
 

 

 

Decentralized Spectrum Learning for Radio 
Collision Mitigation in Ultra-Dense IoT Networks: 

LoRaWAN Case Study and Experiments
Christophe Moy1, Senior Member, IEEE, Lilian Besson2, Guillaume Delbarre1, Laurent Toutain3 

1 Univ Rennes, CNRS, IETR - UMR 6164, F-35000, Rennes, France 
2 CentraleSupélec, CNRS, IETR - UMR 6164, F-35576, Cesson-Sévigné, France 

3 IMT Atlantique, IRISA, F-35700, Rennes, France 

Corresponding author e-mail : christophe.moy@univ-rennes1.fr 

 

 
Abstract—This paper describes the theoretical principles 

and experimental results of reinforcement learning algorithms 
embedded on IoT devices, in order to tackle the probem of radio 
collision mitigation in ISM unlicensed bands. Multi-Armed 
Bandit (MAB) learning is here used to improve both the IoT 
network capability to support the expected massive number of 
objects, as well as the autonomy of the IoT devices. We first 
illustrate the efficiency of the proposed approach in a proof-of-
concept, based on USRP software radio platforms operating on 
real radio signals. It shows how collisions with other RF signals 
are diminished for a given IoT device that uses MAB learning. 
Then we describe the first implementation of such algorithms on 
LoRa devices operating in a real LoRaWAN network, that we 
named IoTligent. The proposed solution adds neither processing 
overhead, so it can be ran in the IoT devices, nor network 
overhead, so no change is required to LoRaWAN protocol. Real 
life experiments done in a real LoRa network show that 
IoTligent devices’ battery life can be extended by a factor 2, in 
the scenarios we faced during our experiment. Finally we submit 
IoTligent devices to very constrained conditions that are 
expected in the future with the growing number of IoT devices, 
by generating an artificial IoT massive traffic in anechoic 
chamber. We show that IoTligent devices can cope with 
spectrum scarcity that will occur at that time in unlicensed 
bands. 

Keywords—Internet of Things, IoT, machine learning, MAB, 
bandit, radio spectrum, collision mitigation, interference, LoRa, 
artificial intelligence, LoRaWAN, cognitive radio. 

I. INTRODUCTION 
Wireless Internet of Things (IoT) is based on Low Power 

Wide Area Networks (LPWAN) able to interconnect low cost 
and mostly battery-powered devices over long ranges to an 
access point to the Internet. This is made possible by the use 
of low bit rates, low-bandwidth machine-to-machine (M2M) 
types communications. After the expansion of human-to-
human mobile communications in the 1990’s, and then human 
to the Internet communications in the 2000’s, now has come 
the era of M2M and especially Machine to the Internet (M2I). 
M2I are expected to know a tremendous expansion in the very 
next few years, through IoT networks. 

We can consider two categories of IoT networks. First are 
the cellular IoT networks, deployed by mobile phone 
operators, running 3GPP standards such as EC-GSM IoT, 
LTE-Cat0, LTE-Cat M1, NB-IoT or next 5G IoT. These 
standards will be supported in licensed frequency bands 
operated for cellular telephony. The second category is mainly 

different as it uses unlicensed bands for wireless links, also 
called ISM bands, which are open to the use for Industrial 
Scientific and Medical applications. Most commonly used 
ISM bands are 434 MHz and 868 MHz in Europe and Africa, 
and 915 MHz in America, with a worldwide bands at 2.4 GHz 
and 5.8 GHz. Due to the constraints in terms of range and 
bandwidth, the 868 MHz and 915 MHz bands are mostly 
preferred for IoT networks. They communicate through 
protocols based on very different radio physical layer and 
medium access control specifications. For instance, the current 
two most well known IoT standards are LoRaWAN [1], based 
on a chirp spread-spectrum solution and Sigfox [2], based on 
an ultra-narrow band technology. 

In cellular licensed IoT networks, just one transmission 
may occur between any operated device and the radio access 
point, scheduled by the cellular network in a given place, at a 
given time and in a given frequency band. However, in 
unlicensed bands, IoT networks face very different and 
specific conditions. Many IoT networks can be deployed in the 
same area and superpose geographically, regardess if they are 
using the same protocol or not. Even if there exist rules to be 
followed in unlicensed bands, such as transmit power mask 
and duty cycle limits, many radio transmissions may collide at 
the same place, time and frequency, as no global coordination 
is done. 

The goal of this paper is to present the original IoTligent 
approach that embeds very low cost machine learning 
algorithms inside IoT devices, in order to mitigate radio 
collisions in the ISM bands. Low cost here is to be considered 
in terms of processing power, processing resources, memory 
footprint, protocol overhead and frequency resources usage.  

After exposing the issues we target in this work and the 
corresponding hypothesis in Section II, Section III reminds the 
foundation of the learning algorithms used in IoTligent. Then, 
we show how we validated our approach through several 
gradual stages of experimentations. The first measurements of 
Section IV give results of a proof-of-concept made in 
laboratory conditions using SDR (Software Defined Radio) 
platforms in order to validate the learning approach. Then, 
Section V gives the experimental architecture and hardware 
configuration we use for the next measurement campaign 
presented in Section VI. It has been realized on LoRa IoT 
devices operated in real radio conditions of an operating 
LoRaWAN network in the city of Rennes (France). In Section 
VII, we present measurements made in an anechoic chamber 



 

 

 

with an emulated radio traffic generator. We reproduce here 
the future very dense IoT networks radio conditions and 
validate the proposed learning approach for future ultra-dense 
LoRaWAN networks. 

II. COLLISIONS, HYPOTHESIS AND ADVANTAGES OF 
DECENTRALIZATION 

A. Collisions vs. autonomy 
The possibility of suffering from collisions is the main 

drawback of IoT in terms of battery autonomy at the first level, 
but also of IoT viability itself in the ISM bands. Indeed 
collisions may cause (many) retransmissions at the cost of an 
increase of the RF contention, and may lead to a lower battery 
lifetime of the devices. Even worse, this could lead to a total 
failure of the IoT device, either because it cannot succeed in 
sending any data to the network, or because multiple 
repetitions could make it consume all its energy much faster 
than expected. 

B. Analysis of collisions 
Radio collisions will be the weak point of LPWAN IoT 

networks operating in the unlicensed bands. Different kinds of 
collisions exist, as collision may occur with: 

 other IoT devices of the same network, as several networks 
covering the same area are not coordinated. This can occur 
between IoT devices uplink (UL) transmissions, and 
between IoT UL and gateway downlink (DL) 
transmissions towards IoT devices. 

 Other IoT devices of surrounding networks that are not the 
network of our device, but that are using the same IoT 
standard. This can occur both in UL and DL, as 
surrounding IoT gateways of different networks are not 
coordinated. They could use the same channels, or partly 
same and partly different channels. 

 Other IoT radio signals using other IoT radio standards 
with different channels, bandwidth, user repartition, etc. 

 Other radio signals present in the ISM bands that are not 
IoT signals. By definition, they use completely different 
rules than IoT. They can be considered as “jammers” from 
the IoT network point of view. 
 

It is also important to note that, as each IoT standard uses 
its own rules for channeling and bandwidth, all this leads to an 
erratic spectrum usage, which cannot be planned, and has to 
be learnt in vivo. However, unlicensed band does not mean un-
ruled band (there are for duty cycle, power, etc.), but they are 
more exposed to the non-respect of these few rules as 
regulation is relaxed and thus, controls as well. 

C. A device-side solution for spectrum management 
Our learning approach imposes no change on a normal IoT 

protocol, as for instance LoRaWAN [1]. It means that there 
are no extra-retransmission, no data to be added in frames, no 
extra-power transmission, etc. to be done. The only condition 
is that the proposed solution should work with the 
acknowledged mode for IoT. The underlying hypothesis is that 
“channels” (there are no official channels in ISM bands) 
occupancy by surrounding radio signals (IoT or not) is not 
equally balanced. In other words, some ISM sub-bands are less 
occupied or less jammed than others, but it is not possible to 
predict it in time and space, so it has to be learnt on the fly. 

The considered learning algorithms are a kind of artificial 
intelligence (AI) algorithms that are compatible with the 

constraint of low complexity of IoT devices, as we explain 
below. It is indeed much more efficient to implement a radio 
collision mitigation approach on the device side, as devices 
may be quite far away from gateways, and suffer from 
different radio and jamming/co-existence conditions. But they 
are the place where every Watt counts at transmission, and 
where sensitivity should be the best at reception, as no extra-
processing can be afforded. 

D. Advantages of the proposed solution 
The proposed approach is based on reinforcement learning 

algorithms such as those already studied [3] and experimented 
on real radio signals for Cognitive Radio, and especially for 
Opportunistic Spectrum Access (OSA) [4]. We assert that, as 
for OSA, the IoT spectrum access issue can be modeled as a 
Multi-Armed Bandit (MAB) problem [5][6]. Reinforcement 
Learning is based on a feedback loop that gives a 
success/failure measure of experience. In the IoT context, we 
propose to use the acknowledgement (ACK) sent by the 
gateway to the IoT device as a binary reward (1/0 for 
presence/absence of ACK). Every device aims at maximizing 
its transmission success rate, or equivalently, at maximizing 
its cumulated reward (i.e. number of received ACK). 

The main advantages of our solution are that the  

 algorithms have mathematical proofs of convergence, 
 proofs are verified in real radio conditions, thanks to the 

good matching between the model and reality, 
 learning converges effectively very fast in real 

experiments, thus it is adequate for radio applications [7], 
 implementation and execution both require very low 

processing and memory overhead, so that it is possible to 
add the proposed approach in IoT devices for a negligible 
money cost, negligible complexity (processing, hardware, 
memory) and negligible extra-energy consumption 
overhead, 

 learning can efficiently start from scratch, so there is no 
need for any prior knowledge when deploying the IoT 
device (i.e. no need to loose some time to acquire this 
knowledge before operation really starts), 

 using such learning algorithms will never give worse 
results than a state-of-the-art random solution [8], even 
before learning brings a clear advantage, for instance at the 
very beginning of the learning process. 
 
Hence, we argue that the proposed approach can adapt to 

any kind of radio context, and we also note that: 
 the stationarity of the environment is a requirement for the 

proofs of convergence, but if conditions change 
occasionally, convergence is so fast that a simple solution 
consists in resetting learning from time to time [8] (note 
that there also exist adaptive versions), 

 no coordination is required between devices, but benefits 
decrease with the number of devices using the proposed 
solution, when it represents a great majority of devices (see 
the solutions presented in [8][9]), 

 as soon as a device is planned to receive an 
acknowledgment, no overhead is added neither in terms of 
protocol nor extra bits to be put into the LoRaWAN frames 
in uplink or downlink. A received ACK yields a reward of 
1, and no ACK yields a reward of 0, without needing to 
change the content of the ACK messages. 



 

 

 

III. MAB MODEL AND LEARNING SOLUTIONS 
We model the IoT wireless spectrum issue as a Multi-

Armed Bandit (MAB) problem [5] and we propose to use 
bandit algorithms at the IoT device side to solve this issue [6]. 

A. System model 
We consider the system model presented in Fig. 1, where 

a set of devices sends uplink packets to the network gateway.  

 
Fig. 1. System model used for IoT, with intelligent IoT devices that are able 

to dynamically set their transmission channel, thanks to a learning 
algorithm, in order to minimize collisions and interference from other 
radio signals in the unlicensed ISM band, especially other IoT networks 
which will be responsible of most of future traffic. 

The communications between IoT devices and this 
gateway are done through a simple ALOHA-based protocol, 
where devices transmit uplink packets of fixed duration, 
whenever they want. The devices can transmit their packets in 
one of the K  2 channels. Channels are predefined but time is 
unslotted. In the case where the gateway receives an uplink in 
one channel, it transmits an acknowledgement to the 
corresponding end-device in the same channel, after a fixed 
delay. These communications operate in unlicensed ISM 
bands, and consequently, as stated in the previous section, they 
suffer in particular from interferences generated by 
uncoordinated neighboring networks. This interfering traffic is 
uncontrolled, and can be unevenly distributed over the K 
different channels. 

We consider the network from the point of view of a single 
IoT device. Every times it has to communicate with the 
gateway (at each transmission t  1, t ϵ ℕ), it has to choose one 
channel, denoted as C(t) = k ϵ {1, . . . , K}. After transmission, 
the IoT device starts to wait in the same channel C(t) for an 
acknowledgement sent by the gateway. Before sending 
another message (i.e., at time t + 1), the IoT device knows if it 
received or not this ACK message. For this reason, selecting 
the channel (or arm) k at time t yields a (random) feedback, 
called a reward, rk(t) ϵ {0, 1}, being 0 if no ACK was received 
after the previous message, or 1 if ACK was successfully 
received. The goal of the IoT device is to minimize its packet 
loss ratio, or equivalently, it is to maximize its successful 
transmission rate, which here is its cumulative reward, as it is 
usually done in MAB problems [5][6][10]: 𝑟ଵ…் ∶=  ∑ 𝑟஼(௧)(𝑡)௧்ୀଵ  (1) 

This problem is a special case of the so-called “stochastic” 
MAB, where the sequence of rewards drawn from a given arm 
k is assumed to be i.i.d., under some distribution νk, that has a 
mean µk. Several types of reward distributions have been 

considered in the literature, for example distributions that 
belong to a one-dimensional exponential family (e.g., 
Gaussian, Exponential, Poisson or Bernoulli distributions). As 
rewards are binary in our model, we consider only Bernoulli 
distributions, in which rk(t) ∼ Bern(µk), that is, rk(t) ϵ {0, 1} 
and ℙ(rk(t) = 1) = µk ϵ [0, 1]. Contrary to many previous works 
done in the cognitive radio field (for instance in Opportunistic 
Spectrum Access [11]), the reward rk(t) does not come from a 
sensing phase before sending the t-th message, as it would do 
for any “listen-before-talk” model. Rewards come from 
receiving an acknowledgement from the gateway, between the 
t-th and t+1-th messages. 

The problem parameters µ1, ..., µK are of course unknown 
to the IoT device, so to maximize its cumulated reward, it must 
learn the distributions of the channels, in order to be able to 
progressively focus on the best arm (i.e., the arm with largest 
mean). This requires to tackle the so-called exploration-
exploitation dilemma: a player (here, an IoT device) has to try 
all arms a sufficient number of times to get a robust estimate 
of their qualities, while not selecting the worst arms too much. 

Before discussing the relevance of a MAB model for our 
IoT application, we present two low-complexity bandit 
algorithms, UCB1 and Thompson Sampling [12], which are 
both known to be efficient for stationary i.i.d. rewards and are 
shown below. 

B. The UCB1 algorithm 
A first naive approach could be to use an empirical mean 

estimator of the rewards for each of the K channels, and select 
the channel with the highest estimated mean at each time ; but 
this “greedy” approach is known to fail dramatically [5]. 
Indeed, with this policy, the selection of arms is highly 
dependent on the first draws: if the first transmission in one 
channel fails and the first one on other channels succeed, the 
device will never use the first channel again, even it is the best 
one, which is the most available one, in average. 

Upper Confidence Bounds (UCB) algorithms instead use a 
confidence interval on the unknown mean µk of each arm, 
which can be viewed as adding a “bonus” exploration to the 
empirical mean. They follow the “optimism-in-face-of-
uncertainty” principle: at each step, they play according to the 
best model, by selecting the statistically best possible arm (i.e., 
the highest upper confidence bound). More formally, for one 
IoT device, we denote by 𝑇௞(𝑡) =  ∑  ௧ఛୀଵ 1(𝐶(𝜏) = 𝑘) (2) 

the number of times channel k was selected up-to time 
t  1. The empirical mean estimator of channel k is defined as 
the mean reward obtained by selecting it up to time t,  𝑋௞(𝑡) =  (1 𝑇௞(𝑡)⁄ ) ∑ 𝑟௞(𝜏)௧ఛୀଵ 1(𝐶(𝜏) = 𝑘) (3) 

For UCB1 [6],the confidence term is  𝐴௞(𝑡) = ඥ𝛼 log(𝑡) 𝑇௞(𝑡)⁄ ,  (4) 

and the upper confidence bound is the sum of the 
confidence term and the empirical mean, 𝐵௞(𝑡) = 𝑋௞(𝑡) + 𝐴௞(𝑡), (5) 

which is used by the device to decide the channel for 
communicating at time step t + 1:  



 

 

 𝐶(𝑡 + 1) = arg maxଵஸ௞ஸ௄ 𝐵௞ (𝑡) (6) 

The UCB1 algorithm is called an index policy. It uses a 
parameter α > 0, originally set to 2 [13], but empirically α = 1/2 
is known to work better (uniformly across problems), and 
α  1/2 is advised by the theory [13]. This algorithm is simple 
to implement and to use in practice, even on embedded 
microprocessors with limited computation and memory 
capabilities. In our model, every IoT device implements its 
own UCB1 algorithm, independently. For one IoT device, the 
time t is the total number of sent messages from the beginning, 
as rewards are only obtained after a transmission. Different 
devices do not share this time index t as time is not slotted.  

C. The Thompson Sampling algorithm 
Thompson Sampling (TS) [12] was introduced early on, in 

1933 as the very first bandit algorithm, in the context of 
clinical trials (in which each arm models the efficacy of one 
treatment across patients). Given a prior distribution on the 
(unknown) mean of each arm, the algorithm selects the next 
arm to draw based on samples from the conjugated posterior 
distribution, which for Bernoulli rewards is a Beta distribution. 

A Beta prior Beta(ak(0) = 1, bk(0) = 1) (initially uniform) 
is assumed on µk ϵ [0, 1], and at time t the posterior is denoted 
Beta(ak(t), bk(t)). After every channel selection, the posterior 
is updated to have ak(t) and bk(t) counting the number of 
successful and failed transmissions made on channel k. More 
precisely, if the ACK message is received, the update is 
ak(t + 1) = ak(t) + 1, and bk(t + 1) = bk(t), otherwise the update 
is ak(t + 1) = ak(t), and bk(t + 1) = bk(t) + 1. Then, the decision 
is done by sampling an index for each arm, at each time step t, 
from the arm posteriors: Ik(t) ∼ Beta(ak(t), bk(t)), and the 
chosen channel is simply the channel C(t + 1) with highest 
index Ik(t). For this reason, Thompson Sampling can be called 
a randomized index policy. 

The TS algorithm, although being simple and easy to 
implement, is known to perform well for stochastic problems, 
for which it was proven to be asymptotically optimal [14][15]. 
It is known to be empirically efficient, and for these reasons it 
has been used successfully in various applications, including 
on problems from Cognitive Radio [16][17], and also in 
previous works on decentralized IoT-like networks [18]. 

D. Multi-player bandit issue 
We can prove that one single intelligent IoT can improve 

consequently its performance in LPWAN IoT networks using 
unlicensed band. But we have also shown that even if there are 
a lot of intelligent IoT devices, and the model of other 
surrounding IoT devices does not stay purely stochastic, 
learning still brings improvement [8]. Further theoretical 
developments on this direction are an interesting future work. 

IV. MEASUREMENT 1 : IOT PROOF-OF-CONCEPT 

A. Preceding results 
Bandit algorithms have been identified more than 10 years ago 
as efficient solutions for many cognitive radio problems, as 
introduced in [3]. In particular, the very trendy dynamic 
spectrum access (DSA [11]) issue has been identified as a 
multi-armed bandit (MAB) problem in [4]. The first 
implementation validating the bandit algorithms on real radio 

                                                           
1 See https://www.ettus.com/ for more details. 
2 See https://www.gnuradio.org/ for more details. 

signals was presented 5 years ago for opportunistic spectrum 
access (OSA) in [7]. Reinforcement learning algorithms, such 
as UCB1, were firstly used, but any kind of bandit algorithm 
[19] could be used indifferently. Their efficiency and 
implementation complexity can be considered as criterion to 
decide which algorithm to implement. In the context of IoT, 
MALIN [20] is the first proof-of-concept (PoC) demonstrating 
the feasibility of using learning algorithms on the IoT device 
side, on real radio signals in lab conditions.  

B. PoC setup 
This PoC is based on 4 USRP platforms from Ettus 

Research and National Instrument1. The development is made 
with GNU Radio2 software, and the source code of the PoC is 
published on-line3, in order to ease the full reproducibility of 
our results. We have not implemented a real IoT standard in 
this PoC, in order to show that it can be applicable for any IoT 
standard. However, we took some characteristics rather 
corresponding to the LoRa context (not ultra-narrow band, 
reduced number of channels, frame duration around a few 
hundreds of milliseconds, etc.). 

One or two (or more) USRP platforms are playing the role 
of IoT devices that can run (or not) the proposed learning 
algorithms. They transmit at their own initiative some very 
light modulated information (using QPSK), in order to be 
identified by the gateway, and then wait during one second for 
the gateway ACK. Both uplink transmissions and downlink 
receptions use the same frequency channel. Whether the ACK 
is received or not, the learning algorithm updates its 
knowledge about the channel used during this iteration. 

One USRP platform is a traffic generator that emulates as 
much (random) IoT traffic as we want, to be able to tune each 
channel’s load independently, on demand. We typically 
choose channel loads ranging from 0% to 20%. 

A last USRP platform is a gateway (GW) that is 
continuously scanning all the K channels, and monitors the IoT 
traffic composed of the artificial signals produced by the 
traffic generator and the IoT devices signals. The gateway has 
the ability to answer to the IoT devices, by sending back to 
them an ACK message, which contains their identifier, 
(actually, the symbols corresponding to the QPSK complex 
conjugate of their identifier). 

C. PoC results 
The number of IoT channels K is a parameter, and we have 

set it to 4, 8 and 16 channels in our experiments, but there is 
no limitation. For the sake of clarity in the figures, we give 
examples below with 4 channels that are separated by empty 
channels, but they could be contiguous with no change neither 
in the implementation nor in the results. 

We can see on Fig. 2 a time-frequency waterfall view 
captured by the gateway, where we can observe the RF traffic 
in the K=4 channels. The y axis for the time is vertical and 
goes down, and frequency is on the x axis. The difference of 
colors is a difference of received power, due to the distance of 
the transmitters to the gateway receiver antenna. The gateway 
transmitter antenna is very close so signals transmitted by the 
gateway are red. The traffic generator and IoT devices are a 
little bit further away, so the gateway received weaker signals 

3 See https://bitbucket.org/scee_ietr/malin-multi-armed-bandit-learning-for-iot-
networks-with-grc. The code is released publicly under the open-source GPLv3 license. 



 

 

 

from them: one is blue and the other green, which reveals a 
low difference.  

 
Fig. 2. Spectrum waterfall on GRC received at gateway side in a 4 channels 

example (only 3 occupied in this picture), during experiments. Time is 
in y axis (going down) and frequency in x axis. Blue short transmissions 
are those produced by the traffic generator, green blocks are our IoT 
transmissions and red blocks are the gateway transmissions itself. 

In this experiment, we can see on Fig. 2 that channel #0 on 
the left hand side faces a dense IoT traffic, which appears as 
blue short transmissions (produced by the traffic generator). 
Some others uplink transmissions appear on channel #1 
(second left hand side), but we do not see any blue short 
messages on channel #2 (third left) and #3 (on the right hand 
side, empty in this measure). However, we see on these 
channels longer messages of two kinds: green messages which 
correspond to IoT devices transmissions, and red messages 
that are the answer done by the gateway. In order to rapidly 
have results in the demo, we make them transmit every 5 
seconds, for a message of duration of one second. Then when 
an IoT device transmits a message, the gateway should answer 
and sends an ACK to the IoT device within 1 second, if the 
gateway was able to demodulate the signal, i.e., if there is no 
collision in the radio channel. For instance, we can see on Fig. 
2 that the IoT device moved from channel #2 to channel #1, 
and at each of its transmission, the gateway was able to 
answer, by successfully sending an ACK response. 

Fig. 3 gives the perspective of the IoT device, at a different 
moment for the same scenario. Then we observe that colors 
have changed, as the received power is now taken at the device 
side. The IoT device transmitter antenna is now very close, so 
signals transmitted by the IoT device are red. The traffic 
generator, the other IoT devices, and then the gateway all are 
a little bit further away, so the IoT device received weaker 
signals from all of them, one is blue and the other green but 
inversed. However, it is not so obvious, so it is better to 
consider the message duration in the y axis indeed. 

 

 
Fig. 3. Spectrum waterfall on GRC received at IoT device side in a 4 

channels example, during experiments. Time is in y axis (going down) 
and frequency in x axis. Green short transmissions are those produced 
by the traffic generator, red blocks are the IoT device transmissions, 
and blue blocks are gateway transmissions. 

We can see on Fig. 3 that if we use the same scenario of 
traffic as in Fig. 2, but at a different time, i.e. with a very dense 
traffic on channel #0, less dense on channel #1, even less dense 
on channel #2, then transmission appears on channel #3 but it 
is indeed just even less dense. At that time of the experiment, 
our IoT device is moving from channel #2, where maybe it 
faced some collisions in the downlink transmission of ACK, 
to channel #3, where several successive transmissions and 
receptions seem to occur. 

Fig. 4 is a screenshot taken at some moment during an 
experiment that gives the details of the learning algorithm 
operation. We can see in top-left red data the number of 
selections of each channel. There is a clear disequilibrium with 
channel #3 that has been much more (17 times) used than 
channel #2 (8 times), itself more used than channel #1 (6 
times) and channel #0 (only once). This reveals the effect of 
the learning algorithm. It has analyzed which channels are 
more occupied and more disturbed by other users of the band 
(emulated here by the traffic generator). The top-right green 
and therefore the bottom-right blue data explain such a choice. 
Channel #4 has known 16 successes (over 17), so a rate of 
94%. We remind that successes mean that the IoT device 
received on that channel 16 ACK from the gateway after 
transmitting 17 times in this channel. So just one “exchange” 
was lost, either in UL, or in DL, due to a collision with some 
interfering signal in the channel. We can see on the opposite 
that no success has been obtained for channel #0, so it has a 
0 % rate. UCB data, in bottom-left green part, are harder to 
follow, as UCB1 indexes rapidly converge to very close 
values, but at each transmission, the IoT device chooses 
channel with highest UCB1 index, as in (6). 

 
Fig. 4. Live results enabling to monitor the learning algorithm evolution at 

the IoT device side in a K=4 channels example. Top-left red: number 
of trials on each channel, top-right green: number of successes on each 
channel (ACK received by IoT device), bottom-left green: UCB1 index 
Bk(t) for each channel, bottom-right blue: success rate on each channel. 

V. EXPERIMENTAL ARCHITECTURE AND HARDWARE 
CONFIGURATION FOR REAL LORA MEASUREMENTS 

The next step after the previously exposed proof-of-
concept consists in implementing the same approach in real 
conditions of operation, that is, in a real IoT network and not 
only in laboratory conditions. We target here a LoRaWAN 



 

 

 

[1][21] IoT context, but it could be done with any other IoT 
standard, as soon as it uses acknowledgment feedback. We 
describe the involved implementation details in this section. 

As far as the authors know, this is the first implementation 
of decentralized artificial intelligence algorithms in IoT 
devices to tackle the IoT spectrum contention mitigation 
problem. We named our approach IoTligent [22][23]. It is first 
necessary to remind quickly how a LoRaWAN network is 
constituted. We are using here a real LoRa network in the 
European ISM band, at 868 MHz. 

A. LoRaWAN architecture 
The implementation of the learning algorithm we propose is 
decentralized, it takes place only on the LoRa device side. As 
stated earlier, it impacts no aspect of the LoRaWAN network. 
We explain below a little bit more the LoRaWAN network 
side configuration, and we refer to [21] for more details. 
LoRaWAN network, as any other IoT network, can be 
summarized by four main elements, as shown in Fig. 5: 

 LoRa devices (our devices run the UCB1 algorithm here), 
 one or more LoRa gateway(s) receiving all LoRa radio 

signals in their radio range, 
 a Lora Network Server (LNS) that discriminates devices 

subscribing to its network from others, 
 an Application Server (AS) that receives the data sent by 

devices and sends back ACK to them (mandatory here). 
 

The IoT devices are associated to a given LoRaWAN 
network with a “join phase”, at their very first communication 
through a gateway of this network. The LNS is in charge of 
the association, as explained below. Finally, data extracted 
from radio signals, sent by the IoT devices, are sent to the 
Application Server (AS) that manages data (i.e. processes 
them, sends them to a storing place in the cloud and/or an 
application). Then the role of the AS is to initiate a sending of 
an ACK to the IoT device, through LNS and a gateway, down 
to the IoT device. 

 
Fig. 5. LoRaWAN network parts: IoT devices, gateways, LNS and AS [21]. 

B. Device side  
For this experiment, we implement an IoT device by using 

a Pycom card4 composed of an Expansion Board and a LoPy 4 
module which can support LoRa wireless connectivity, as 
shown on Fig. 6. The Pycom card is programmed in the Python 
language. The frequency channels used in the experiments are 
those authorized in France, the country of experimentation. 

                                                           
4 Pycom documentation: https://GitHub.com/PyCom/PyCom-libraries 

Our IoTligent proposal is agnostic to K, the number of 
channels in the standard, and thus it can be used in any 
country.  

We had to make some modifications in the LoRa library 
written in C and the ESP32 chip library written in 
MicroPython. By default, the Pycom configuration for 
Europe is to use only 3 channels in a random manner : 868.1, 
868.3 and 868.5 MHz (with a duty cycle of 1%). So, for 
measurement 3 of Section VII, we added a custom 
configuration region in the LoRa library with 16 channels, 
covering the band from 865.9 to 868.9 MHz. We added the 
possibility for ESP32 chip to force a channel in LORAWAN 
mode, what is necessary in order to follow UCB1 policy for 
both measurement 2 and 3 of the two following sections. 

 
Fig. 6. Pycom module composed of a LoPy4 and an Expansion Board. 

C. LoRa gateways 
For measurement 2 of the next Section VI, we use outdoor 

LoRa gateways operated by Acklio Company that has several 
gateways deployed in the city of Rennes, where the 
experiments were made. We did not have access to their 
configuration, so only the 3 default channels have been used 
for this measurement campaign. 

But for measurement 3 of Section VII, we use our own 
indoor gateway shown in Fig. 7, whose channel parameters 
could be changed in order to adapt the number of channels 
depending on our measurement needs. This is done by 
changing the configuration file of the Semtech SX1301 chip 
which manages two radio SX1257 chips. It consists in 
chosing the central frequency of the two radio chips and 
choose the offset in an interval of ±500k Hz, for each channel.  

 
Fig. 7. Indoor gateway used for Measurement 3 experiments on the left side, 

and packaged Pycom device on the right side. 



 

 

 

D. Network side 
We have access to the LNS provided by Acklio Company. 

The LNS sends the received messages to an AS which is a 
Linux server, running in the cloud. The AS is running a Python 
program that enables to display data and metadata (i.e., 
frequency, time of reception, etc). This programs also contains 
instructions to send an acknowledgment to the device, using 
in DL the same frequency used by the IoT device at UL. 

VI. MEASUREMENT 2 : IOTLIGENT OPERATION IN A REAL 
LORAWAN NETWORK  

A. Device side configuration 
We use the LORAWAN mode with an Over-The-Air-

Activation (OTAA) using app_EUI and app_key keys, as 
shown in the following Python code for the Pycom device: 
lora = LoRa(mode=LoRa.LORAWAN, region=LoRa.EU868) 
lora.join(activation=LoRa.OTAA, auth=(app_EUI, 
app_key), timeout=0) 

The transmit channel frequency is then chosen in a set of 
K channels, which is set here at K=3 in this experiment. We 
use standard Europe UL channels with the following 
frequency table (in Hz): 
tabFreq =[868100000, 868300000, 868500000] 

The IoTligent device infinite while loop is started, running 
the algorithm presented in the previous section and [5], in 
order to choose which frequency to be selected at each 
iteration before executing a send operation. An ACK is then 
expected from the network side in non-blocking mode so that 
when ACK is not received, the device just updates its learning 
data and still goes on. 

B. Network side – Lora Network Server (LNS) 
The different IoTligent devices should be declared to the 

LNS, with at least the following information: 

 devEUI : ID of the device obtained by executing a 
« get_id.py » program4 on the Pycom device itself, 

 appEUI : which should correspond to app_eui chosen in 
the Pycom device, 

 appKey: which should correspond to app_key chosen in 
the Pycom device, 

 other parameters are let by default at SF=12 (spreading 
factor), and bandwidth BW=125 kHz. 

 

The address of the AS is also specified in Connectors, as 
well as the mode used to send data between LNS and AS (we 
chose http callback here). 

C. Network side – Application Server (AS) 
The AS runs a Python program that receives data from the 

LNS, as well as LoRa metadata with all parameters of the 
LoRaWAN transmission (frequency, SF, BW, time of arrival, 
etc). This program also sends an acknowledgment message to 
the device in DL. First, an acknowledgment attempt is sent by 
default at the same frequency than the message transmitted by 
the device it answers to. Then we block any other 
retransmission. This is exactly what is necessary for the 
learning process of IoTligent: 

 to use the same channel in both UL and DL, 

 to avoid retransmission in order to increase the battery 
durations of devices on the one hand, and radio 
frequency overload on the other hand. 

D. Learning algorithm in Pycom device 
The learning algorithms used in IoTligent are (any) bandit 

algorithms, such as those first used for Cognitive Radio 
dynamic spectrum access in [4], and implemented in the 
exhaustive open-source SMPyBandits Python library [19]. We 
take here the example of UCB1 algorithm, as presented above. 
We have chosen this algorithm as it is known to be efficient 
and to converge quickly, and also for its ease of 
implementation. The only data necessary to be stored for the 
UCB1 algorithm are: 

 an iteration index initialized at 0: it, 
 a table of size N (the number of channels, 3 in this 

implementation example, but it could be arbitrarily high) 
for the number of times each channel has been chosen, 
representing Tk of (2): Tk[]. 

 another table of size N for the empirical mean of success 
of each channel, i.e., 𝑋௞(𝑡) of (3): Xk[]. 

 

 From the point of view of the learning algorithm, a success 
occurs when an IoT device receives an ACK from the IoT 
network (as explained above), which means that the currently 
used frequency channel suffered no collision in both UL and 
DL. Otherwise, a failure occurred. The update of the selected 
channel empirical means Xk is reconstructed easily from the 
number of activations and the previously stored Xk value. 
Therefore, it is not necessary to store in memory the results of 
all past iterations, but just only a summary of it (its mean). The 
proposed solution is thus realistic and efficient, as it only 
requires a bounded storage capacity. 

 Then, after an initialization phase where each channel is 
selected alternatively once, the channel selection really starts 
to use the UCB1 indexes [4]. It consists for each iteration in 
choosing the frequency channel with the greatest index Bk as 
defined in (5), that is computed for each channel like this in a 
for loop on i index, and with alpha the UCB1 parameter α that 
controls the exploration vs. exploitation trade-off [4]: 
 

Ak[i] = sqrt(alpha * log(it) / Tk[i]) 
The IoTligent device then selects the channel having the 

greatest UCB1 index Bk [4]: 
for i in range(N): 
  Bk[i] = Xk[i] + Ak[i] 
  if Bk[i] > bestChannel: 
     bestChannel = Bk[i] ; freq = tabFreq[i] 
E. Results for the second measurement 

Experiments have been done on a real LoRa network 
currently deployed with K=3 channels. We present results 
obtained on an IoTligent device, for 129 transmissions done 
every 2 hours, for a period of 11 days. Fig. 8 shows the 
evolution of the Tk index through time, which is the number of 
time each channel has been selected by the learning algorithm. 
In the figures, the red curve is for channel #0 (at 868.1 MHz), 
the green curve is for channel #1 (868.3 MHz) and the light 
blue curve is for channel #2 (868.5 MHz). 



 

 

 

 
Fig. 8. Evolution of the Tk index through time, as learning happens. 

Fig. 9 gives the empirical mean Xk experienced by the 
device on each of the 3 channels. Each peak corresponds to a 
successful LoRa bi-directional exchange between the device 
and the AS: from the device uplink transmission to the ACK 
reception (downlink) by the device. 

 
Fig. 9. Evolution of the Xk empirical mean through time. 

We can see that channel #1 gives the best results, before 
channel #2, but channel #0 always failed in sending back an 
ACK to the device. Each peak in Fig. 8 reveals a successful 
case where an ACK has been received by IoTligent device. 
Fig. 9 gives the end results after 11 days. We can see that 
channel #0 has been tried 29 times with Sk[0] = 0 success (i.e., 
no ACK received by the device). So the learning algorithm 
made the device use 61 times channel #1 with Sk[1] = 7 
successful bi-directional exchanges, and 39 times channel #2 
with Sk[2] = 2 successes. This corresponds to 7 (respectively 
2) peaks of Xk[1] (respectively Xk[2]) on Fig. 2.  

TABLE I.  RESULTS AT THE END OF THE EXPERIMENT 

Tk[0] = 29 Tk[1] = 61 Tk[2] = 39 

Xk[0] = 0.0 Xk[1] = 0.115 Xk[2] = 0.051 

Sk[0] = 0 Sk[1] = 7 Sk[2] = 2 

The empirical mean gives the vision the device obtained 
from the channels, i.e., a mean probability of 11.5% of 
successful bi-directional connection for channel #1 and 5% for 
channel #2, whereas channel #0 never worked from the device 
point of view. With a normal device, i.e. a non IoTligent 
device, that uses a purely random access, trying once over 3 
times on each channel, for a global average successful rate of 
5.5%.  

It is important to note that here the learning algorithm is 
mostly in its exploration phase, but it is learning very fast. 
Only during the last 2 days of the experiment, channel #1 has 
already been used 4 times more than channel 0 and 2.5 times 
more than channel #2, which means that learning is already 

very effective. As proven for UCB algorithms [5][7], channel 
1 will be more and more selected so that the global success 
rate will converge to the percentage of success of the best 
channel, which is 11.5% in this experiment (this estimate can 
be considered as a good evaluation as it is based on 61 trials). 
In other words, this means that a mean of 15 successes can be 
expected in the long term over the same period of 11 days with 
IoTligent. On the contrary, normal devices will never improve 
and stay in the current average, i.e. in average 7 successful 
transmissions on the same period duration. 

In order to have the same rate of successful transmissions, 
normal IoT devices should consequently transmit twice more 
often, which has two negatives impacts. The first impact is that 
normal IoT devices autonomy will be twice less than IoTligent 
devices. The second but not the least impact is that devices 
will occupy twice more times the radio channels, hence 
contributing to increase even more the risks of radio collisions 
and thus the IoT bands congestion.  

VII. MEASUREMENT 3 : IOTLIGENT OPERATION IN A 
LORAWAN NETWORK WITH EMULATED ARTIFICIAL TRAFFIC 

As a way to make a complete validation of our proposal, 
we now propose to combine the two previous experiments, by 
running IoTligent real LoRa IoT devices on a real LoRaWAN 
network, but under the future expected load, emulated using 
USRP platforms. 

A. Experimental setup 
As far as we know, this is the first evaluation in a real 

LoRaWAN network of LoRa devices running on-line learning 
algorithms, with emulated traffic reproducing very dense IoT 
conditions. The measures use a Faraday cage and an anechoic 
chamber, in order to avoid jamming real LoRaWAN networks 
operating in the surroundings of the laboratory. It also enables 
to be fully in control of the ISM jammers and channel 
occupancy, and to perfectly monitor what is happening during 
the measurement campaigns. As for the first PoC 
measurement, we use one (or several) USRP platform as a 
traffic generator, in order to emulate the traffic generated by 
the surrounding IoT devices. Each channel’s occupancy load 
can be set independently on demand, so that it is non uniform 
over the channels. The experiments presented below used a set 
of K=7 channels, with different colors in the next plots: 

- Channel #0 : 866.9 MHz, in red, 
- Channel #1 : 867.1 MHz, in orange, 
- Channel #2 : 867.3 MHz, in light green, 
- Channel #3 : 867.5 MHz, in green, 
- Channel #4 : 867.7 MHz, in light blue, 
- Channel #5 : 867.9 MHz, in dark blue, 
- Channel #6 : 868.1 MHz, in purple. 
 
For each experiment, we compare the results of two LoRa 

IoT devices: (i) one IoTligent device running the learning 
algorithm (UCB1) ; (ii) one usual LoRa device that acts as a 
reference and that we name reference IoT device. The gain of 
our approach can be measured by the difference between the 
number of successful communications obtained by IoTligent 
device compared to the results of the reference IoT device, as 
both run in the same conditions of traffic load. It can also be 
made by a comparison of their success rate.  

During the experiments, we make devices transmit every 
20 seconds. A successful communication occurs when the IoT 
device receives in DL an ACK to its own last UL transmission 
(on the same channel). In that case, the gateway received the 



 

 

 

transmissions, on the frequency channel selected by the 
devices, i.e. randomly for the reference device, or by running 
the bandit algorithm for the IoTligent device. The gateway 
then forwards the message to the Application Server through 
the LoRa Network Server. The acknowledgment is then sent 
back the opposite way and the gateway uses the same channel 
as the one used by the device in uplink, regardless if the device 
is IoTligent or not. As only these two devices are requesting 
acknowledgements, and no other real LoRa device can access 
the gateway in the chamber, the constraint of 1% duty cycle is 
not exceeded by the gateway in any channel. 

We ran the experiments over several hundreds of iterations 
(i.e., of transmissions) so that they have a duration of a couple 
of hours. We used USRP platforms as jammers that generate 
emulated IoT traffic. As the USRP transmission power, for 
jamming signal, is not as high as those of LoRa IoT devices 
and LoRa gateway, LoRa IoT devices power has been 
decreased with attenuators of 40 dB. However this has not 
been possible to do on the gateway, and we discuss the 
consequence below. 

For one device, when no acknowledgement is received, it 
means that there has been a collision either in DL or in UL. 
Here we can assert that collisions only occur in UL as we can 
check that at each time a message has been received by the 
AS, an ACK has been correctly received by the IoT device 
(reference or IoTligent). This is because the gateway DL 
feedback power is very high compared to the USRP jamming 
level.  

We now detail here a couple of scenarios that have been 
executed for measurement 3, one with a medium density 
context of IoT devices, and second one with even more dense 
conditions. 

B. Scenario 1: Not too heavy traffic and one free channel 
We choose in scenario 1 a context where channels 

occupancy is slightly decreasing from one to another. This 
enables to understand how the algorithm runs as a first 
approach. The percentage of occupancy for each channel is 
30% for channel #0, 25% for channel #1, and so on until 0% 
for channel #6, so a vector like this for the K=7 channels: 
{0.30, 0.25, 0.20, 0.15, 0.10, 0.05, 0}. So the channel where 
less radio collisions should occur is obviously channel #6 and 
we name it the best channel. 

We visualize in Fig. 10 below the number of times each of 
the channels has been used by IoTligent device through time. 
The dark green curve of channel #6 is clearly leading the race, 
followed far away by light blue channel #5, and then purple 
channel #4, and so on. It allows to conclude that the learning 
algorithm has clearly been able to favor the use of the less 
occupied channels by the LoRa IoTligent device. Moreover, 
after a short time, it has been able to make a difference 
between each different level of occupancy in the channels, 
with a great advantage to the best one. 

 

 
Fig. 10. Evolution of the number of selections through time of IoTligent 

device for scenario 1. 

To give a rigorous comparison, we can see on Fig. 11 that 
the reference LoRa device, on its side, has uniformly used the 
7 channels during the experiment. This perfectly illustrates the 
difference between an IoTligent and a usual (naïve) IoT 
device. IoTligent device uses Reinforcement Learning to 
make the choice of a channel before each transmission, based 
on a given metric (reward) depending on its past experience. 
Here the followed policy is UCB1 (with exploration factor 
 = 2). 

 
Fig. 11. Evolution of the number of selection through time, for the reference 

(naive) IoT device for scenario 1. 

The curves of Fig. 12 represent the empirical mean reward 
of (3) for each channel obtained by IoTligent device. With no 
surprise, the channels that have been the most used for 
transmissions are those with the best mean reward, i.e. the best 
percentage of vacancy. The same order is found as in Fig. 10, 
with dark green curve of channel #6 first, followed by light 
blue channel #5, and then purple channel #4, and so on. 
Indeed, Fig. 10 is a consequence of Fig. 12, as UCB1 chooses 
more and more with time, as stated in (5), the channels with 
higher empirical means Xk, as the Ak term decreases with the 
number of activation Tk and becomes negligible compared to 
Xk. Note that jumps in the curves are having bigger steps on 
the channel curves that have been used less often, as Ak of (5) 
is still predominant when Tk is low. 

 



 

 

 
Fig. 12. Evolution of the Xk empirical mean through time of IoTligent device 

for scenario 1.  

We also monitor the reference device empirical mean 
reward in Fig. 13, but just for comparison purposes as it is not 
used by the reference IoT device to select its channels. The 
difference with the IoTligent device is that reference device 
has played more times the bad channels and less times the best 
channels. As a consequence, there is a little bit more variance 
on the empirical mean reward for less occupied channels for 
the reference IoT than for the IoTligent device, but the 
opposite for most occupied channels. However the goal is not 
to recover the empirical mean from the cognitive radio point 
of view, but to order the channels in terms of their occupancy 
rate. 

 
Fig. 13. Evolution of the Xk empirical mean through time of reference IoT 

device for scenario 1. 

In TABLE IV. are listed the number of activations and 
percentages of successful transmission obtained on each 
channel by the IoTligent and reference IoT devices. Whereas 
the reference IoT device uniformly transmits on all channels, 
we can see that the IoTligent device has been concentrating on 
most vacant channels, with a clear choice for the less occupied 
channel #6. Over 526 iterations, 323 transmission have been 
done in this channel, i.e., more than 4 times compared to the 
reference IoT, and almost 27 times more than for channel #0 
for IoTligent device. This gives the opportunity to the 
IoTligent device to increase drastically its global successful 
rate that can be seen on TABLE III. The IoTligent solution 
allows the device to reach a successful transmission rate of 
almost 80 % against 50 % for the reference IoT device. 

TABLE II.  COMPARED RESULTS AT THE END OF THE EXPERIMENT 
BETWEEN REFERENCE IOT DEVICE AND IOTLIGENT DEVICE IN TERMS OF 

NUMBER OF ACTIVATIONS AND PERCENTAGE OF SUCCESS ON EACH 
CHANNEL FOR SCENARIO 2. 

 Reference IoT IoTligent 

Channel % of 
success 

Nb of 
activations 

% of 
success 

Nb of 
activations 

#0 21 % 76 8 % 12 

#1 20 % 76 25 % 16 

#2 24 % 75 25 % 16 

#3 49 % 76 50 % 32 

#4 62 % 74 61,7 % 47 

#5 76,3 % 76 74,4 % 82 

#6 96 % 75 94,4 % 323 

 

TABLE III. emphasizes the advantage of IoTligent solution 
as it almost improves by 2.5 times the performance of 
reference device, in terms of use of the best channel. This is 
due to the ability to favor the use of less occupied channels, 
and especially channel #6 which is completely vacant.  

TABLE III.  COMPARED RESULTS AT THE END OF THE EXPERIMENT 
BETWEEN REFERENCE IOT DEVICE AND IOTLIGENT DEVICE IN TERMS OF 

PERCENTAGE OF SUCCESS (I.E. ACK RECEIVED BY THE DEVICE) FOR 
SCENARIO 2. 

 Reference IoT IoTligent 

Nb of iterations 528 528 

Nb of no ACK 266 108 

% of success 49,6 % 79,5 % 

C. Scenario 2: Very heavy traffic 
Let us consider now a heavy traffic scenario as percentage 

of occupancy for each channel is set to 40% for channel #0, #1 
and #2, 30% for channel #3, 20% for channel #4, 15% for 
channel #5 and 10% for channel #6. So once again, channel #6 
is the best channel. 

As in the previous scenario, we illustrate on Fig. 14 that 
channel #6 is the most played one, even if it is not fully vacant. 
Indeed, the learning algorithm takes into account the relative 
occupancy rate between the channels. So the differences with 
the three following channels (#5, #4, #3) look like scenario 1, 
but clearly all the three first channels are almost always 
avoided. 

 
Fig. 14. Evolution of the number of selection through time of IoTligent 

device for scenario 2. 

We see the empirical mean measured by the IoTligent 
device, in Fig. 15. It reflects once again the (inverse) order of 
the occupancy rate that has been set for the channels. 

 
Fig. 15. Evolution of the Xk empirical mean through time of IoTligent device 

for scenario 2.  



 

 

 

Fig. 16 confirms the results in terms of mean success of 
channels by the reference IoT device, and we find the same 
channel mean occupancy rates. Results are even more solid for 
the reference device as all channels have been selected the 
same number of times. Here also, the IoTligent device has only 
gathered a few samples on the worst channels so that the 
evaluated empirical mean is not so realistic. 

 
Fig. 16. Evolution of the Xk empirical mean through time of reference IoT 

device for scenario 2. 

TABLE IV. shows the number of times each channel has 
been selected and the obtained empirical percentage of 
successful transmission. For both devices, we can see a direct 
(inverse) correspondence with the occupancy rate of each 
channel given earlier. Most importantly, we observe an 
unbalanced number of activations of the channels thanks to the 
learning algorithm. Whereas the reference device roughly uses 
each channel equally (around 80 times), we can see that the 
IoTligent device concentrates its transmission in channel #6 
(334 times) as it provides the best percentage of success, and 
neglects the worse channels (20 times).  

TABLE IV.  COMPARED RESULTS AT THE END OF THE EXPERIMENT 
BETWEEN REFERENCE IOT DEVICE AND IOTLIGENT DEVICE IN TERMS OF 

NUMBER OF ACTIVATIONS AND PERCENTAGE OF SUCCESS ON EACH 
CHANNEL FOR SCENARIO 2. 

 Reference IoT IoTligent 

Channel % of 
success 

Nb of 
activations 

% of 
success 

Nb of 
activations 

#0 7,9 % 76 5 % 20 

#1 3,9 % 78 5 % 20 

#2 3,5 % 85 5 % 20 

#3 52 % 77 41 % 66 

#4 38,5 % 78 35 % 51 

#5 50,6 % 81 42 % 69 

#6 72,4 % 76 65,9 % 334 

 

We can also see on TABLE IV. that despite the IoTligent 
device experimented worse results than the reference IoT 
device on the best channel (channel #6), its global results are 
much better. 

Results of TABLE V. in terms of percentage of success 
show how efficient is the proposed solution. With a global 
mean of 28% of channel occupancy on the 7 channels, the 
reference IoT device obtains in this experiment a 32 % of 
transmission successes whereas IoTligent device is able to 
reach 51%.  

TABLE V.  COMPARED RESULTS AT THE END OF THE EXPERIMENT 
BETWEEN REFERENCE IOT DEVICE AND IOTLIGENT DEVICE IN TERMS OF 

PERCENTAGE OF SUCCESS (I.E. ACK RECEIVED BY THE DEVICE) FOR 
SCENARIO 2. 

 Reference IoT IoTligent 

Nb of iterations 551 580 

Nb of no ACK 373 283 

% of success 32,3 % 51,2 % 

 

Remark that these figures take into account the very 
beginning of the learning phase where the bandit algorithm is 
still exploring. TABLE VI. gives the results during the 100 last 
iterations. Percentage of success reaches 66.7 % for IoTligent 
indeed, which is coherent with the results of TABLE V. where 
we can see that channel #6 percentage of success is almost 
66 %. As IoTligent is now almost only targeting channel #6, 
its percentage of success is slowly sliding towards the 
empirical mean of this channel. This is exactly what is proven 
to be achieved at infinity by the mathematical proof of 
converge of UCB1 [4]. However we demonstrated that 
efficiency is obtained much earlier, in practical radio 
conditions. 

TABLE VI.  COMPARED RESULTS THE LAST 100 ITERATIONS OF THE 
EXPERIMENT BETWEEN REFERENCE IOT DEVICE AND IOTLIGENT DEVICE IN 

TERMS OF NUMBER OF ACTIVATIONS AND PERCENTAGE OF SUCCESS ON 
EACH CHANNEL FOR SCENARIO 2. 

 Reference IoT IoTligent 

Channel % of 
success 

Nb of 
activations 

% of 
success 

Nb of 
activations 

#6 66,7 % 81 80 % 15 

 

This final measurement campaign definitely confirms that 
the proposed approach can be a solution for radio collision 
mitigation in the future IoT ultra-dense networks in the 
unlicensed-bands. Our study in [8] confirmed by simulation 
that advantage still remains even if the number of IoTligent 
devices increases, using solution from the literature in order to 
orthogonalize IoTligent devices without coordination.  

VIII. CONCLUSION 
We describe in this paper the solution we propose to 

mitigate radio collisions in IoT unlicensed bands. Our solution 
is to use machine learning algorithms, to be implemented on 
the IoT device side, at a very low cost of implementation and 
no protocol overhead. We propose to use Multi-Armed Bandit 
algorithms (MAB) and we first prove the efficiency of the 
method on a proof-of-concept demonstration based on USRP 
platforms in laboratory conditions (named MALIN). We then 
present the implementation of these MAB learning algorithms 
on devices deployed in a real IoT network, and finally we 
show the validity in the expected future conditions of massive 
IoT deployment. Implementation on LoRa devices in a real 
LoRaWAN network is demonstrated and is named IoTligent. 
As far as we know, we propose the first implementation of a 
decentralized spectrum learning scheme for IoT wireless 
networks. Even if the current IoT networks are not (yet) 
densely populated by devices, medium and even short term 
forecasts predict a high number of devices to overcrowd the 
ISM unlicensed bands. The IoTligent approach is then a 
solution to extend on the one hand the IoT devices battery life, 



 

 

 

which is a key performance indicator in any IoT ecosystem, 
and on the other hand to mitigate the collision issue that will 
occur with the growing number of IoT devices. 
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