise where pc1 ≤ 30%, i.e., where the gap between pc
and pc1 is the higher. Moreover, we can see in this figure
that the gap between pc1 and pc can be of up to 10%,
which emphasizes the possible interest of improving MAB
algorithms, so that they do not use the same channel for
retransmissions.



IV. A WELL-KNOWN MAB ALGORITHM: UCB

Before presenting different ways to incorporate the retrans-
missions, we present a classical bandit algorithm as a base
building block. We chose to restrict to the UCB algorithm
[13], which is known to be efficient for stationary i.i.d. rewards
while being simple to present, and being simple enough to
be implemented in practice for embedded hardware. In this
section, let us consider one device, which tries to learn how
to reduce its PLR while accessing the network, without taking
into account the retransmission aspect of our model. More
details on this simpler variant can be found in previous work
[5] and more theoretical details are given, e.g., in [2], [8].

A. Smart devices cannot be greedy

A first approach is to use an empirical mean estimator of the
rewards in every channel, and select the channel with highest
estimated mean at every time step; but this greedy approach
is known to fail dramatically [14]. Indeed, with this policy,
the selection of arms depends too much on the first draws:
if the first transmission in one channel fails and the first one
on other channels succeed, the device will never use the first
channel again, even it is the best one (i.e., the most available,
in average).

B. The UCB algorithm

Rather than relying on the empirical mean reward, Upper
Confidence Bounds algorithms instead use a confidence inter-
val on the unknown mean µk of each arm, which can be viewed
as adding a “bonus” exploration to the empirical mean. They
follow the “optimism-in-face-of-uncertainty” principle: at each
step, they play according to the best model, as the statistically
best possible arm (i.e., the highest UCB) is selected.

More formally, for one device, let Nk(t) be the number of
times channel k was selected up-to time t ≥ 1,

Nk(t) =

t∑
τ=1

1(C(τ) = k). (8)

The empirical mean estimator µ̂k(t) of channel k is defined
as the mean reward obtained by selecting it up to time t,

µ̂k(t) = 1/Nk(t)

t∑
τ=1

rk(τ)1(C(τ) = k). (9)

For UCB, the confidence term is given by [13]

Bk(t) =
√
α log(t)/Nk(t), (10)

giving the upper confidence bound Uk(t) = µ̂k(t) + Bk(t),
which is used by the device to decide the channel for commu-
nicating at time step t+ 1: C(t+ 1) = arg max1≤k≤K Uk(t).
UCB is called an index policy.

The UCB algorithm uses a parameter α > 0, originally α
was set to α = 2 [6], but empirically α = 1/2 is known to
work better (uniformly across problems), even though α > 1/2
was advised by the theory [2]. In our model, every dynamic
device implements its own UCB algorithm, independently. For
one device, the time t is the total number of sent messages

from the beginning, as rewards are only obtained after a trans-
mission. Algorithm 1 presents the pseudo-code of UCB. Note
that no matter if it is the first transmission or a retransmission
of a message, this first proposal uses the same access scheme
and updates the internal data in a similar way.

Input: Number of arms, K ≥ 1
Input: Time horizon, T ≥ 1, not used for the learning
Data: Nk(t), µ̂k(t), Bk(t) and Uk(t) for each k
Result: C(t) ∈ {1, . . . ,K} for each t ∈ {1, . . . , T}
for t = 1, . . . , T do // At every time step

Compute Uk(t) = µ̂k(t) +Bk(t);
Transmit in channel C(t) ∼ arg maxk Uk(t);
Reward rC(t)(t) = 1 if Ack is received, else 0;
Update internal data following Eq.(8), (9), (10);

end
Algorithm 1: A base building block, the UCB algorithm.

V. PROPOSED HEURISTICS

Machine learning algorithms, and especially the MAB
framework, has been used in simpler cognitive radio models
before, starting from [15] and more recently in [5], [3], for
instance. The novelty of our approach relies on the proposed
heuristics that try to take into account the retransmission aspect
of our model.

In our model, any dynamic object knows when it is retrans-
mitting or sending for the first time, but using the unmodified
UCB algorithm for decision making (i.e., channel selection)
in both cases do not use this information. As usual in rein-
forcement learning, a natural question is to evaluate whether
using this additional contextual information can improve the
performance of the learning policy.

We present in this Section some heuristics, that use this
information in various ways. They vary only in their way to
select channels for retransmissions, and all retransmissions are
dealt with similarly (no distinction is done between the first
retransmission and the next Mt − 1 ones). All the following
algorithms follow the same pattern as Algorithm 1.

A. UCB then uniform random access

This first proposal is a simple mixture between the UCB
approach presented in Section IV-B and the naive Random
Uniform Access approach, see Algorithm 2 below. It uses
a UCB to select channels for the first transmission of each
message, and in case of any retransmission, it uses a random
channel selection. The idea is to learn to use the best channel
for first transmission, then avoid using the best channel too
much for the retransmissions. It is the simplest heuristic,
inspired from the observations on pc1 being larger than pc
presented in Section III-B.

B. Two UCB

Another heuristic is presented in Algorithm 3: it tries to
learn more, and it uses two different learning algorithms. As
for all heuristics, one UCB algorithm is used to select the



for t = 1, . . . , T do // At every time step
if First transmission of this message then

Compute Uk(t) = µ̂k(t) +Bk(t);
Transmit in channel C(t) ∼ arg maxk Uk(t).

else // Random retransmission
Transmit in channel C(t) ∼ U(1, . . . ,K).

Reward rC(t)(t) = 1 if Ack is received, else 0;
Update internal data following Eq.(8), (9), (10);

end
Algorithm 2: UCB then Uniform Random Access.

channels for the first transmissions, but now the channels for
retransmissions are not randomly selected but are selected
using a second2, independent, UCB algorithm. The idea here is
that maybe the second algorithm will learn that retransmissions
should happen in the other channels than the best one identified
by the first algorithm. The second UCB uses data denoted, e.g.,
U ′k(t).

Data: N ′k(t), µ̂k
′
(t), B′k(t) and U ′k(t) for each k

for t = 1, . . . , T do // At every time step
if First transmission of this message then

Compute Uk(t) = µ̂k(t) +Bk(t);
Transmit in channel C(t) ∼ arg maxk Uk(t).

else // Retransmission using 2nd UCB
Compute U ′k(t) = µ̂k

′
(t) +B′k(t);

Transmit in channel C(t) ∼ arg maxk U
′
k(t).

Reward rC(t)(t) = 1 if Ack is received, else 0;
Update internal data following Eq.(8), (9), (10), for

the first or second UCB algorithm;
end

Algorithm 3: Two UCB.

C. One UCB then K UCB

Extending the idea of the previous heuristics, we also
propose a similar one, which uses K + 1 algorithms instead
of simply two, see Algorithm 4. One UCB is again used
for selecting channels for the first transmissions, and now K
different and independent algorithms3 are used for retransmis-
sions, denoted A1, . . . ,AK . If the first transmission happened
in channel j, then the decision making for retransmitting
is handled by algorithm Aj . This algorithm Aj uses data
denoted, e.g., U jk(t).

D. Two UCB with delay for the second one

The last heuristic we propose is a mixture of Algorithms 2
and 3, see Algorithm 5. Fix a delay ∆, e.g., ∆ = 100

2 The storage requirements and time complexity is doubled but remains
linear w.r.t. K, and so it is still a practical proposal.

3 The storage requirements and time complexity is now quadratic in K,
and as such we no longer consider this heuristic to be a practical proposal in
some IoT networks, as for instance Sigfox networks consist in a large number
of very narrow-band channels. But for LoRaWAN networks with K = 4,
storing K + 1 = 5 algorithms does not cost much more than storing 2.

Data: ∀k, j ∈ [[1;K]], N j
k(t), µ̂k

j
(t), Bjk(t) and U jk(t)

for t = 1, . . . , T do // At every time step
if First transmission of this message then

Compute Uk(t) = µ̂k(t) +Bk(t);
Transmit in channel C(t) ∼ arg maxk Uk(t).

else // Retr. after trying channel j

Compute U jk(t) = µ̂k
j
(t) +Bjk(t);

Transmit in channel C(t) ∼ arg maxk U
j
k(t).

Reward rC(t)(t) = 1 if Ack is received, else 0;
Update internal data following Eq.(8), (9), (10);

end
Algorithm 4: UCB then K UCB.

steps4. Then this last heuristic uses one UCB algorithm for
first transmissions, and for the first ∆ retransmissions, it
selects channels uniformly at random. Only after ∆ “naive”
retransmissions, a second UCB algorithm is created and begins
to be used for selecting channels for retransmissions.

Input: Delay ∆, e.g., ∆ = 100
Data: N ′k(t), µ̂k

′
(t), B′k(t) and U ′k(t) for each k

for t = 1, . . . , T do // At every time step
if First transmission of this message then

Compute Uk(t) = µ̂k(t) +Bk(t);
Transmit in channel C(t) ∼ arg maxk Uk(t).

else if Less than ∆ retransmission then
// Random retransmission

Transmit in channel C(t) ∼ U(1, . . . ,K).
else // Retransmission using 2nd UCB

Compute U ′k(t) = µ̂k
′
(t) +B′k(t);

Transmit in channel C(t) ∼ arg maxk U
′
k(t).

Reward rC(t)(t) = 1 if Ack is received, else 0;
Update internal data following Eq.(8), (9), (10);

end
Algorithm 5: UCB then Uniform Random Access.

VI. EXPERIMENT RESULTS

We simulate our network in order to compare the proposed
heuristics. The simulated network uses similar values of the
ALOHA model as the one used for Figure 2: ∀t,Mt = 5,
m = 10, and p = 10−3. We consider K = 4 channels (like for
the LoRa standard), a number of time slots 1000000, which is
large enough to observe convergence of all learning algorithms.
Moreover the results are averaged on 10 independent runs of
the random simulation. We consider a total number of devices
of N = 2000, and a non-uniform repartition of static devices
of 40%, 30%, 20%, 10% in the 4 channels.

We present in Figure 3 the results of this numerical simula-
tion. The x axis corresponds to the number of communications

4 Choosing the value of ∆ could be done by extensive benchmarks but
such approach goes against the reinforcement learning idea: an heuristic should
work against any problem, without the need to be able to simulate the problem
in advance in order to find a good value of some internal parameter. As such,
we only consider a delay of ∆ = 100.



of a device, and it corresponds to the number of learning step,
while the y axis corresponds to the successful transmission
rate, in percentage.

Fig. 3. Comparison of different heuristics based on UCB, and the vanilla
UCB algorithm. “Random” refers to UCB then random retransmission.

We verify that each proposal is indeed learning, as its suc-
cessful transmission rate is rapidly increasing (or equivalently,
its PLR is decreasing). All plots show a pattern typical of
MAB algorithms when applied to this kind of problem: a
fast learning phase in the beginning of the experiment and
a “plateau” showing the convergence of the algorithm to a
stable strategy.

All heuristics outperform the naive random uniform ap-
proach, which is not included to reduce clutter in the plot.
The random approach has a successful transmission rate of
about 7%, constant in time as no learning is involved, and for
instance the best heuristic attains a performance up-to 4 times
better, at about 30%. Observing such a strong improvement in
terms of successful transmission rate is a very strong advocate
of using simple MAB learning algorithm.

The conclusions we can draw from this simulation are
twofold. First of all, a simple sanity check is that all the
proposed heuristics do not reduce performance when compared
to the naive approach. But most importantly, we observe three
groups of heuristics. The less efficient one is the K+ 1 UCB,
and this makes sense as having more learning algorithm needs
more for each of them to learn. The more efficient one is the
simple UCB procedure, and this was quite surprising. All the
other heuristics perform very much similarly.

VII. CONCLUSION

Summary

In this paper, we presented a model of IoT networks based
on a ALOHA protocol, slotted both in time and frequency, in
which dynamic objects can use machine learning algorithms to
improve their Packet Loss Ratio when accessing the network.
The main novelty of this model is that it allows device to

retransmit a packet in case of collision, and by using the
framework of Multi-Armed Bandit, we presented and evaluated
several learning heuristics that try to learn how to transmit and
retransmit in a smarter way. Empirical simulations show that
each heuristics outperform the naive uniform access scheme,
and we conclude that the simple UCB learning approach is
the most efficient.

Future works

Possible extensions include studying other families of al-
gorithms, such at Thompson Sampling [7], or non-stochastic
MAB algorithms such as the EXP3 family [2]. We also want to
study more heuristics, and one interesting idea is to consider
variants of stochastic MAB algorithms such as Sliding Window
UCB or Discounted UCB [16], or smarter and more recent
algorithms. As they are tailored to be robust to non-stationary
MAB problems with small dynamic behaviors, applying our
heuristics to such base algorithm could help to be more
adaptive to the intrinsic non-stationarity of the network.

A last direction of future work includes a real-world
hardware implementation of this model, in order to validate
experimentally our results. We have the experience to do it
very soon, using Ettus USRP boards [9], the GNU Radio and
GNU Radio Companion software [17], and our TestBed5.
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Simulation code

The source code (MATLAB or Octave) used for the simula-
tions and the figures is open-sourced under the MIT License, at
Bitbucket.org/scee_ietr/ucb_smart_retrans.


