

Decentralized Spectrum Learning for Radio
Collision Mitigation in Ultra-Dense IoT Networks:

LoRaWAN Case Study and Experiments
Christophe Moy1, Senior Member, IEEE, Lilian Besson2, Guillaume Delbarre1, Laurent Toutain3

1 Univ Rennes, CNRS, IETR - UMR 6164, F-35000, Rennes, France
2 CentraleSupélec, CNRS, IETR - UMR 6164, F-35576, Cesson-Sévigné, France

3 IMT Atlantique, IRISA, F-35700, Rennes, France

Corresponding author e-mail : christophe.moy@univ-rennes1.fr

Abstract—This paper describes the theoretical principles

and experimental results of reinforcement learning algorithms
embedded on IoT devices, in order to tackle the probem of radio
collision mitigation in ISM unlicensed bands. Multi-Armed
Bandit (MAB) learning is here used to improve both the IoT
network capability to support the expected massive number of
objects, as well as the autonomy of the IoT devices. We first
illustrate the efficiency of the proposed approach in a proof-of-
concept, based on USRP software radio platforms operating on
real radio signals. It shows how collisions with other RF signals
are diminished for a given IoT device that uses MAB learning.
Then we describe the first implementation of such algorithms on
LoRa devices operating in a real LoRaWAN network, that we
named IoTligent. The proposed solution adds neither processing
overhead, so it can be ran in the IoT devices, nor network
overhead, so no change is required to LoRaWAN protocol. Real
life experiments done in a real LoRa network show that
IoTligent devices’ battery life can be extended by a factor 2, in
the scenarios we faced during our experiment. Finally we submit
IoTligent devices to very constrained conditions that are
expected in the future with the growing number of IoT devices,
by generating an artificial IoT massive traffic in anechoic
chamber. We show that IoTligent devices can cope with
spectrum scarcity that will occur at that time in unlicensed
bands.

Keywords—Internet of Things, IoT, machine learning, MAB,
bandit, radio spectrum, collision mitigation, interference, LoRa,
artificial intelligence, LoRaWAN, cognitive radio.

I. INTRODUCTION
Wireless Internet of Things (IoT) is based on Low Power

Wide Area Networks (LPWAN) able to interconnect low cost
and mostly battery-powered devices over long ranges to an
access point to the Internet. This is made possible by the use
of low bit rates, low-bandwidth machine-to-machine (M2M)
types communications. After the expansion of human-to-
human mobile communications in the 1990’s, and then human
to the Internet communications in the 2000’s, now has come
the era of M2M and especially Machine to the Internet (M2I).
M2I are expected to know a tremendous expansion in the very
next few years, through IoT networks.

We can consider two categories of IoT networks. First are
the cellular IoT networks, deployed by mobile phone
operators, running 3GPP standards such as EC-GSM IoT,
LTE-Cat0, LTE-Cat M1, NB-IoT or next 5G IoT. These
standards will be supported in licensed frequency bands
operated for cellular telephony. The second category is mainly

different as it uses unlicensed bands for wireless links, also
called ISM bands, which are open to the use for Industrial
Scientific and Medical applications. Most commonly used
ISM bands are 434 MHz and 868 MHz in Europe and Africa,
and 915 MHz in America, with a worldwide bands at 2.4 GHz
and 5.8 GHz. Due to the constraints in terms of range and
bandwidth, the 868 MHz and 915 MHz bands are mostly
preferred for IoT networks. They communicate through
protocols based on very different radio physical layer and
medium access control specifications. For instance, the current
two most well known IoT standards are LoRaWAN [1], based
on a chirp spread-spectrum solution and Sigfox [2], based on
an ultra-narrow band technology.

In cellular licensed IoT networks, just one transmission
may occur between any operated device and the radio access
point, scheduled by the cellular network in a given place, at a
given time and in a given frequency band. However, in
unlicensed bands, IoT networks face very different and
specific conditions. Many IoT networks can be deployed in the
same area and superpose geographically, regardess if they are
using the same protocol or not. Even if there exist rules to be
followed in unlicensed bands, such as transmit power mask
and duty cycle limits, many radio transmissions may collide at
the same place, time and frequency, as no global coordination
is done.

The goal of this paper is to present the original IoTligent
approach that embeds very low cost machine learning
algorithms inside IoT devices, in order to mitigate radio
collisions in the ISM bands. Low cost here is to be considered
in terms of processing power, processing resources, memory
footprint, protocol overhead and frequency resources usage.

After exposing the issues we target in this work and the
corresponding hypothesis in Section II, Section III reminds the
foundation of the learning algorithms used in IoTligent. Then,
we show how we validated our approach through several
gradual stages of experimentations. The first measurements of
Section IV give results of a proof-of-concept made in
laboratory conditions using SDR (Software Defined Radio)
platforms in order to validate the learning approach. Then,
Section V gives the experimental architecture and hardware
configuration we use for the next measurement campaign
presented in Section VI. It has been realized on LoRa IoT
devices operated in real radio conditions of an operating
LoRaWAN network in the city of Rennes (France). In Section
VII, we present measurements made in an anechoic chamber

with an emulated radio traffic generator. We reproduce here
the future very dense IoT networks radio conditions and
validate the proposed learning approach for future ultra-dense
LoRaWAN networks.

II. COLLISIONS, HYPOTHESIS AND ADVANTAGES OF
DECENTRALIZATION

A. Collisions vs. autonomy
The possibility of suffering from collisions is the main

drawback of IoT in terms of battery autonomy at the first level,
but also of IoT viability itself in the ISM bands. Indeed
collisions may cause (many) retransmissions at the cost of an
increase of the RF contention, and may lead to a lower battery
lifetime of the devices. Even worse, this could lead to a total
failure of the IoT device, either because it cannot succeed in
sending any data to the network, or because multiple
repetitions could make it consume all its energy much faster
than expected.

B. Analysis of collisions
Radio collisions will be the weak point of LPWAN IoT

networks operating in the unlicensed bands. Different kinds of
collisions exist, as collision may occur with:

 other IoT devices of the same network, as several networks
covering the same area are not coordinated. This can occur
between IoT devices uplink (UL) transmissions, and
between IoT UL and gateway downlink (DL)
transmissions towards IoT devices.

 Other IoT devices of surrounding networks that are not the
network of our device, but that are using the same IoT
standard. This can occur both in UL and DL, as
surrounding IoT gateways of different networks are not
coordinated. They could use the same channels, or partly
same and partly different channels.

 Other IoT radio signals using other IoT radio standards
with different channels, bandwidth, user repartition, etc.

 Other radio signals present in the ISM bands that are not
IoT signals. By definition, they use completely different
rules than IoT. They can be considered as “jammers” from
the IoT network point of view.

It is also important to note that, as each IoT standard uses
its own rules for channeling and bandwidth, all this leads to an
erratic spectrum usage, which cannot be planned, and has to
be learnt in vivo. However, unlicensed band does not mean un-
ruled band (there are for duty cycle, power, etc.), but they are
more exposed to the non-respect of these few rules as
regulation is relaxed and thus, controls as well.

C. A device-side solution for spectrum management
Our learning approach imposes no change on a normal IoT

protocol, as for instance LoRaWAN [1]. It means that there
are no extra-retransmission, no data to be added in frames, no
extra-power transmission, etc. to be done. The only condition
is that the proposed solution should work with the
acknowledged mode for IoT. The underlying hypothesis is that
“channels” (there are no official channels in ISM bands)
occupancy by surrounding radio signals (IoT or not) is not
equally balanced. In other words, some ISM sub-bands are less
occupied or less jammed than others, but it is not possible to
predict it in time and space, so it has to be learnt on the fly.

The considered learning algorithms are a kind of artificial
intelligence (AI) algorithms that are compatible with the

constraint of low complexity of IoT devices, as we explain
below. It is indeed much more efficient to implement a radio
collision mitigation approach on the device side, as devices
may be quite far away from gateways, and suffer from
different radio and jamming/co-existence conditions. But they
are the place where every Watt counts at transmission, and
where sensitivity should be the best at reception, as no extra-
processing can be afforded.

D. Advantages of the proposed solution
The proposed approach is based on reinforcement learning

algorithms such as those already studied [3] and experimented
on real radio signals for Cognitive Radio, and especially for
Opportunistic Spectrum Access (OSA) [4]. We assert that, as
for OSA, the IoT spectrum access issue can be modeled as a
Multi-Armed Bandit (MAB) problem [5][6]. Reinforcement
Learning is based on a feedback loop that gives a
success/failure measure of experience. In the IoT context, we
propose to use the acknowledgement (ACK) sent by the
gateway to the IoT device as a binary reward (1/0 for
presence/absence of ACK). Every device aims at maximizing
its transmission success rate, or equivalently, at maximizing
its cumulated reward (i.e. number of received ACK).

The main advantages of our solution are that the

 algorithms have mathematical proofs of convergence,
 proofs are verified in real radio conditions, thanks to the

good matching between the model and reality,
 learning converges effectively very fast in real

experiments, thus it is adequate for radio applications [7],
 implementation and execution both require very low

processing and memory overhead, so that it is possible to
add the proposed approach in IoT devices for a negligible
money cost, negligible complexity (processing, hardware,
memory) and negligible extra-energy consumption
overhead,

 learning can efficiently start from scratch, so there is no
need for any prior knowledge when deploying the IoT
device (i.e. no need to loose some time to acquire this
knowledge before operation really starts),

 using such learning algorithms will never give worse
results than a state-of-the-art random solution [8], even
before learning brings a clear advantage, for instance at the
very beginning of the learning process.

Hence, we argue that the proposed approach can adapt to

any kind of radio context, and we also note that:
 the stationarity of the environment is a requirement for the

proofs of convergence, but if conditions change
occasionally, convergence is so fast that a simple solution
consists in resetting learning from time to time [8] (note
that there also exist adaptive versions),

 no coordination is required between devices, but benefits
decrease with the number of devices using the proposed
solution, when it represents a great majority of devices (see
the solutions presented in [8][9]),

 as soon as a device is planned to receive an
acknowledgment, no overhead is added neither in terms of
protocol nor extra bits to be put into the LoRaWAN frames
in uplink or downlink. A received ACK yields a reward of
1, and no ACK yields a reward of 0, without needing to
change the content of the ACK messages.

III. MAB MODEL AND LEARNING SOLUTIONS
We model the IoT wireless spectrum issue as a Multi-

Armed Bandit (MAB) problem [5] and we propose to use
bandit algorithms at the IoT device side to solve this issue [6].

A. System model
We consider the system model presented in Fig. 1, where

a set of devices sends uplink packets to the network gateway.

Fig. 1. System model used for IoT, with intelligent IoT devices that are able

to dynamically set their transmission channel, thanks to a learning
algorithm, in order to minimize collisions and interference from other
radio signals in the unlicensed ISM band, especially other IoT networks
which will be responsible of most of future traffic.

The communications between IoT devices and this
gateway are done through a simple ALOHA-based protocol,
where devices transmit uplink packets of fixed duration,
whenever they want. The devices can transmit their packets in
one of the K  2 channels. Channels are predefined but time is
unslotted. In the case where the gateway receives an uplink in
one channel, it transmits an acknowledgement to the
corresponding end-device in the same channel, after a fixed
delay. These communications operate in unlicensed ISM
bands, and consequently, as stated in the previous section, they
suffer in particular from interferences generated by
uncoordinated neighboring networks. This interfering traffic is
uncontrolled, and can be unevenly distributed over the K
different channels.

We consider the network from the point of view of a single
IoT device. Every times it has to communicate with the
gateway (at each transmission t  1, t ϵ ℕ), it has to choose one
channel, denoted as C(t) = k ϵ {1, . . . , K}. After transmission,
the IoT device starts to wait in the same channel C(t) for an
acknowledgement sent by the gateway. Before sending
another message (i.e., at time t + 1), the IoT device knows if it
received or not this ACK message. For this reason, selecting
the channel (or arm) k at time t yields a (random) feedback,
called a reward, rk(t) ϵ {0, 1}, being 0 if no ACK was received
after the previous message, or 1 if ACK was successfully
received. The goal of the IoT device is to minimize its packet
loss ratio, or equivalently, it is to maximize its successful
transmission rate, which here is its cumulative reward, as it is
usually done in MAB problems [5][6][10]: 𝑟ଵ…் ∶= ∑ 𝑟஼(௧)(𝑡)௧்ୀଵ (1)

This problem is a special case of the so-called “stochastic”
MAB, where the sequence of rewards drawn from a given arm
k is assumed to be i.i.d., under some distribution νk, that has a
mean µk. Several types of reward distributions have been

considered in the literature, for example distributions that
belong to a one-dimensional exponential family (e.g.,
Gaussian, Exponential, Poisson or Bernoulli distributions). As
rewards are binary in our model, we consider only Bernoulli
distributions, in which rk(t) ∼ Bern(µk), that is, rk(t) ϵ {0, 1}
and ℙ(rk(t) = 1) = µk ϵ [0, 1]. Contrary to many previous works
done in the cognitive radio field (for instance in Opportunistic
Spectrum Access [11]), the reward rk(t) does not come from a
sensing phase before sending the t-th message, as it would do
for any “listen-before-talk” model. Rewards come from
receiving an acknowledgement from the gateway, between the
t-th and t+1-th messages.

The problem parameters µ1, ..., µK are of course unknown
to the IoT device, so to maximize its cumulated reward, it must
learn the distributions of the channels, in order to be able to
progressively focus on the best arm (i.e., the arm with largest
mean). This requires to tackle the so-called exploration-
exploitation dilemma: a player (here, an IoT device) has to try
all arms a sufficient number of times to get a robust estimate
of their qualities, while not selecting the worst arms too much.

Before discussing the relevance of a MAB model for our
IoT application, we present two low-complexity bandit
algorithms, UCB1 and Thompson Sampling [12], which are
both known to be efficient for stationary i.i.d. rewards and are
shown below.

B. The UCB1 algorithm
A first naive approach could be to use an empirical mean

estimator of the rewards for each of the K channels, and select
the channel with the highest estimated mean at each time ; but
this “greedy” approach is known to fail dramatically [5].
Indeed, with this policy, the selection of arms is highly
dependent on the first draws: if the first transmission in one
channel fails and the first one on other channels succeed, the
device will never use the first channel again, even it is the best
one, which is the most available one, in average.

Upper Confidence Bounds (UCB) algorithms instead use a
confidence interval on the unknown mean µk of each arm,
which can be viewed as adding a “bonus” exploration to the
empirical mean. They follow the “optimism-in-face-of-
uncertainty” principle: at each step, they play according to the
best model, by selecting the statistically best possible arm (i.e.,
the highest upper confidence bound). More formally, for one
IoT device, we denote by 𝑇௞(𝑡) = ∑ ௧ఛୀଵ 1(𝐶(𝜏) = 𝑘) (2)

the number of times channel k was selected up-to time
t  1. The empirical mean estimator of channel k is defined as
the mean reward obtained by selecting it up to time t, 𝑋௞(𝑡) = (1 𝑇௞(𝑡)⁄) ∑ 𝑟௞(𝜏)௧ఛୀଵ 1(𝐶(𝜏) = 𝑘) (3)

For UCB1 [6],the confidence term is 𝐴௞(𝑡) = ඥ𝛼 log(𝑡) 𝑇௞(𝑡)⁄ , (4)

and the upper confidence bound is the sum of the
confidence term and the empirical mean, 𝐵௞(𝑡) = 𝑋௞(𝑡) + 𝐴௞(𝑡), (5)

which is used by the device to decide the channel for
communicating at time step t + 1:

 𝐶(𝑡 + 1) = arg maxଵஸ௞ஸ௄ 𝐵௞ (𝑡) (6)

The UCB1 algorithm is called an index policy. It uses a
parameter α > 0, originally set to 2 [13], but empirically α = 1/2
is known to work better (uniformly across problems), and
α  1/2 is advised by the theory [13]. This algorithm is simple
to implement and to use in practice, even on embedded
microprocessors with limited computation and memory
capabilities. In our model, every IoT device implements its
own UCB1 algorithm, independently. For one IoT device, the
time t is the total number of sent messages from the beginning,
as rewards are only obtained after a transmission. Different
devices do not share this time index t as time is not slotted.

C. The Thompson Sampling algorithm
Thompson Sampling (TS) [12] was introduced early on, in

1933 as the very first bandit algorithm, in the context of
clinical trials (in which each arm models the efficacy of one
treatment across patients). Given a prior distribution on the
(unknown) mean of each arm, the algorithm selects the next
arm to draw based on samples from the conjugated posterior
distribution, which for Bernoulli rewards is a Beta distribution.

A Beta prior Beta(ak(0) = 1, bk(0) = 1) (initially uniform)
is assumed on µk ϵ [0, 1], and at time t the posterior is denoted
Beta(ak(t), bk(t)). After every channel selection, the posterior
is updated to have ak(t) and bk(t) counting the number of
successful and failed transmissions made on channel k. More
precisely, if the ACK message is received, the update is
ak(t + 1) = ak(t) + 1, and bk(t + 1) = bk(t), otherwise the update
is ak(t + 1) = ak(t), and bk(t + 1) = bk(t) + 1. Then, the decision
is done by sampling an index for each arm, at each time step t,
from the arm posteriors: Ik(t) ∼ Beta(ak(t), bk(t)), and the
chosen channel is simply the channel C(t + 1) with highest
index Ik(t). For this reason, Thompson Sampling can be called
a randomized index policy.

The TS algorithm, although being simple and easy to
implement, is known to perform well for stochastic problems,
for which it was proven to be asymptotically optimal [14][15].
It is known to be empirically efficient, and for these reasons it
has been used successfully in various applications, including
on problems from Cognitive Radio [16][17], and also in
previous works on decentralized IoT-like networks [18].

D. Multi-player bandit issue
We can prove that one single intelligent IoT can improve

consequently its performance in LPWAN IoT networks using
unlicensed band. But we have also shown that even if there are
a lot of intelligent IoT devices, and the model of other
surrounding IoT devices does not stay purely stochastic,
learning still brings improvement [8]. Further theoretical
developments on this direction are an interesting future work.

IV. MEASUREMENT 1 : IOT PROOF-OF-CONCEPT

A. Preceding results
Bandit algorithms have been identified more than 10 years ago
as efficient solutions for many cognitive radio problems, as
introduced in [3]. In particular, the very trendy dynamic
spectrum access (DSA [11]) issue has been identified as a
multi-armed bandit (MAB) problem in [4]. The first
implementation validating the bandit algorithms on real radio

1 See https://www.ettus.com/ for more details.
2 See https://www.gnuradio.org/ for more details.

signals was presented 5 years ago for opportunistic spectrum
access (OSA) in [7]. Reinforcement learning algorithms, such
as UCB1, were firstly used, but any kind of bandit algorithm
[19] could be used indifferently. Their efficiency and
implementation complexity can be considered as criterion to
decide which algorithm to implement. In the context of IoT,
MALIN [20] is the first proof-of-concept (PoC) demonstrating
the feasibility of using learning algorithms on the IoT device
side, on real radio signals in lab conditions.

B. PoC setup
This PoC is based on 4 USRP platforms from Ettus

Research and National Instrument1. The development is made
with GNU Radio2 software, and the source code of the PoC is
published on-line3, in order to ease the full reproducibility of
our results. We have not implemented a real IoT standard in
this PoC, in order to show that it can be applicable for any IoT
standard. However, we took some characteristics rather
corresponding to the LoRa context (not ultra-narrow band,
reduced number of channels, frame duration around a few
hundreds of milliseconds, etc.).

One or two (or more) USRP platforms are playing the role
of IoT devices that can run (or not) the proposed learning
algorithms. They transmit at their own initiative some very
light modulated information (using QPSK), in order to be
identified by the gateway, and then wait during one second for
the gateway ACK. Both uplink transmissions and downlink
receptions use the same frequency channel. Whether the ACK
is received or not, the learning algorithm updates its
knowledge about the channel used during this iteration.

One USRP platform is a traffic generator that emulates as
much (random) IoT traffic as we want, to be able to tune each
channel’s load independently, on demand. We typically
choose channel loads ranging from 0% to 20%.

A last USRP platform is a gateway (GW) that is
continuously scanning all the K channels, and monitors the IoT
traffic composed of the artificial signals produced by the
traffic generator and the IoT devices signals. The gateway has
the ability to answer to the IoT devices, by sending back to
them an ACK message, which contains their identifier,
(actually, the symbols corresponding to the QPSK complex
conjugate of their identifier).

C. PoC results
The number of IoT channels K is a parameter, and we have

set it to 4, 8 and 16 channels in our experiments, but there is
no limitation. For the sake of clarity in the figures, we give
examples below with 4 channels that are separated by empty
channels, but they could be contiguous with no change neither
in the implementation nor in the results.

We can see on Fig. 2 a time-frequency waterfall view
captured by the gateway, where we can observe the RF traffic
in the K=4 channels. The y axis for the time is vertical and
goes down, and frequency is on the x axis. The difference of
colors is a difference of received power, due to the distance of
the transmitters to the gateway receiver antenna. The gateway
transmitter antenna is very close so signals transmitted by the
gateway are red. The traffic generator and IoT devices are a
little bit further away, so the gateway received weaker signals

3 See https://bitbucket.org/scee_ietr/malin-multi-armed-bandit-learning-for-iot-
networks-with-grc. The code is released publicly under the open-source GPLv3 license.

from them: one is blue and the other green, which reveals a
low difference.

Fig. 2. Spectrum waterfall on GRC received at gateway side in a 4 channels

example (only 3 occupied in this picture), during experiments. Time is
in y axis (going down) and frequency in x axis. Blue short transmissions
are those produced by the traffic generator, green blocks are our IoT
transmissions and red blocks are the gateway transmissions itself.

In this experiment, we can see on Fig. 2 that channel #0 on
the left hand side faces a dense IoT traffic, which appears as
blue short transmissions (produced by the traffic generator).
Some others uplink transmissions appear on channel #1
(second left hand side), but we do not see any blue short
messages on channel #2 (third left) and #3 (on the right hand
side, empty in this measure). However, we see on these
channels longer messages of two kinds: green messages which
correspond to IoT devices transmissions, and red messages
that are the answer done by the gateway. In order to rapidly
have results in the demo, we make them transmit every 5
seconds, for a message of duration of one second. Then when
an IoT device transmits a message, the gateway should answer
and sends an ACK to the IoT device within 1 second, if the
gateway was able to demodulate the signal, i.e., if there is no
collision in the radio channel. For instance, we can see on Fig.
2 that the IoT device moved from channel #2 to channel #1,
and at each of its transmission, the gateway was able to
answer, by successfully sending an ACK response.

Fig. 3 gives the perspective of the IoT device, at a different
moment for the same scenario. Then we observe that colors
have changed, as the received power is now taken at the device
side. The IoT device transmitter antenna is now very close, so
signals transmitted by the IoT device are red. The traffic
generator, the other IoT devices, and then the gateway all are
a little bit further away, so the IoT device received weaker
signals from all of them, one is blue and the other green but
inversed. However, it is not so obvious, so it is better to
consider the message duration in the y axis indeed.

Fig. 3. Spectrum waterfall on GRC received at IoT device side in a 4

channels example, during experiments. Time is in y axis (going down)
and frequency in x axis. Green short transmissions are those produced
by the traffic generator, red blocks are the IoT device transmissions,
and blue blocks are gateway transmissions.

We can see on Fig. 3 that if we use the same scenario of
traffic as in Fig. 2, but at a different time, i.e. with a very dense
traffic on channel #0, less dense on channel #1, even less dense
on channel #2, then transmission appears on channel #3 but it
is indeed just even less dense. At that time of the experiment,
our IoT device is moving from channel #2, where maybe it
faced some collisions in the downlink transmission of ACK,
to channel #3, where several successive transmissions and
receptions seem to occur.

Fig. 4 is a screenshot taken at some moment during an
experiment that gives the details of the learning algorithm
operation. We can see in top-left red data the number of
selections of each channel. There is a clear disequilibrium with
channel #3 that has been much more (17 times) used than
channel #2 (8 times), itself more used than channel #1 (6
times) and channel #0 (only once). This reveals the effect of
the learning algorithm. It has analyzed which channels are
more occupied and more disturbed by other users of the band
(emulated here by the traffic generator). The top-right green
and therefore the bottom-right blue data explain such a choice.
Channel #4 has known 16 successes (over 17), so a rate of
94%. We remind that successes mean that the IoT device
received on that channel 16 ACK from the gateway after
transmitting 17 times in this channel. So just one “exchange”
was lost, either in UL, or in DL, due to a collision with some
interfering signal in the channel. We can see on the opposite
that no success has been obtained for channel #0, so it has a
0 % rate. UCB data, in bottom-left green part, are harder to
follow, as UCB1 indexes rapidly converge to very close
values, but at each transmission, the IoT device chooses
channel with highest UCB1 index, as in (6).

Fig. 4. Live results enabling to monitor the learning algorithm evolution at

the IoT device side in a K=4 channels example. Top-left red: number
of trials on each channel, top-right green: number of successes on each
channel (ACK received by IoT device), bottom-left green: UCB1 index
Bk(t) for each channel, bottom-right blue: success rate on each channel.

V. EXPERIMENTAL ARCHITECTURE AND HARDWARE
CONFIGURATION FOR REAL LORA MEASUREMENTS

The next step after the previously exposed proof-of-
concept consists in implementing the same approach in real
conditions of operation, that is, in a real IoT network and not
only in laboratory conditions. We target here a LoRaWAN

[1][21] IoT context, but it could be done with any other IoT
standard, as soon as it uses acknowledgment feedback. We
describe the involved implementation details in this section.

As far as the authors know, this is the first implementation
of decentralized artificial intelligence algorithms in IoT
devices to tackle the IoT spectrum contention mitigation
problem. We named our approach IoTligent [22][23]. It is first
necessary to remind quickly how a LoRaWAN network is
constituted. We are using here a real LoRa network in the
European ISM band, at 868 MHz.

A. LoRaWAN architecture
The implementation of the learning algorithm we propose is
decentralized, it takes place only on the LoRa device side. As
stated earlier, it impacts no aspect of the LoRaWAN network.
We explain below a little bit more the LoRaWAN network
side configuration, and we refer to [21] for more details.
LoRaWAN network, as any other IoT network, can be
summarized by four main elements, as shown in Fig. 5:

 LoRa devices (our devices run the UCB1 algorithm here),
 one or more LoRa gateway(s) receiving all LoRa radio

signals in their radio range,
 a Lora Network Server (LNS) that discriminates devices

subscribing to its network from others,
 an Application Server (AS) that receives the data sent by

devices and sends back ACK to them (mandatory here).

The IoT devices are associated to a given LoRaWAN
network with a “join phase”, at their very first communication
through a gateway of this network. The LNS is in charge of
the association, as explained below. Finally, data extracted
from radio signals, sent by the IoT devices, are sent to the
Application Server (AS) that manages data (i.e. processes
them, sends them to a storing place in the cloud and/or an
application). Then the role of the AS is to initiate a sending of
an ACK to the IoT device, through LNS and a gateway, down
to the IoT device.

Fig. 5. LoRaWAN network parts: IoT devices, gateways, LNS and AS [21].

B. Device side
For this experiment, we implement an IoT device by using

a Pycom card4 composed of an Expansion Board and a LoPy 4
module which can support LoRa wireless connectivity, as
shown on Fig. 6. The Pycom card is programmed in the Python
language. The frequency channels used in the experiments are
those authorized in France, the country of experimentation.

4 Pycom documentation: https://GitHub.com/PyCom/PyCom-libraries

Our IoTligent proposal is agnostic to K, the number of
channels in the standard, and thus it can be used in any
country.

We had to make some modifications in the LoRa library
written in C and the ESP32 chip library written in
MicroPython. By default, the Pycom configuration for
Europe is to use only 3 channels in a random manner : 868.1,
868.3 and 868.5 MHz (with a duty cycle of 1%). So, for
measurement 3 of Section VII, we added a custom
configuration region in the LoRa library with 16 channels,
covering the band from 865.9 to 868.9 MHz. We added the
possibility for ESP32 chip to force a channel in LORAWAN
mode, what is necessary in order to follow UCB1 policy for
both measurement 2 and 3 of the two following sections.

Fig. 6. Pycom module composed of a LoPy4 and an Expansion Board.

C. LoRa gateways
For measurement 2 of the next Section VI, we use outdoor

LoRa gateways operated by Acklio Company that has several
gateways deployed in the city of Rennes, where the
experiments were made. We did not have access to their
configuration, so only the 3 default channels have been used
for this measurement campaign.

But for measurement 3 of Section VII, we use our own
indoor gateway shown in Fig. 7, whose channel parameters
could be changed in order to adapt the number of channels
depending on our measurement needs. This is done by
changing the configuration file of the Semtech SX1301 chip
which manages two radio SX1257 chips. It consists in
chosing the central frequency of the two radio chips and
choose the offset in an interval of ±500k Hz, for each channel.

Fig. 7. Indoor gateway used for Measurement 3 experiments on the left side,

and packaged Pycom device on the right side.

D. Network side
We have access to the LNS provided by Acklio Company.

The LNS sends the received messages to an AS which is a
Linux server, running in the cloud. The AS is running a Python
program that enables to display data and metadata (i.e.,
frequency, time of reception, etc). This programs also contains
instructions to send an acknowledgment to the device, using
in DL the same frequency used by the IoT device at UL.

VI. MEASUREMENT 2 : IOTLIGENT OPERATION IN A REAL
LORAWAN NETWORK

A. Device side configuration
We use the LORAWAN mode with an Over-The-Air-

Activation (OTAA) using app_EUI and app_key keys, as
shown in the following Python code for the Pycom device:
lora = LoRa(mode=LoRa.LORAWAN, region=LoRa.EU868)
lora.join(activation=LoRa.OTAA, auth=(app_EUI,
app_key), timeout=0)

The transmit channel frequency is then chosen in a set of
K channels, which is set here at K=3 in this experiment. We
use standard Europe UL channels with the following
frequency table (in Hz):
tabFreq =[868100000, 868300000, 868500000]

The IoTligent device infinite while loop is started, running
the algorithm presented in the previous section and [5], in
order to choose which frequency to be selected at each
iteration before executing a send operation. An ACK is then
expected from the network side in non-blocking mode so that
when ACK is not received, the device just updates its learning
data and still goes on.

B. Network side – Lora Network Server (LNS)
The different IoTligent devices should be declared to the

LNS, with at least the following information:

 devEUI : ID of the device obtained by executing a
« get_id.py » program4 on the Pycom device itself,

 appEUI : which should correspond to app_eui chosen in
the Pycom device,

 appKey: which should correspond to app_key chosen in
the Pycom device,

 other parameters are let by default at SF=12 (spreading
factor), and bandwidth BW=125 kHz.

The address of the AS is also specified in Connectors, as
well as the mode used to send data between LNS and AS (we
chose http callback here).

C. Network side – Application Server (AS)
The AS runs a Python program that receives data from the

LNS, as well as LoRa metadata with all parameters of the
LoRaWAN transmission (frequency, SF, BW, time of arrival,
etc). This program also sends an acknowledgment message to
the device in DL. First, an acknowledgment attempt is sent by
default at the same frequency than the message transmitted by
the device it answers to. Then we block any other
retransmission. This is exactly what is necessary for the
learning process of IoTligent:

 to use the same channel in both UL and DL,

 to avoid retransmission in order to increase the battery
durations of devices on the one hand, and radio
frequency overload on the other hand.

D. Learning algorithm in Pycom device
The learning algorithms used in IoTligent are (any) bandit

algorithms, such as those first used for Cognitive Radio
dynamic spectrum access in [4], and implemented in the
exhaustive open-source SMPyBandits Python library [19]. We
take here the example of UCB1 algorithm, as presented above.
We have chosen this algorithm as it is known to be efficient
and to converge quickly, and also for its ease of
implementation. The only data necessary to be stored for the
UCB1 algorithm are:

 an iteration index initialized at 0: it,
 a table of size N (the number of channels, 3 in this

implementation example, but it could be arbitrarily high)
for the number of times each channel has been chosen,
representing Tk of (2): Tk[].

 another table of size N for the empirical mean of success
of each channel, i.e., 𝑋௞(𝑡) of (3): Xk[].

 From the point of view of the learning algorithm, a success
occurs when an IoT device receives an ACK from the IoT
network (as explained above), which means that the currently
used frequency channel suffered no collision in both UL and
DL. Otherwise, a failure occurred. The update of the selected
channel empirical means Xk is reconstructed easily from the
number of activations and the previously stored Xk value.
Therefore, it is not necessary to store in memory the results of
all past iterations, but just only a summary of it (its mean). The
proposed solution is thus realistic and efficient, as it only
requires a bounded storage capacity.

 Then, after an initialization phase where each channel is
selected alternatively once, the channel selection really starts
to use the UCB1 indexes [4]. It consists for each iteration in
choosing the frequency channel with the greatest index Bk as
defined in (5), that is computed for each channel like this in a
for loop on i index, and with alpha the UCB1 parameter α that
controls the exploration vs. exploitation trade-off [4]:

Ak[i] = sqrt(alpha * log(it) / Tk[i])
The IoTligent device then selects the channel having the

greatest UCB1 index Bk [4]:
for i in range(N):
 Bk[i] = Xk[i] + Ak[i]
 if Bk[i] > bestChannel:
 bestChannel = Bk[i] ; freq = tabFreq[i]
E. Results for the second measurement

Experiments have been done on a real LoRa network
currently deployed with K=3 channels. We present results
obtained on an IoTligent device, for 129 transmissions done
every 2 hours, for a period of 11 days. Fig. 8 shows the
evolution of the Tk index through time, which is the number of
time each channel has been selected by the learning algorithm.
In the figures, the red curve is for channel #0 (at 868.1 MHz),
the green curve is for channel #1 (868.3 MHz) and the light
blue curve is for channel #2 (868.5 MHz).

Fig. 8. Evolution of the Tk index through time, as learning happens.

Fig. 9 gives the empirical mean Xk experienced by the
device on each of the 3 channels. Each peak corresponds to a
successful LoRa bi-directional exchange between the device
and the AS: from the device uplink transmission to the ACK
reception (downlink) by the device.

Fig. 9. Evolution of the Xk empirical mean through time.

We can see that channel #1 gives the best results, before
channel #2, but channel #0 always failed in sending back an
ACK to the device. Each peak in Fig. 8 reveals a successful
case where an ACK has been received by IoTligent device.
Fig. 9 gives the end results after 11 days. We can see that
channel #0 has been tried 29 times with Sk[0] = 0 success (i.e.,
no ACK received by the device). So the learning algorithm
made the device use 61 times channel #1 with Sk[1] = 7
successful bi-directional exchanges, and 39 times channel #2
with Sk[2] = 2 successes. This corresponds to 7 (respectively
2) peaks of Xk[1] (respectively Xk[2]) on Fig. 2.

TABLE I. RESULTS AT THE END OF THE EXPERIMENT

Tk[0] = 29 Tk[1] = 61 Tk[2] = 39

Xk[0] = 0.0 Xk[1] = 0.115 Xk[2] = 0.051

Sk[0] = 0 Sk[1] = 7 Sk[2] = 2

The empirical mean gives the vision the device obtained
from the channels, i.e., a mean probability of 11.5% of
successful bi-directional connection for channel #1 and 5% for
channel #2, whereas channel #0 never worked from the device
point of view. With a normal device, i.e. a non IoTligent
device, that uses a purely random access, trying once over 3
times on each channel, for a global average successful rate of
5.5%.

It is important to note that here the learning algorithm is
mostly in its exploration phase, but it is learning very fast.
Only during the last 2 days of the experiment, channel #1 has
already been used 4 times more than channel 0 and 2.5 times
more than channel #2, which means that learning is already

very effective. As proven for UCB algorithms [5][7], channel
1 will be more and more selected so that the global success
rate will converge to the percentage of success of the best
channel, which is 11.5% in this experiment (this estimate can
be considered as a good evaluation as it is based on 61 trials).
In other words, this means that a mean of 15 successes can be
expected in the long term over the same period of 11 days with
IoTligent. On the contrary, normal devices will never improve
and stay in the current average, i.e. in average 7 successful
transmissions on the same period duration.

In order to have the same rate of successful transmissions,
normal IoT devices should consequently transmit twice more
often, which has two negatives impacts. The first impact is that
normal IoT devices autonomy will be twice less than IoTligent
devices. The second but not the least impact is that devices
will occupy twice more times the radio channels, hence
contributing to increase even more the risks of radio collisions
and thus the IoT bands congestion.

VII. MEASUREMENT 3 : IOTLIGENT OPERATION IN A
LORAWAN NETWORK WITH EMULATED ARTIFICIAL TRAFFIC

As a way to make a complete validation of our proposal,
we now propose to combine the two previous experiments, by
running IoTligent real LoRa IoT devices on a real LoRaWAN
network, but under the future expected load, emulated using
USRP platforms.

A. Experimental setup
As far as we know, this is the first evaluation in a real

LoRaWAN network of LoRa devices running on-line learning
algorithms, with emulated traffic reproducing very dense IoT
conditions. The measures use a Faraday cage and an anechoic
chamber, in order to avoid jamming real LoRaWAN networks
operating in the surroundings of the laboratory. It also enables
to be fully in control of the ISM jammers and channel
occupancy, and to perfectly monitor what is happening during
the measurement campaigns. As for the first PoC
measurement, we use one (or several) USRP platform as a
traffic generator, in order to emulate the traffic generated by
the surrounding IoT devices. Each channel’s occupancy load
can be set independently on demand, so that it is non uniform
over the channels. The experiments presented below used a set
of K=7 channels, with different colors in the next plots:

- Channel #0 : 866.9 MHz, in red,
- Channel #1 : 867.1 MHz, in orange,
- Channel #2 : 867.3 MHz, in light green,
- Channel #3 : 867.5 MHz, in green,
- Channel #4 : 867.7 MHz, in light blue,
- Channel #5 : 867.9 MHz, in dark blue,
- Channel #6 : 868.1 MHz, in purple.

For each experiment, we compare the results of two LoRa

IoT devices: (i) one IoTligent device running the learning
algorithm (UCB1) ; (ii) one usual LoRa device that acts as a
reference and that we name reference IoT device. The gain of
our approach can be measured by the difference between the
number of successful communications obtained by IoTligent
device compared to the results of the reference IoT device, as
both run in the same conditions of traffic load. It can also be
made by a comparison of their success rate.

During the experiments, we make devices transmit every
20 seconds. A successful communication occurs when the IoT
device receives in DL an ACK to its own last UL transmission
(on the same channel). In that case, the gateway received the

transmissions, on the frequency channel selected by the
devices, i.e. randomly for the reference device, or by running
the bandit algorithm for the IoTligent device. The gateway
then forwards the message to the Application Server through
the LoRa Network Server. The acknowledgment is then sent
back the opposite way and the gateway uses the same channel
as the one used by the device in uplink, regardless if the device
is IoTligent or not. As only these two devices are requesting
acknowledgements, and no other real LoRa device can access
the gateway in the chamber, the constraint of 1% duty cycle is
not exceeded by the gateway in any channel.

We ran the experiments over several hundreds of iterations
(i.e., of transmissions) so that they have a duration of a couple
of hours. We used USRP platforms as jammers that generate
emulated IoT traffic. As the USRP transmission power, for
jamming signal, is not as high as those of LoRa IoT devices
and LoRa gateway, LoRa IoT devices power has been
decreased with attenuators of 40 dB. However this has not
been possible to do on the gateway, and we discuss the
consequence below.

For one device, when no acknowledgement is received, it
means that there has been a collision either in DL or in UL.
Here we can assert that collisions only occur in UL as we can
check that at each time a message has been received by the
AS, an ACK has been correctly received by the IoT device
(reference or IoTligent). This is because the gateway DL
feedback power is very high compared to the USRP jamming
level.

We now detail here a couple of scenarios that have been
executed for measurement 3, one with a medium density
context of IoT devices, and second one with even more dense
conditions.

B. Scenario 1: Not too heavy traffic and one free channel
We choose in scenario 1 a context where channels

occupancy is slightly decreasing from one to another. This
enables to understand how the algorithm runs as a first
approach. The percentage of occupancy for each channel is
30% for channel #0, 25% for channel #1, and so on until 0%
for channel #6, so a vector like this for the K=7 channels:
{0.30, 0.25, 0.20, 0.15, 0.10, 0.05, 0}. So the channel where
less radio collisions should occur is obviously channel #6 and
we name it the best channel.

We visualize in Fig. 10 below the number of times each of
the channels has been used by IoTligent device through time.
The dark green curve of channel #6 is clearly leading the race,
followed far away by light blue channel #5, and then purple
channel #4, and so on. It allows to conclude that the learning
algorithm has clearly been able to favor the use of the less
occupied channels by the LoRa IoTligent device. Moreover,
after a short time, it has been able to make a difference
between each different level of occupancy in the channels,
with a great advantage to the best one.

Fig. 10. Evolution of the number of selections through time of IoTligent

device for scenario 1.

To give a rigorous comparison, we can see on Fig. 11 that
the reference LoRa device, on its side, has uniformly used the
7 channels during the experiment. This perfectly illustrates the
difference between an IoTligent and a usual (naïve) IoT
device. IoTligent device uses Reinforcement Learning to
make the choice of a channel before each transmission, based
on a given metric (reward) depending on its past experience.
Here the followed policy is UCB1 (with exploration factor
 = 2).

Fig. 11. Evolution of the number of selection through time, for the reference

(naive) IoT device for scenario 1.

The curves of Fig. 12 represent the empirical mean reward
of (3) for each channel obtained by IoTligent device. With no
surprise, the channels that have been the most used for
transmissions are those with the best mean reward, i.e. the best
percentage of vacancy. The same order is found as in Fig. 10,
with dark green curve of channel #6 first, followed by light
blue channel #5, and then purple channel #4, and so on.
Indeed, Fig. 10 is a consequence of Fig. 12, as UCB1 chooses
more and more with time, as stated in (5), the channels with
higher empirical means Xk, as the Ak term decreases with the
number of activation Tk and becomes negligible compared to
Xk. Note that jumps in the curves are having bigger steps on
the channel curves that have been used less often, as Ak of (5)
is still predominant when Tk is low.

Fig. 12. Evolution of the Xk empirical mean through time of IoTligent device

for scenario 1.

We also monitor the reference device empirical mean
reward in Fig. 13, but just for comparison purposes as it is not
used by the reference IoT device to select its channels. The
difference with the IoTligent device is that reference device
has played more times the bad channels and less times the best
channels. As a consequence, there is a little bit more variance
on the empirical mean reward for less occupied channels for
the reference IoT than for the IoTligent device, but the
opposite for most occupied channels. However the goal is not
to recover the empirical mean from the cognitive radio point
of view, but to order the channels in terms of their occupancy
rate.

Fig. 13. Evolution of the Xk empirical mean through time of reference IoT

device for scenario 1.

In TABLE IV. are listed the number of activations and
percentages of successful transmission obtained on each
channel by the IoTligent and reference IoT devices. Whereas
the reference IoT device uniformly transmits on all channels,
we can see that the IoTligent device has been concentrating on
most vacant channels, with a clear choice for the less occupied
channel #6. Over 526 iterations, 323 transmission have been
done in this channel, i.e., more than 4 times compared to the
reference IoT, and almost 27 times more than for channel #0
for IoTligent device. This gives the opportunity to the
IoTligent device to increase drastically its global successful
rate that can be seen on TABLE III. The IoTligent solution
allows the device to reach a successful transmission rate of
almost 80 % against 50 % for the reference IoT device.

TABLE II. COMPARED RESULTS AT THE END OF THE EXPERIMENT
BETWEEN REFERENCE IOT DEVICE AND IOTLIGENT DEVICE IN TERMS OF

NUMBER OF ACTIVATIONS AND PERCENTAGE OF SUCCESS ON EACH
CHANNEL FOR SCENARIO 2.

 Reference IoT IoTligent

Channel % of
success

Nb of
activations

% of
success

Nb of
activations

#0 21 % 76 8 % 12

#1 20 % 76 25 % 16

#2 24 % 75 25 % 16

#3 49 % 76 50 % 32

#4 62 % 74 61,7 % 47

#5 76,3 % 76 74,4 % 82

#6 96 % 75 94,4 % 323

TABLE III. emphasizes the advantage of IoTligent solution
as it almost improves by 2.5 times the performance of
reference device, in terms of use of the best channel. This is
due to the ability to favor the use of less occupied channels,
and especially channel #6 which is completely vacant.

TABLE III. COMPARED RESULTS AT THE END OF THE EXPERIMENT
BETWEEN REFERENCE IOT DEVICE AND IOTLIGENT DEVICE IN TERMS OF

PERCENTAGE OF SUCCESS (I.E. ACK RECEIVED BY THE DEVICE) FOR
SCENARIO 2.

 Reference IoT IoTligent

Nb of iterations 528 528

Nb of no ACK 266 108

% of success 49,6 % 79,5 %

C. Scenario 2: Very heavy traffic
Let us consider now a heavy traffic scenario as percentage

of occupancy for each channel is set to 40% for channel #0, #1
and #2, 30% for channel #3, 20% for channel #4, 15% for
channel #5 and 10% for channel #6. So once again, channel #6
is the best channel.

As in the previous scenario, we illustrate on Fig. 14 that
channel #6 is the most played one, even if it is not fully vacant.
Indeed, the learning algorithm takes into account the relative
occupancy rate between the channels. So the differences with
the three following channels (#5, #4, #3) look like scenario 1,
but clearly all the three first channels are almost always
avoided.

Fig. 14. Evolution of the number of selection through time of IoTligent

device for scenario 2.

We see the empirical mean measured by the IoTligent
device, in Fig. 15. It reflects once again the (inverse) order of
the occupancy rate that has been set for the channels.

Fig. 15. Evolution of the Xk empirical mean through time of IoTligent device

for scenario 2.

Fig. 16 confirms the results in terms of mean success of
channels by the reference IoT device, and we find the same
channel mean occupancy rates. Results are even more solid for
the reference device as all channels have been selected the
same number of times. Here also, the IoTligent device has only
gathered a few samples on the worst channels so that the
evaluated empirical mean is not so realistic.

Fig. 16. Evolution of the Xk empirical mean through time of reference IoT

device for scenario 2.

TABLE IV. shows the number of times each channel has
been selected and the obtained empirical percentage of
successful transmission. For both devices, we can see a direct
(inverse) correspondence with the occupancy rate of each
channel given earlier. Most importantly, we observe an
unbalanced number of activations of the channels thanks to the
learning algorithm. Whereas the reference device roughly uses
each channel equally (around 80 times), we can see that the
IoTligent device concentrates its transmission in channel #6
(334 times) as it provides the best percentage of success, and
neglects the worse channels (20 times).

TABLE IV. COMPARED RESULTS AT THE END OF THE EXPERIMENT
BETWEEN REFERENCE IOT DEVICE AND IOTLIGENT DEVICE IN TERMS OF

NUMBER OF ACTIVATIONS AND PERCENTAGE OF SUCCESS ON EACH
CHANNEL FOR SCENARIO 2.

 Reference IoT IoTligent

Channel % of
success

Nb of
activations

% of
success

Nb of
activations

#0 7,9 % 76 5 % 20

#1 3,9 % 78 5 % 20

#2 3,5 % 85 5 % 20

#3 52 % 77 41 % 66

#4 38,5 % 78 35 % 51

#5 50,6 % 81 42 % 69

#6 72,4 % 76 65,9 % 334

We can also see on TABLE IV. that despite the IoTligent
device experimented worse results than the reference IoT
device on the best channel (channel #6), its global results are
much better.

Results of TABLE V. in terms of percentage of success
show how efficient is the proposed solution. With a global
mean of 28% of channel occupancy on the 7 channels, the
reference IoT device obtains in this experiment a 32 % of
transmission successes whereas IoTligent device is able to
reach 51%.

TABLE V. COMPARED RESULTS AT THE END OF THE EXPERIMENT
BETWEEN REFERENCE IOT DEVICE AND IOTLIGENT DEVICE IN TERMS OF

PERCENTAGE OF SUCCESS (I.E. ACK RECEIVED BY THE DEVICE) FOR
SCENARIO 2.

 Reference IoT IoTligent

Nb of iterations 551 580

Nb of no ACK 373 283

% of success 32,3 % 51,2 %

Remark that these figures take into account the very
beginning of the learning phase where the bandit algorithm is
still exploring. TABLE VI. gives the results during the 100 last
iterations. Percentage of success reaches 66.7 % for IoTligent
indeed, which is coherent with the results of TABLE V. where
we can see that channel #6 percentage of success is almost
66 %. As IoTligent is now almost only targeting channel #6,
its percentage of success is slowly sliding towards the
empirical mean of this channel. This is exactly what is proven
to be achieved at infinity by the mathematical proof of
converge of UCB1 [4]. However we demonstrated that
efficiency is obtained much earlier, in practical radio
conditions.

TABLE VI. COMPARED RESULTS THE LAST 100 ITERATIONS OF THE
EXPERIMENT BETWEEN REFERENCE IOT DEVICE AND IOTLIGENT DEVICE IN

TERMS OF NUMBER OF ACTIVATIONS AND PERCENTAGE OF SUCCESS ON
EACH CHANNEL FOR SCENARIO 2.

 Reference IoT IoTligent

Channel % of
success

Nb of
activations

% of
success

Nb of
activations

#6 66,7 % 81 80 % 15

This final measurement campaign definitely confirms that
the proposed approach can be a solution for radio collision
mitigation in the future IoT ultra-dense networks in the
unlicensed-bands. Our study in [8] confirmed by simulation
that advantage still remains even if the number of IoTligent
devices increases, using solution from the literature in order to
orthogonalize IoTligent devices without coordination.

VIII. CONCLUSION
We describe in this paper the solution we propose to

mitigate radio collisions in IoT unlicensed bands. Our solution
is to use machine learning algorithms, to be implemented on
the IoT device side, at a very low cost of implementation and
no protocol overhead. We propose to use Multi-Armed Bandit
algorithms (MAB) and we first prove the efficiency of the
method on a proof-of-concept demonstration based on USRP
platforms in laboratory conditions (named MALIN). We then
present the implementation of these MAB learning algorithms
on devices deployed in a real IoT network, and finally we
show the validity in the expected future conditions of massive
IoT deployment. Implementation on LoRa devices in a real
LoRaWAN network is demonstrated and is named IoTligent.
As far as we know, we propose the first implementation of a
decentralized spectrum learning scheme for IoT wireless
networks. Even if the current IoT networks are not (yet)
densely populated by devices, medium and even short term
forecasts predict a high number of devices to overcrowd the
ISM unlicensed bands. The IoTligent approach is then a
solution to extend on the one hand the IoT devices battery life,

which is a key performance indicator in any IoT ecosystem,
and on the other hand to mitigate the collision issue that will
occur with the growing number of IoT devices.

ACKNOWLEDGMENT
This publication is supported by the European Union

through the European Regional Development Fund (ERDF),
and by the French Region of Brittany, Ministry of Higher
Education and Research, Rennes Métropole and Conseil
Départemental 35, through the CPER Project SOPHIE / STIC
& Ondes. The authors would like also to thank Rémi Bonnefoi
for the MALIN implementation, as well Yalla Diop for their
technical support on LoRa network and Pycom programming.

REFERENCES
[1] N. Sornin, M. Luis, T. Eirich and A. L. Beylot “LoRaWAN

specification”, technical report, LoRa Alliance, Inc., January 2015.
[2] C. Fourtet, "The technical challenge of future IoT networks and their

consequences on modem’s and SoC’s design", Réseaux et services
conference, R&S, Paris, France, June 2015.

[3] W. Jouini, D. Ernst, C. Moy, J. Palicot, "Multi-Armed Bandit Based
Policies for Cognitive Radio’s Decision Making Issues", Signal
Circuits and Systems Conference, Jerba, Tunisia, 6-8, Nov. 2009.

[4] W. Jouini, D. Ernst, C. Moy and J. Palicot, “Upper Confidence Bound
Based Decision Making Strategies and Dynamic Spectrum Access,”
IEEE ICC, International Conference on Communications, Cape Town,
South Africa, May, 2010.

[5] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in Applied Mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem”, Machine Learning, volume 47, number 2-
3, May 2002.

[7] C. Moy, “Reinforcement Learning Real Experiments for Opportunistic
Spectrum Access”, Karlsruhe Workshop on Software Radio, Karlsruhe,
Germany, March 2014.

[8] R. Bonnefoi, L. Besson, C. Moy, E. Kaufman and J. Palicot, “Multi-
Armed Bandit Learning in IoT Networks: Learning helps even in non-
stationary settings”, CrownCom 2017, Lisbon, September 2017.

[9] A. Anandkumar, N. Michael, A. K. Tang, and A. Swami, “Distributed
algorithms for learning and cognitive medium access with logarithmic
regret”, IEEE Journal on Selected Areas in Communications, vol. 29,
no. 4, Apr. 2011.

[10] H. Robbins, “Some aspects of the sequential design of experiments,”
Bulletin of the American Mathematical Society, vol. 58, no. 5, pp. 527–
535, 1952.

[11] Q. Zhao, B. Sadler, "A Survey of Dynamic Spectrum Access", in IEEE
Signal Processing and Magazine, May 2007.

[12] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, 1933.

[13] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of Stochastic and
Non-Stochastic Multi-Armed Bandit Problems,” Foundations and
Trends® in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.

[14] S. Agrawal and N. Goyal, “Analysis of Thompson sampling for the
Multi-Armed Bandit problem”, in JMLR, Conference On Learning
Theory, 2012.

[15] E. Kaufmann, N. Korda, and R. Munos, “Thompson Sampling: an
Asymptotically Optimal Finite-Time Analysis”, pp. 199–213. Springer,
Berlin Heidelberg, 2012.

[16] V. Toldov, L. Clavier, V. Loscrí and N. Mitton, “A Thompson
Sampling approach to channel exploration-exploitation problem in
multihop cognitive radio networks”, in PIMRC, 2016.

[17] A. Maskooki, V. Toldov, L. Clavier, V. Loscrí, and N. Mitton,
“Competition: Channel Exploration/Exploitation Based on a
Thompson Sampling Approach in a Radio Cognitive Environment”,
EWSN, 2016.

[18] C. Moy, J. Palicot, and S. J. Darak, “Proof-of-Concept System for
Opportunistic Spectrum Access in Multi-user Decentralized
Networks”, EAI Endorsed Transactions on Cognitive
Communications, volume 2, 2016.

[19] L. Besson, “SMPyBandits: an Open-Source Research Framework for
Single and Multi-Players Multi-Arms Bandits (MAB) Algorithms in
Python”. Code on https://GitHub.com/SMPyBandits/SMPyBandits and
documentation on https://SMPyBandits.GitHub.io/

[20] L. Besson, R. Bonnefoi, C. Moy, “MALIN: Multi-Armed bandit
Learning for Iot Networks with GRC: A TestBed Implementation and
Demonstration that Learning Helps”, ICT 2018, France, June 2018.

[21] LoRaWAN™ v1.1 Specification, 2017, LoRa Alliance Inc,
https://LoRa-alliance.org/sites/default/files/2018-
04/lorawantm_specification_-v1.1.pdf

[22] C. Moy, “IoTligent: First World-Wide Implementation of
Decentralized Spectrum Learning for IoT Wireless Networks”, URSI
AP-RASC, New Delhi, India, 9-14 March 2019.

[23] C. Moy and L. Besson, “Decentralized Spectrum Learning for IoT
Wireless Networks Collision Mitigation”, First International Workshop
on Intelligent Systems for the Internet of Things, Santorini Island,
Greece, May 29-31 2019.

