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Résumé

Dans cette thèse de doctorat, nous étudions les réseaux sans fil et les appareils reconfig-
urables qui peuvent accéder à des réseaux de radio intelligente, dans des bandes non licenciées
et sans supervision centrale. Nous considérons des réseaux de l’Internet des Objets (IoT), avec
l’objectif d’augmenter la durée de vie de la batterie des appareils, en les équipant d’algorithmes
d’apprentissage machine peu coûteux mais efficaces, qui leur permettent d’améliorer automa-
tiquement l’efficacité de leurs communications sans fil. Nous proposons différents modèles
de réseaux IoT, et nous montrons empiriquement, par des simulations numériques et une
validation expérimentale réaliste, le gain que peuvent apporter nos méthodes, qui utilisent
l’apprentissage par renforcement. Les différents problèmes d’accès au réseau sont modélisés
avec des Bandits Multi-Bras (MAB), mais leur analyse est difficile à réaliser, car il est délicat
de prouver la convergence de nombreux appareils jouant à un jeu collaboratif sans commu-
nication ni aucune coordination, lorsque les appareils suivent tous un modèle d’activation
aléatoire. Le reste de ce manuscrit étudie donc deux modèles restreints, d’abord des bandits
multi-joueurs dans des problèmes stationnaires, puis des bandits mono-joueur non station-
naires. Nous détaillons également une autre contribution, la bibliothèque Python open-source
SMPyBandits pour des simulations numériques de problèmes MAB, qui couvre les modèles
étudiés et d’autres.

Abstract

In this PhD thesis, we study wireless networks and reconfigurable end-devices that can access
large-scale Cognitive Radio networks, in unlicensed bands and without central control. We
focus on Internet of Things networks (IoT), with the objective of extending the devices’ battery
life, by equipping them with low-cost but efficient machine learning algorithms, to let them
automatically improve the efficiency of their wireless communications. We propose different
models of IoT networks, and we show empirically on both numerical simulations and real-
world validation the possible gain of our methods, that use Reinforcement Learning. The
different network access problems are modeled as Multi-Armed Bandits (MAB), but we found
that analyzing the realistic models was intractable, because proving the convergence of many
end-devices playing a collaborative game without communication nor coordination is hard,
when end-devices all follow random active pattern. The rest of this manuscript thus studies
two restricted models, first multi-players bandits in stationary problems, then non-stationary
single-player bandits. We also detail another contribution, SMPyBandits, an open-source
Python library for numerical MAB simulations, covering all the studied models and more.





Resumé des Travaux de Thèse

Dans cette thèse de doctorat, nous étudions les réseaux sans fil et les appareils reconfigurables
qui peuvent accéder à des réseaux de radio intelligente, dans des bandes non licenciées et
sans supervision centrale. Plus spécifiquement, nous considérons des réseaux de l’Internet
des Objets (IoT), avec l’objectif d’augmenter la durée de vie de la batterie des appareils, en les
équipant d’algorithmes d’apprentissage machine peu coûteux mais efficaces, qui leur permet-
tent d’améliorer automatiquement l’efficacité de leurs communications sans fil (Chapitre 1).
Nous proposons différents modèles de réseaux IoT, et nous montrons empiriquement, par des
simulations numériques et une validation expérimentale réaliste, le gain que peuvent apporter
nos méthodes, qui utilisent l’apprentissage par renforcement (Chapitre 5). Les différents prob-
lèmes d’accès au réseau sont modélisés avec des Bandits Multi-Bras (MAB, Chapitre 2), mais
leur analyse est difficile à réaliser, car il est difficile de prouver la convergence de nombreux
appareils jouant à un jeu collaboratif sans communication aucune coordination, lorsque les
appareils suivent tous un modèle d’activation aléatoire. Le reste de ce manuscrit étudie donc
deux modèles restreints, d’abord des bandits multi-joueurs dans des problèmes stationnaires
(Chapitre 6), puis des bandits mono-joueurs non stationnaires (Chapitre 7). Nous détaillons
également une autre contribution, la bibliothèque Python open-source SMPyBandits pour des
simulations numériques de problèmes MAB, qui couvre tous les modèles étudiés et d’autres
(Chapitre 3).

Contributions

Nous pouvons énumérer les points suivants pour résumer les principales contributions de
cette thèse. Nous signalons les conférences internationales auxquelles ont été publiées certains
résultats.

• Nous avons écrit la plus complète bibliothèque de simulation pour les problèmes MAB,
appelée SMPyBandits, qui est écrite en Python et publiée en ligne sous une licence open-
source [Bes19, Bes18]. Nous présentons en détail son architecture et ses fonctionnalités
dans le Chapitre 3, ainsi que différents exemples de son utilisation. Une documentation
complète est disponible en ligne, ainsi que des instructions exhaustives pour reproduire
les expériences utilisées dans la suite de cette thèse.



• Nous présentons le problème du choix de l’algorithme qu’un praticien devrait utiliser,
ou de la sélection d’algorithme parmi la riche collection de différents algorithms MAB
disponibles, dans le Chapitre 4. Nous présentons un algorithme appelé Aggregator
pour l’agrégation d’algorithmes, comme une solution en ligne au problème de sélection
d’algorithmes, et nous montrons par quelques simulations numériques qu’il atteint de
bonnes performances empiriques (WCNC 2018) [BKM18].

• Nous proposons différents modèles pour les réseaux IdO (IoT), dans le Chapitre 5,
où les appareils dotés de capacités de radio intelligente peuvent implémenter de leur
côté des algorithmes MAB, pour augmenter automatiquement la durée de vie de leur
batterie. Cela permet à davantage de périphériques d’utiliser le même réseau tout en
maintenant une haute qualité de service (CROWNCOM 2017, ICT demo 2018, WCNC
2019 et MOTIoN 2019) [BBM+17, BBM19, BBMVM19].

• Nous avons implémenté une preuve de concept du modèle susmentionné [BBM18], et
nous la présentons en détail en Section 5.3. Nous avons aussi réalisé une courte vidéo
présentant notre démonstration, hébergée sur youtu.be/HospLNQhcMk.

• Nous formalisons le modèle du bandit multi-joueur, pour lequel nous avons introduit
trois variantes, dans le Chapitre 6. Pour le cas avec information de détection (“sensing”),
nous proposons deux nouveaux algorithmes, et nous donnons une analyse pour notre
algorithme MCTopM, qui prouve qu’il est asymptotiquement optimal. Nous présentons
aussi des expériences numériques approfondies pour montrer qu’il est bien plus efficace
que les autres algorithmes de la littérature précédente. Notre travail [BK18a] (ALT 2018)
a également contribué à une nouvelle impulsion à la recherche sur les bandits multi-
joueurs, car certains travaux de recherche récents se sont construits sur nos résultats.

• Nous donnons également une revue détaillée de la littérature sur les différentes exten-
sions du modèle MAB multi-joueurs, qui, selon nous, n’a jamais été écrit auparavant.

• Nous présentons ensuite le modèle de bandits multi-bras stationnaire par morceaux,
dans le chapitre 7, et une vue détaillée de l’état de l’art de la recherche sur ce mod-
èle [BK19b, BK19a] (GRETSI 2019). Suite à deux travaux récents, nous proposons un
nouvel algorithme activement adaptatif pour ce problème stationnaire par morceaux,
GLR-klUCB, qui atteint des performances comparables à l’état de l’art.

• La dernière contribution de cette thèse est une revue de la littérature sur les cas d’utilisation
possibles de la technique du doublement successif de l’horizon (“doubling trick”) pour
les problèmes de bandits, ainsi qu’une analyse unifiée et plus générique de deux familles
de doublements. Ceci a conduit à l’article [BK18b], qui est rapidement présenté en
Annexe A.
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Organisation du manuscrit

Ce manuscrit est organisé comme suit.

Chapitre 1
Introduction

Chapitre 2
Modèle bandits multi-bras
stochastique et stationnaire

Chapitre 3
SMPyBandits : bibliothèque
de simulations pour MAB

Chapitre 4
Sélection séquentielle

d’algorithme MAB

Chapitre 5
Deux modèles MAB
pour les réseaux IoT

Chapitre 6
Modèle MAB
Multi-joueurs

Chapitre 7
Modèle MAB

Non-stationnaire

Chapitre 8
Conclusion générale Annexes

Figure 1 – Organisation de la thèse. Cette thèse peut se lire en suivant n’importe quel chemin contenant
le Chapitre 1, le Chapitre 2, au moins un des trois Chapitres 5, 6 et 7, et la Conclusion.

L’ordre de lecture du manuscrit peut être n’importe quel chemin, descendant entre l’introduction
donnée dans Chapitre 1, et la conclusion générale qui constitue le dernier Chapitre 8. Comme
le montre le graphique de la Figure 1 ci-dessus, la thèse est organisée en deux parties :

• Dans la Partie I, nous commençons par le Chapitre 2 où nous présentons les modèles
MAB, les concepts et les notations utilisés dans tout ce document. Ce premier chapitre
est nécessaire à la lecture du reste du manuscrit. Par contre le Chapitre 3 présente
notre bibliothèque de simulations SMPyBandits, et même si les Chapitres 2, 4, 6 et 7
utilisent la bibliothèque pour leurs simulations numériques, lire ce chapitre n’est pas
obligatoire pour comprendre la suite du document. Nous terminons cette première
partie par le Chapitre 4, qui n’est pas non plus nécessaire à la compréhension de la suite
du manuscrit, et qui détaille la première contribution : un nouvel algorithme pour la
sélection séquentielle d’algorithmes MAB.

• La deuxième Partie II contient ensuite trois chapitres, qui sont inclus à la fois dans l’ordre
logique et chronologique, mais peuvent être lus presque indépendamment. Le Chapitre 5
commence par présenter différents modèles de réseaux IdO où les algorithmes MAB ont
été utilisés avec succès. Nos deux modèles sont intéressants et proches de la réalité, mais
ils se sont révélés trop généraux pour proposer une analyse mathématique de la bonne
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performance empirique des solutions envisagées. Pour cette raison, nous affaiblissons
les modèles pour le reste du document, et les deux Chapitres 6 et 7 étudient un modèle
intermédiaire, situé entre le modèle MAB stationnaire à un joueur du chapitre 2 et les
modèles de réseaux IdO du chapitre 5.

Note sur le droit intellectuel. Ce document et les ressources additionnelles requises
pour le compiler (notamment les fichiers LATEX, les morceaux de code Python, les figures
etc) sont publiées publiquement, selon les termes de la licence MIT open-source, en ligne sur
GitHub.com/Naereen/phd-thesis/.

Copyright 2016-2019, © Lilian Besson.
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Chapter 1

Introduction

Where and when? This manuscript concludes my doctoral thesis, which started in Octo-
ber 2016 and finished in October 2019. My research took place at the IETR laboratory in
Rennes (France), in the SCEE team hosted on the Rennes campus of the engineering college
CentraleSupélec. In Rennes I was supervised by Professor Christophe Moy, and I was also
co-supervised by Doctor Emilie Kaufmann, whom I visited many times at Inria Lille Nord
Europe in Lille (France).

1.1 Context of this thesis

At the root of the problems that motivate this thesis are the two questions of global warming,
and the increase of the world population. During the last 150 years, mankind has developed
a wide range of different communication technologies, and since the late 1890s wireless
communications between manufactured devices have been made possible, and more and
more frequent in our lives. With the avent of Internet of Things networks (IoT), billions of
autonomous low-power devices are expected to be deployed worldwide, for a large range
of different applications. It is now well-known that with the current trend of population
increase and with the energy crisis, any newly deployed technology should be cheap and
energy efficient, as well as adapted to serve a large number of people and devices.

That is why we are interested in this thesis about the possible applications of embedding
a certain kind of Machine Learning algorithms (Multi-Armed Bandit algorithms), directly
into the future IoT devices, in order to improve their battery life and reduce the energy cost of
IoT networks, by optimizing the wireless communication thanks to embedded decentralized
decision making.
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From old TV to the IoT standards. Historically, three families of wireless communication
systems have been deployed: first, centralized broadcasting (e.g., old TV), then centralized
bi-directional systems (e.g., 4G or WiFi), and nowadays decentralized broadcasting for the
Internet of Things (IoT) networks.

Starting from FM radio music and news, then old black-and-white TV and color TV, the
first systems were purely made for centralized broadcasting of information. In a large area,
one antenna well located emits continuously in a fixed Radio Frequency (RF) band, and many
devices can listen to this RF traffic and decode it, for instance to listen to music. Different
standards have been developed, and some of them are still in use today, and their nature
requires a central authority that allocates RF bands to different usages (e.g., TV channels etc).
For example, in the city of Cesson-Sévigné where the campus of CentraleSupélec is located, a
high RF tower emits on many standards, and in particular the 92.3 MHz band is allocated to
a French classical music radio (Radio Classique). Broadcast-based systems are not only used
for TV or radio, and for instance two other famous and worldwide deployed examples are
the long-range global navigation satellite systems (such as USA’s GPS or European Union’s
Galileo), and short-range infrared remote controllers.

However, this kind of mono-directional wireless communications were soon found to
not be satisfactory for many applications, and thus bi-directional standards were defined
from the 1910s. First developed by and for the military, and the navy (e.g., the Titanic sent
the first SOS signal over radio in 1912), such applications have reached general public usage
since the 1950s. The greatest achievement of this long-running R&D domain was the avent of
mobile telephony in the 1990s, which has continued to be more and more present in people
lives in the richer countries in the world, with the booming of cellphones since the 2000s
and smartphones since the 2010s. In most systems, there is still an antenna in charge of a
large area (or cell), and many devices are able to receive and transmit data to the antenna.
Nowadays, the most well-known systems include WiFi, and systems deployed for mobile
phone communications, with a long list of standards from 1G, 2G, 3G, 4G and now 5G, still in
development in 2019. Even if both systems initially differed in usage, as 1G was designed to
exchange only voice, and WiFi to link wireless devices at home to an Internet-connected box,
they are conceptually very close. As the systems are cellular, any device knows the antenna
(or base station) it is associated with, and the bi-directional nature of their exchanges makes
a centralized control possible. In order to optimize the efficiency of the network, the base
station is equipped with decision making algorithms that affects the devices in the cell to
the available resources (time slots, RF bands, power etc). To be able to communicate with
the base station without interfering with each others, such affectation should be orthogonal,
and led to systems based on Time Division Multiple Access (TDMA) and Frequency Division
Multiple Access (FDMA), or Non-Orthogonal techniques only started to emerge recently (e.g.,
NOMA). Traditionally, the base station aimed only at maximizing the Quality of Service (QoS),
that englobes the data rate, latency, availability and other measures of performance of the
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wireless communications to and from the devices. More recently, green radio has emerged as
a solution to the tradeoff between maximizing QoS while minimizing the power consumption
of base stations and devices.

Finally, a third kind of systems are of the opposite kind, and can be designed as decentral-
ized broadcasting: an antenna is still in charge of many devices, but such devices can only send
up-link packets, and the only down-link data they can receive are short acknowledgements
sent from the base-station to indicate success or failure of every up-link packet. This family of
wireless systems are referred to as Internet of Things, and a typical example of application is
for sensor networks.

For the future development of smart grids, smart cities, smart homes, or smart agriculture,
sensor networks are promised to be widely deployed. Two examples of future applications
that are already in deployment, in France or other countries, are connected buildings and
connected agriculture. For buildings, the main goal is to reduce the cost of heating empty
buildings and use temperature sensor networks to get accurate and regular data about the
temperature in each room and each floor, and let the centralized heat control optimize its cost
and energy consumption. For agriculture, one example can be to equipped every cow (in large
farms) with a sensor that emits biological information, such as body temperature or stress
level etc, in order to optimize the time of milking and to monitor the health of the animals.

This third kind of wireless systems are characterized by their decentralized nature: due
to the really limited information that the base station can send to the devices, it is no longer
possible to optimize the efficiency of the network from the centralized point-of-view of the
base station. In the present and future IoT networks, many devices of heterogeneous nature
are using the same antenna for different applications. A common hypothesis is that such IoT
devices have a strong constraint on their power consumption, as most of them will be deployed
without a direct power access and run on a battery, which duration should be maximized
(typically more than 10 years). Another common constraint for IoT devices is their low duty
cycle, as most applications target one or a few messages to send every day, in strike opposition
to the high data-rate pursued for centralized systems such as 4G/5G and WiFi. Many different
standards for IoT networks have been proposed, and they consist in a specification for both the
PHYsical and the Medium Access Control (MAC) layer. To quote some examples of standards,
ZigBee, Z-Wave or Bluetooth are targeting for short-range communications, while LoRaWAN,
SIGFOX, Ingenu or Weightless are designed for long-range communications. We refer to the
survey [CVZZ16] for more details, and references in [AC18] or our recent article [MB19].

The spectrum scarcity issue. A major problem of current wireless technologies is the
issue of spectrum scarcity: in most kinds of frequency bands, the entire RF spectrum is now
allocated and free bands no longer exist, limiting the possibility of adding new usage. As
illustrated in Figure 1.1 below, only a very small portion of the RF spectrum in the USA is not
yet allocated, from 0 to 9 kHz, while the rest of the displayed portion of the spectrum, from
9 kHz to 300 GHz, is allocated to various usages, that goes from maritime radionavigation
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(historically the first usage of radio telecommunication) to space research, inter-satellite, mobile
telephony and a large number of other applications. Regulatory bodies in the world, like the
Federal Communications Commission in the USA (see FCC.gov) or TDF in France (see TDF.fr,
previously known as “TéléDiffusion de France”), as well as different independent measurement
campaigns, found that most radio frequency spectrum was inefficiently utilized, meaning that
while a band can be allocated to a certain unique usage, it can be free from any user in certain
times and/or places. We refer to [PPS11] for a survey on worldwide spectrum utilization, and
to [VMB+10] for the situation in Europe.

Cellular network bands are overloaded in most parts of the world, but other frequency
bands (such as military, amateur radio and paging frequencies) are insufficiently utilized.
Independent studies performed in some countries confirmed that observation, and concluded
that spectrum usage highly depends on time and place. Moreover, the fixed spectrum allo-
cation prevents rarely used frequencies, like those assigned to specific services, from being
used, even when any unlicensed users would not cause noticeable interference to the assigned
service. Therefore, in the last 15 years, regulatory bodies in the world have been considering
whether to allow unlicensed users in licensed bands if they would not cause any interference to
licensed users. These initiatives have initiated the research on Cognitive Radio, and especially
on one subfield that we detail below, Dynamic Spectrum Access (DSA). To highlight that
the spectrum scarcity is not only an issue in the USA, we quote the abstract of the “Dynamic
Spectrum Management For Innovation And Growth” report by J. Toledano [Tol14a, Tol14b],
who was commissioned by the French government in 2014. Different important problems are
mentioned:

• “In France, digital economy represents 5% of GDP and affects 80% of the French economy.” And
the usage of wireless communications is nowadays worldwide and omnipresent: “Radio
frequencies are essential to many sectors: communications, broadcasting, transportation, satellite
networks, energy networks and smart grids, public or private security, defense, etc.” Thus it is
of highest interest to set up efficient, green, low-cost and durable new technologies for
the future wireless standards, networks and devices.

• The radio spectrum is not only widely used for all kinds of applications, it is nowadays
intensely used for some of them. “Everyone agrees on the growing need for spectrum. This
growing need results from two phenomena. On the one hand, mobile traffic should be multiplied
by 13 to 25 fold between 2011 and 2017. On the other hand, the development of new innovative
services such as the Internet of Things and its multiple applications (smart cities, e-health...), could
lead to a growing number of connected devices, up to 50 billion in 2020, according to estimations.”
The first estimation was correct, and the mobile traffic is again estimated to be increased
by 10 times between 2019 and 2025. If the second estimation was overestimating the
growth of the IoT market, forecasts predict more than 64 billion IoT devices by 2025.
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Figure 1.1 – A chart representing the allocation of radio spectrum in the USA in 2016. Only a small
share of the spectrum is not yet allocated, the top-left corner in white (it is in logarithmic scale from
0 kHz to 300 GHz). © Wikimedia.

• “Today, there are no more available frequencies in the easily exploitable frequency bands. Moreover,
it is getting more and more difficult to resort to classical methods of frequency bands liberation.”
As illustrated above in Figure 1.1, and discussed in [PPS11, VMB+10].

• “Growing recourse to spectrum sharing, and in particular dynamic spectrum sharing, constitutes
an important spectrum reserve. A particular sharing form, the use of unlicensed bands, open to
all and free, has been intensely developed with the growth of Wi-Fi use.” This thesis focusses
on spectrum sharing in unlicensed bands, for IoT networks that lie at the opposite
direction as the one underlying Wi-Fi networks: the spectrum sharing will be learned
automatically by the end-devices, and not centrally decided by the base station.

1.2 Cognitive Radio and Multi-Armed Bandits

In this thesis, we study Internet of Things networks, and these two constraints of low power
consumption (or long battery life) and low duty cycle are essential. More precisely, we study
the possible interconnections between Cognitive Radio and Machine Learning applied for
IoT networks. Let us define and detail both concepts.
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From Machine Learning to Multi-Armed Bandits. We can narrow down the first field of
study of this thesis, steps by steps. Starting from the general concept of Machine Learning (ML),
we focused our interest to statistical learning, then sequential learning, then Reinforcement
Learning (RL), then RL with limited feedback and finally to Multi-Armed Bandits (MAB)
learning. As illustrated in Figure 1.2, there are other types of ML, that we do not focus on in
this thesis. The reference book on RL is [SB18], so let us quote the definition of RL given by
R. Sutton and A. Barto: “Reinforcement learning is learning what to do - how to map situations to
actions - so as to maximize a numerical reward signal. The learner is not told which actions to take, but
instead must discover which actions yield the most reward by trying them”.

Machine
Learning

Supervised
Learning

Unsupervised
Learning

Regression Classification

Clustering

Dimensionality
Reduction

Association Rule
Learning

Reinforcement
Learning Ensemble

Learning

Neural Networks
and Deep
Learning

Convolutional Neural
Networks (CNN)

DCNN Recurrent Neural
Networks (RNN) Generative Adversarial

Networks (GAN)
Autoencoders

Perceptrons

Stacking

Bagging

Boosting

LSM

LSTM

GRU

seq2seq

Q-Learning

DQN

SARSA

Genetic Algorithm

Random Forest

XGBoost

LightGBM

CatBoost
AdaBoost

Linear
Regression

Polynomial
Regression

Ridge/Lasso
Regression K-NN

Naive Bayes

SVM

Decision
Trees

Logistic
Regression

K-Means

DBSCAN

Agglomerative

Fuzzy C-Means

Mean Shift Euclat

Apriori

FP Growth

t-SNE

PCA

LSA

SVD
LDA

Multi-Armed
Bandits

Figure 1.2 – Classification of the main types of Machine Learning: MAB is a subset of Reinforcement
Learning and RL is a subset of ML. MAB is RL with partial information, and RL is ML with no
supervision or data, just an environment to interact with.

We illustrate this idea of a learning cycle alternating between actions and feedback, in the
following Figure 1.3. A player (or learner) interacts with its environment by taking an action
A(t) (e.g., a choice in a finite set, A(t) ∈ {1, . . . , K}, or a vector A(t) ∈ Rd), and then observing
a reward r(t), which is a certain measure of success from the environment (e.g., r(t) ∈ {0, 1}
for binary failure/success, or r(t) ∈ R). The goal of the player is to maximize its reward,
by trials and errors (i.e., actions and rewards). Many real-world problems can be framed as
Reinforcement Learning problems, as illustrated by the survey [BR19] and Section 2.2, for
instance learning to walk or to drive, learning to play a board or computer game, or discovering
which treatment is efficient in healing a certain disease (clinical trial), etc.
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Player Environment

Action

Reward

Figure 1.3 – Reinforcement learning cycle: a learner interacts with its environment through actions,
and observes a reward, iteratively.

More precisely, in this thesis we focus on a certain kind of Reinforcement Learning models
where the learner does not have access to the entire reaction of the environment after taking
its action. In other words, we focus on RL with limited feedback, when the player only sees
the reward given by its action at every round, and not the reward that would have been given
if she chose any other action. This kind of limited feedback is called bandit information, and we
discuss the history and the concept of Multi-Armed Bandits in details in the next Chapter 2.
Clinical trials and treatment discovery were historically the first applications of MAB since
1930s, with the early work of W. Thompson [Tho33]. Multi-Armed Bandits (MAB) are a simple
yet powerful example of the well-known exploration/exploitation dilemma: when facing a
set of K actions whose effects on the environment are unknown, a learning must balance
between exploration of the unknown actions, in order to collect more information about them,
and exploitation of the best action according to its current knowledge. The MAB problem
have been studied in both the machine learning and the statistics community, since the 1950s
with pioneers like H. Robbins [Rob52], and more recently it is an active field of research,
since the late 1990s [AVW87a, AVW87b, ACBFS95, Agr95]. Research on MAB has produced
a vast literature in the 2000s [ACBF02, ACBFS02, AB09] and continues to be a topic of high
interest, as illustrated by the surveys and books [BCB12, LS19, Sli19], and the wide range of
applications of MAB in the recent years.

From IT to Cognitive Radio. Similarly, we can narrow down the second field of study of this
thesis, steps by steps: from Information Technologies (IT), to telecommunications, to wireless
communications, then to Software Defined Radio (SDR), and finally to Cognitive Radio (CR).
The transition from the historical approach of hardware-based radio to SDR architectures and
is a gradual process that started in the early 1990s and has accelerated in the 2000s. A SDR is
a radio communication system where components that have been traditionally implemented
in hardware (e.g., mixers, filters, amplifiers, modulators/demodulators, detectors, etc) are
instead implemented by means of software on a personal computer or embedded system,
with the exception of a unique pair of receiver/transmitter antennas. Even though the SDR
paradigm was initiated by the USA defense research, over the past years the industry has
started to be interested by SDR, and CR have got significant attention from the academia
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and industry as well. CR is not a standard technology, and as such it does not have a single
definition, so let us start by quoting the definition of two researchers whose works were the
roots of the development of CR, in the last 20 years.

• Joseph Mittola in 1999 said that “a really smart radio that would be self-, RF- and user-aware,
and that would include software technology and machine learning capabilities along with a lot of
high-fidelity knowledge of the radio environment” [MM99].

• Then Simon Haykin in 2005 also said that “a CR is an intelligent wireless communication
system that is capable of being aware of its surroundings, learning, and adapting its operating
parameters (e.g., transmit power and carrier frequency) on the fly with an objective of providing
reliable anytime, anywhere, and spectrally efficient communication” [Hay05]. He was the first
to propose to use CR for dynamic spectrum access.

• The Wikipedia encyclopedia states “A cognitive radio (CR) is a radio that can be programmed
and configured dynamically to use the best wireless channels in its vicinity to avoid user interfer-
ence and congestion. Such a radio automatically detects available channels in wireless spectrum,
then accordingly changes its transmission or reception parameters to allow more concurrent
wireless communications in a given spectrum band at one location”.

In licensed bands, there are Primary Users (PU) paying to access the network, for instance
anybody has to pay to have a mobile phone number and use the mobile telephony network.
The PU have a strict priority over any other non-paying users, referred to as Secondary User
(SU). So even though the RF bands are allocated, real world measurements often show that
some bands are not densely used, and thus if a SU is equipped with an efficient sensing
capacity, it can analyze its environment, and use a licensed band if it is free of any PU. This
defines the concept of DSA was thus proposed in the early 2000s, and we refer to the survey
[ZS07] for more details. We focus on one example, the Opportunistic Spectrum Access (OSA)
problem.

Opportunistic Spectrum Access. In OSA, the focus is on one SU accessing a licensed spec-
trum, occupied by PU that have a strict priority over the SU, which has to follow a “listen-
before-talk” access scheme. The following hypothesis are maid: the SU is equipped with
sensing, and a consider a fixed and finite set of orthogonal channels, i.e., different frequency
bands in a licensed spectrum. For instance, it can be a set of three Wi-Fi channels at different
frequency, emitted by the same Wi-Fi station. Another hypothesis is that both PU and SU are
synchronized in times, by sub-dividing the time in discrete time steps. Thus if the SU spends
a short time in the beginning of each time slot to do sensing, it can scan for the presence or
absence of any PU before transmitting. If a SU was able to sense for all the K frequency bands,
it could simply transmit in one of the free channels if any, or not transmit if all channels are
used at a given time step. However, sensing is known to be error-prone and costly, especially

8
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1.2 Cognitive Radio and Multi-Armed Bandits

for wide-band sensing, thus most works on OSA limit the sensing capacity of SU to sensing
only one channel at a time. This assumption, along with the regulation that PU cannot be
disturbed, enforces the SU to transmit in the channel that it sensed.

Focussing on one SU in an OSA network, it has to sequentially decide a channel to sense
(in the set of K ≥ 2 channels), then it performs sensing, and finally it transmits in this channel
if it is free. The goal of the SU is to minimize its energy consumption (we remind that we
focus on green radio) and to maximize its uplink data rate, or equivalently, to maximize its
number of successful transmission. If the different channels are not uniformly used by the PU,
and if we assume a stationary hypothesis on the PU traffic, then the goal of the SU boils down
to explore the different channels and exploiting the best ones. This frames the Opportunistic
Spectrum Access problem as an exploration/exploitation problem, with a finite set of actions
(the channels, also called arms), in a sequential action-then-feedback cycle (time steps are
t ∈ N∗), under partial information feedback. These three hypotheses are the ones that restrict
from the general RL framework to the specific Multi-Armed Bandit case (see Figure 1.3).

MAB for OSA, and a short presentation of the history of this research at the SCEE team.
Previous works of our SCEE team showed that MAB can be used to model the OSA problem:
orthogonal frequency bands (or channels) are models by arms k ∈ {1, . . . , K}, and the feedback
obtained by the CR-equipped device after sensing the channel k at time t is modeled by a
reward of r(t) ∈ {0, 1}. Indeed, r(t) = 1 indicates that no Primary User was sensed (and
thus an uplink message can be sent), while a reward of r(t) = 0 indicates that the channel k

is busy at time t and no uplink message should be sent. This model was first studied by W.
Jouini during his PhD thesis with C. Moy, ten years ago, first with [JEMP09] and later with
[JEMP10, JMP12].

Their works were among the first ones to propose to use Reinforcement Learning for
Cognitive Radio and the OSA problem, especially the MAB model and the UCB algorithm,
along the early works of Q. Zhao and her team, for instance with the works [LZ08, LZ10].
Shortly after in 2014, proof-of-concepts using real-world radio hardware and Software Defined
Radio were developed by C. Moy and his student C. Robert [RMZ14, Moy14]. In a second PhD
thesis [Mod17], N. Modi studied from 2014 to 2017 the impact of using MAB algorithms to
optimize channel selection on the battery life of a wireless device. On the one hand, running a
MAB algorithm such as UCB-like algorithms was proven to be useful and can bring significant
improvement in terms of successful transmission rates, directly increasing the battery life
of the device. On the other hand, classical MAB algorithms tend to switch arms a lot of
times, especially in the beginning of the learning process, and this induces a lot of dynamical
hardware reconfiguration for the wireless device, as selecting a different channel requires a
change in the radio hardware used by the device. Each hardware reconfiguration costs energy
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for the device, and quickly switching algorithms will lead to a reduction of the battery life.
The tradeoff between the two aspects is studied empirically in [DMNM16].

In 2017, C. Moy continued to work on this direction, with a post-doctoral student, S. Darak,
leading to publications such as [DNMP16, DMP16]. For example, proof-of-concepts like
[KDY+16] have proven the capability of such approaches on real radio signals for OSA, Some
analysis on real radio measurements made for HF ionospheric channels have also proven that
solutions based on MAB learning is appropriate and solves efficiently this kind of decision-
making problems on real-world wireless signals [MGMM+15]. Since 2017, S. Darak and his
team at IIIT Delhi have actively worked in the research on cognitive radio using multi-armed
bandits, and some of their recent works are illustrated with real-world demo using USRP and
the MATLAB/Simulink system [KYDH18, SKHD18, H. 18].

Limitations and specifities of IoT networks. The aforementioned previous works have
shown that MAB algorithms can be applied with success for the OSA problem. But if we
consider CR-ready devices that cannot perform sensing, such as low-cost and low energy-
consumption end-devices designed for the future Internet of Things networks, the MAB model
that uses sensing to detect PU in the OSA case can no longer be applied. Moreover, in most
cases, the IoT networks use unlicensed bands, and as such there are no longer a distinction
between PU and SU. The specificities of IoT networks can be listed as follows, and we refer to
[CVZZ16] for more details.

• most IoT networks run in unlicensed bands (no more distinction between PU and SU),
• most IoT devices are very low-cost devices, with low material and computational ca-

pacities, meaning that they are not equipped with any sensing capabilities. However,
they are equipped with a transceiver as well as with a receiver, and with low-complexity
storage and computation capacities,

• a single IoT base station will have to handle a very large number of devices, and cannot
send coordination orders to them in order to optimize the network,

• IoT devices have low duty cycles (only a few messages every minute) to very low duty
cycles (only a few messages a day).

One could think that in the absence of sensing, Reinforcement Learning is no longer
possible, but any real IoT device still receives some information about its environment after
some or every transmissions. In most IoT standards an up-link message sent to a base station is
usually followed by a down-link message sent back by the base station, to indicate if the up-link
message was successfully received and understood. By using this feedback, that consists in an
acknowledgement (Ack) message received shortly after every successful transmission, or in an
absence of Ack avery a failed transmission, it is possible that an IoT end-device can also use
RL algorithms to optimize its communications. To the best of our knowledge, this direction of
research has never been studied before the year 2016 and the beginning of this PhD.
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1.3 Our contributions

We start by formulating the problem studied in this thesis, and then we develop our approach.

Problematic. If we sum-up the studied problems and summarize them in one question, it
could be the following: “Can we adapt the decision making tools already successfully applied to
Cognitive Radio for Opportunistic Spectrum Access to the specific needs of CR for the (future) Internet
of Things networks?” We answer partially to this problematic by the following research steps.

1.3.1 Exploring the literature of MAB algorithms, Part I

Chapter 2. We started by exploring the rich literature of multi-armed bandits, as many
different algorithms exist, with lots of variants on the simple problem presented above (see
[LS19, Sli19] for surveys). We thus start the first Part I of this thesis with Chapter 2, which
presents the MAB model and gives a review of the most important algorithms designed to solve
stochastic and stationary MAB problems. In order to clearly understand which algorithms
could be adapted to the aforementioned constraints of CR for IoT networks, we were not
only interested by the usual measure of performance of any MAB algorithm (its regret, see
below in Section 2.3), but also by their empirical performances in terms of computational
complexity and storage requirements, both from the point of view of the theoretical analyses
and real-world measurements on time and memory footprints.

Chapter 3. Our exploration of the large number of MAB algorithms and models developed
in the recent literature has given us the ambition to write a single piece of software allowing
anyone to easily implement new models and algorithms, in order to compare the existing ones
and empirically explores the performances of newly proposed algorithms. To answer this goal,
we produced a Python library of simulation of MAB problems. We wrote the most exhaustive
open-source simulation library for MAB problems, called SMPyBandits, which is published
online under an open-source licence [Bes19, Bes18] and hosted on GitHub.com/SMPyBandits.
We present in details its architecture and its features in Chapter 3, along with different examples
of its usage. A full documentation is available online, as well as exhaustive instructions to
reproduce the experiments used in the rest of this thesis.

Chapter 4. Because there are so many different MAB algorithms, we are also interested by
the question of how practitioner can chose the one she will implement, in a given IoT object,
in order to let this object adapts robustly in any environment. To answer this question, we
present two approaches. The first one is an empirical comparison of the most efficient and well
known existing algorithms, in Section 3.3 and 3.4. We confirm that widely used and not too
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sophisticated algorithms, such as UCB [ACBF02], Thompson sampling [Tho33] and kl-UCB
[CGM+13], are the most efficient in terms of regret, and offer a good balance between regret
and (time and memory) complexity. The second approach is an online algorithm selection,
consisting in aggregating a (finite) set of algorithms and automatically discovering which
one performs the most efficiently, against a given problem, with our contribution Aggregator
that we detail in Chapter 4. This work on aggregating MAB algorithms was motivated for
the OSA case of Cognitive Radio, where many previous research works only considered the
UCB1 algorithm without really justifying this choice. This contribution was presented at the
IEEE WCNC conference in Barcelona, Spain, in April 2018.

1.3.2 Our model of IoT network and decentralized MAB, Part II

In the second Part II of this thesis, we start by proposing and studying different models of IoT
networks, with simulations and a real-world proof-of-concept, and then we study interesting
questions on two mathematical models of MAB that arise from our first contribution.

Chapter 5. We study two models of IoT networks in Chapter 5. The first model considers
IoT devices that simply have data to send to a base station, at a regular frequency (but random
times), and that use the acknowledgement as feedback, in order to optimize their uplink
communications, by accessing more the best channels (i.e., the less occupied by the surrounding
traffic). The goal of this first model of applying decentralized RL on the device side is to
increase the Quality of Service (QoS) of the application of such IoT network, by reducing
the rate of failed transmission. The base station will thus receive more up-link packets from
the devices it serves, if they can successfully learn an efficient spectrum access scheme. The
second model we propose then considers packet retransmissions, and while the two concepts
are similar, the application of an efficient decentralized learning algorithm now results in
both an increased battery life for each of the devices, as well as an increase QoS for the entire
network.

We present in Section 5.2 a first model of an IoT network, that is made of thousands
(or more) of end-devices and a single base station. We consider a time-frequency slotted
ALOHA-based protocol, by assuming a perfect synchronization between all devices and the
base station. Our IoT network model contains two types of devices: static devices that use only
one channel (fixed in time), and dynamic devices that can choose the channel for each of their
transmissions. Static devices form an interfering traffic, which could be generated by devices
using other standards as well. Dynamic devices can use RL, and especially MAB algorithms,
to optimize their sequential choices of channels, in order to maximize the number of successful
up-link transmissions, thanks to the success/failure feedback that is the presence/absence
of acknowledgement (Ack) received from the base station. We first detail three base-lines,
a naive approach and two centralized “oracle” approaches, that are used to evaluate the
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performance of the considered MAB algorithms (UCB and TS), in terms of the centralized
system-wide successful communications rate. We show that our approach is interesting, as
these low-cost MAB algorithms have near-optimal performance, even when the proportion
of end-devices increases and the interfering traffic from the other devices becomes more
and more fluctuating and unpredictable. Even without changing anything on the level of
the considered IoT standard, our proposal is just an add-on capability, that can be set-up on
each device, on a unit-per-unit basis. This model constitutes the first article written during
this thesis, and initiated a collaboration with R. Bonnefoi, another PhD student of our team
SCEE. We presented this first work at the EAI CROWNCOM conference in Lisboa, Portugal in
September 2017, and obtained the “best paper award” [BBM+17].

Verifying the potential gain of performance brought by these MAB algorithms in numerical
simulations was a first step, but it is satisfactory to also verify our results on a real-world
proof-of-concept (PoC). In Section 5.2, we detail what we believe to be the first PoC of using
decentralized MAB learning in a simplified “IoT” like wireless network. We were able to
implement a network with a base station which receives incoming messages from different
end-devices and replies with acknowledgements, that are used as feedback by the devices
and let them learn an efficient spectrum access scheme. This is again the result of a fruitful
collaboration with R. Bonnefoi, and this work was demonstrated during three days at the
IEEE ICT conference in Saint-Malo, France, in June 2018 [BBM18], and later presented at the
IEEE WCNC conference in Marrakech, Morocco, in April 2019 [BBM19].

We then consider an extension of our first model, following the idea of packet retrans-
missions, that is at the root of the famous ALOHA protocol [Abr70, Rob75]. The idea is that
when a device sends an uplink message but does not receive its Ack (before a certain delay),
instead of going back to sleep mode and waiting for its next activation (e.g., following the
Bernoulli random activation pattern, or waiting for the application to need to send some data),
the device will try again to send the same packet, a few times (e.g., m ≤ 10 times), after some
small random waiting times. We propose to also use decision making, that is to also use RL
and MAB algorithms, for this other model, at the second layer of the MAC protocol, in order
to learn the best channels to use for retransmitting the packets that suffered from a collision
at their first transmissions. We present the model in Section 5.4, along with mathematical
justifications of the potential of using this second-stage MAB learning for retransmissions, and
numerical illustrations. This shows that using learning in a decentralized way on the devices’
side is again a powerful idea under this model with retransmissions, and we show as well
that the simplest of the different heuristics we compared is efficient, and allows the devices to
learn to behave almost optimally. This third contribution concluded our collaboration with
R. Bonnefoi, and was presented at the 1st MoTION workshop, during the IEEE WCNC 2019
conference [BBMVM19].
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Chapter 6. In the two models presented above, the core concept is to let every dynamic
device of a IoT network runs a fully decentralized learning algorithm, each running on its
own (random) activation times, in order to optimize the complete system. It means that each
of them target its own local objective, which is to maximize its cumulated reward (in a selfish
way). It is well known in the game theory literature that playing selfishly can be disastrous for
the centralized performance measure: for instance, one can think of the prisoner dilemma or
other popular “dilemma” games. So it was quite surprising that our numerical simulations,
as well as the realistic PoC, showed that decentralized selfish MAB learning lead to efficient
coordination between devices, despite the fact that these IoT objects cannot communicate
directly with each other and receive only a collision feedback from the base station they are
associated to.

We first tried to analyze the performance of this decentralized algorithm, that we refer to as
Selfish, in the model of Section 5.2, but due to the random number of active devices at each time
step (i.e., as soon as the probability p of activation is p < 1), we were unable to develop a clean
analysis. That is why in Chapter 6, we relax the hypothesis of having M ≫ K (or even simply
M > K) devices in a network with K orthogonal wireless channel, equivalent to having p < 1,
and we consider the case of devices communicating at every time step (i.e., p = 1), and so we
restrict to only up-to M ≤ K devices. The model we studied comes with different variants,
depending on the feedback level, and covers both the OSA case (i.e., with sensing information)
or the IoT case (i.e., without sensing feedback). The goal was to understand the heuristic of
Chapter 5, Selfish, in the simpler framework of multi-player MAB, which has been studied
before for the case of OSA, as studied for instance by [LZ10, AMT10, AMTA11]. The OSA
case covered by our model is actually slightly different as the one considered by [JEMP10]
and other previous works, as our model requires that an Ack is sent back by the base station if
the transmission was successful, even in the case where sensing information is available. It
differs from the previously studied models of applying MAB for OSA, as they only considered
synchronized devices, one SU and PU, and thus if the sensing indicates that one channel
is free at one time slot, the up-link message sent by the SU device is sure to be successfully
received by the base station (in the ideal model), so there is no risk of collision.

On the first hand, in the OSA setting, we failed to obtain positive result for the Selfish
policy, as we proved that in some limited settings (e.g., K = 3 and M = 2), Selfish-UCB can
suffer from linear regret with a small probability, and thus suffers from linear mean regret.
This result was later confirmed and analyzed by [BP18]. On the other hand, we were able to
propose new algorithms for this multi-player bandit problem with sensing information, and
we analyzed our proposal MCTopM-kl-UCB, to show that it achieves a finite-time logarithmic
regret upper bound, improving over previous state-of-the-art results. Our algorithm also
achieves a logarithmic number of collisions and arm switches, and allows a fixed group of M

devices to efficiently learn to use the M best channels orthogonally for almost all their up-link
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communications. This strong theoretical result heavily depends on the presence of sensing
feedback, and as such our results are not (yet) applicable to the IoT model without sensing.

Our work on multi-player bandit was presented at the ALT conference in Lanzarote, Spain,
in April 2019 [BK18a], and it relaunched the research on this model, as a few independent
teams started to work on different questions shortly after its publication. Since last year, it
was proven that the “no sensing” case (i.e., IoT) is essentially not harder that the “sensing”
(i.e., OSA) case, from a theoretical point-of-view, by E. Boursier and V. Perchet [BP18]. Even if
their approach is costly empirically, the result is surprising and very interesting: they showed
that even under the strong hypothesis of no direct communication between players and no
central coordination, the players can use the collision feedback (i.e., receiving or not an Ack)
as an indirect way to communicate bits of information with each other. This idea requires
that devices coordinate and split the time steps between “listening” and “talking” phases,
and the authors denote it the “communication trick”. As they showed, after a long enough
initialization period, the M players have elected a “master” player and M − 1 “followers”
players (with high probability), and thanks to this communication trick, the problem can boil
down to a centralized multiple-play (MP) MAB, which can be solved efficiently with the MP
generalization of kl-UCB [LKC16] or Thompson sampling [KHN15].

We discuss more in details this interesting follow-up of our article [BP18], along with other
recent research works such as [LM18], in Section 6.7. Moreover, the case of different means
of arms for the different players was studied in [BL18, KM19], and this generalization of our
model is very interested for CR applications, as the mean of an arm is the average quality (e.g.,
availability) of a radio channel, and as such it has no reason to be uniform among end-devices
(i.e., players). Finally the adversarial case of multi-player bandit has started to be studied,
independently by [BV19] and [ALK19].

As explained above, the model of Chapter 5 was found intractable to analyze, mainly
because we consider an IoT network with many end-devices, all following random activation
patterns. The difficulty does not reside in the fact that we are trying to analyze MAB algorithms,
designed to tackle stationary problems, on a non-stationary problem, but rather that we
are analyzing algorithms which are all playing in different (random) subsets of the global
synchronized time. Generalizing to different activation probabilities would lead to a model
even harder to analyze, and enforcing at most M ≤ K devices is not really realistic for IoT
networks, but leads to the model of Chapter 6.

On the first hand, if the activation pattern of all devices could be fixed, for instance based
on a centralized affectation of the devices to different time slots, then the model of multi-player
bandit from Chapter 6 can be used to let all groups of M ≤ K devices learn an optimal
orthogonal affectation in the K channels (e.g., groups can be the set of devices that all emit
at the same time). However, even if we continue to assume a synchronized time in all the
rest of the thesis, it is hard to argue that this hypothesis of a centralized time schedule for
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the end-devices can be realistic, because we study the case of decentralized learning for OSA
and IoT precisely in order to avoid any central control of the devices by the base station, as
we explained above. On the other hand, another way to relax the non-stationary hypothesis
is to take the point-of-view of one device, like in the OSA case mentioned above, where the
focus is on one SU surrounded by many PU having stationary behaviors. If we focus on one
IoT device, its environment (i.e., the surrounding devices) is non-stationary, meaning that its
average properties can fluctuate with time, but we could assume a certain structure on this
non-stationarity. For instance, enforcing stationarity on some time intervals leads to the last
contribution and chapter of this thesis.

Chapter 7. In order to also understand precisely how MAB algorithms behave under non-
stationary environment, we studied the literature on adversarial and on non-stationary MAB,
for both cases of slowly-varying and abruptly-changing environments. We begin our last
Chapter 7 by reviewing the existing works, and we chose to focus on the piece-wise stationary
problem, meaning that the underlying bandit problem is stationary on some intervals, sepa-
rated by change-points located at unknown times. Assuming the environment to be piece-wise
stationary indeed makes sense for applications to wireless networks, where a change-point can
for instance correspond to the arrival of a new group of end-devices in the network. Examples
of such situation can be a new company arriving on the market in one city (e.g., the Linky
counters being set-up nowadays in France), or the neighbor farmer installing sensors on his
own herd of cows, etc. Two main families of algorithms have been proposed for the piece-wise
stationary problem, that usually consist in combining an efficient policy designed for the
stationary MAB problem (e.g., Thompson Sampling or kl-UCB) and a way to adapt to changes
in the arms distributions. Passively adaptive policies use a window of a fixed or evolving size
[GM11], or a discount factor, in order to forget about the past observations [KS06, GGCA11],
while actively adaptive policies use a statistical test to detect the change-points [MS13, AF15].
As the recent literature showed that the later approach is usually more competitive, and
usually obtains better results from both empirical and theoretical aspects, we chose to develop
our own actively adaptive algorithm.

Following two recent previous works [LLS18, CZKX19], we combine an efficient index
policy (kl-UCB) and an efficient change-point detection test, under the assumption of bounded
rewards. We build on very recent results on the Generalized Likelihood Ratio test (GLRT)
for Gaussian and sub-Gaussian variables [Mai19], and we instead focus on bounded rewards
and Bernoulli distributions. Bounded rewards are indeed usually more appropriate for
Cognitive Radio applications. Using the fact that bounded variables in [0, 1] are not only 1/4
sub-Gaussian but also sub-Bernoulli, we prove the first finite-time guarantees for the GLRT
for bounded variables. We first show finite-time bounds on both the false alarm probability
of our test, and its detection delay, under mild assumption on the lengths of the stationary
sequences. Our algorithm, denoted GLR-klUCB, is then presented in two variants, whether
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change-points are local (i.e., only one arm mean changes at each change-point) or global (i.e.,
possibly all the arm means change at a time). We prove that by combining the asymptotically
optimal policy kl-UCB, designed for stationary problems, and our new analysis of the GLRT
for bounded rewards, we obtain state-of-the-art guarantees on the regret of our proposed
algorithm. Like our competitors, we make the some hypothesis on the length of the stationary
intervals, and the best regret upper-bound is obtained when the algorithm knows before-hand
the horizon and the number of change-points, but our algorithm does not need to know
any other knowledge of the problem difficulty to be tuned optimally. The performance of
GLR-klUCB is also illustrated on numerical experiments on synthetic data, where it is shown
to outperforms all the passively adaptive policies as well as the previous actively adaptive
policies. This last chapter is based on our last work, since October 2018, and it first lead to
a publication at the GRETSI conference in Lille, France, in August 2019 [BK19a]. Our work
also lead to the long version article [BK19b], that will be partially rewritten and completed
with more recent results and submitted soon to a journal (probably the Journal of Machine
Learning Research) in fall 2019.

Conclusion. We conclude this thesis in Chapter 8, to give some perspectives and directions
about possible future works. Most of the contributions that we present in this thesis call
for more developments, on both directions of providing more mathematical analysis and
implementing new proof-of-concepts, using real wireless hardware and realistic Internet of
Things networks.

This manuscript ends with the appendixes, first with a short overview of another con-
tribution, in Appendix A we discuss about our work on doubling-trick, in order to remove
the need for an algorithm to know the horizon of the bandit game before starting to play it.
The rest of the appendix contains a list of abbreviations and notations, then lists of figures,
algorithms, code samples and tables, and finally the list of the bibliographical references.
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1.3.3 Summary of the contributions

To summarize the main contributions of this thesis, we can list the following points:

• We developed SMPyBandits, the most exhaustive open-source simulation library for
MAB problems, that we published on-line under an open-source licence [Bes19, Bes18].
We present it in details in Chapter 3.

• We present in Chapter 4 an algorithm called Aggregator for aggregation of algorithms
as an online solution to the algorithm selection problem, and numerical simulations to
illustrate that it achieves state-of-the-art empirical performances [BKM18].

• We propose different models for IoT networks, in Chapter 5, where end-devices with
cognitive radio capabilities can implement MAB algorithms on their side, to automati-
cally increase their battery life and allow more devices to use the same network while
maintaining a high Quality of Service [BBM+17, BBM19, BBMVM19, MB19].

• We implemented a proof-of-concept of the aforementioned model [BBM18], and we
present it in details in Section 5.3. We made a video showcasing our demonstration,
hosted at youtu.be/HospLNQhcMk.

• We present the multi-players bandit model, for which we introduce three variants, in
Chapter 6. For the case with sensing information, we propose two new algorithms,
and we give an analysis for our algorithm MCTopM to show it is order-optimal, as
well as extensive numerical experiments to demonstrate its excellent performance in
comparison with the rest of the literature. Our work [BK18a] also gave a new impulse
on research on multi-players bandits, as some recent research works heavily built up on
our results.

• We also present the piece-wise stationary MAB model, in Chapter 7, and a detailed
literature review of the research on non-stationary MAB [BK19b, BK19a]. Following two
recent works, we propose a new actively adaptive algorithm for the piece-wise stationary
problem, GLR-klUCB, that achieves state-of-the-art performance.

• The last contribution of this thesis is a literature review of the possible use cases of the
sequentially doubling horizon trick technique for MAB problems, and a unified and
more generic analysis of two families of doubling tricks. This lead to the article [BK18b],
which is quickly presented in Appendix A.
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1.4 Organization of the thesis

The reading order of the manuscript can be any top-down path between the Introduction in
the current Chapter 1, and the Conclusion in the last Chapter 8. As the graph in Figure 1.4
shows, the thesis is organized in two parts.

Chapter 1
Introduction

Chapter 2
Stochastic and Stationary

Multi-Armed Bandit models

Chapter 3
SMPyBandits: simulation

library for MAB

Chapter 4
Online selection

of the best algorithm

Chapter 5
Two MAB models
for IoT networks

Chapter 6
Multi-players

Multi-Armed Bandits

Chapter 7
Non-stationary

Multi-Armed Bandits

Chapter 8
General Conclusion

Appendix

Figure 1.4 – A reading map of the thesis. Any top-down path containing Chapter 1, Chapter 2, at least
one of the three Chapters 5, 6 and 7, and the Conclusion is a self contained way to read this thesis.

First, in Part I (second line), we start by the next Chapter 2, required for the rest of the
document, as we introduce the MAB models and the notations used in this thesis. Conversely,
even if Chapters 2, 6 and 7 use numerical simulations based on our simulation library SMPy-
Bandits, the Chapter 3 where we present it is not required to understand them. We conclude
this part with Chapter 4, which is also not mandatory for the rest of this thesis, and which
details one of the first contributions of this thesis, a new algorithm for online MAB algorithms
selection.

Then, the second Part II contain three chapters (third line), that are included in both the
logical and chronological orders, but can be read almost independently. Chapter 5 starts by
presenting different models of IoT networks where we show that MAB algorithms can be
used with success. Our two models are interesting and close to reality, but they appeared to
be too general to propose a mathematical analysis of the good empirical performance of the
considered solutions. For this reason, we weaken the models for the rest of the document,
and both Chapters 6 and 7 studies an intermediate model, lying between the stationary
single-player MAB model from Chapter 2 and the IoT networks models from Chapter 5.
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1.5 List of publications

We conclude this chapter with a list of works published during this PhD. All the following
works are published entirely and freely, on the HAL platform (see the HAL.Archives-Ouvertes.fr
website). The complete list can be found on CV.Archives-Ouvertes.fr/lilian-besson. The
following publications are ordered historically, from the most recent to the oldest.

Publications in international conferences with proceedings

• Decentralized Spectrum Learning for IoT Wireless Networks Collision Mitigation, by Christophe
Moy & Lilian Besson. 1st International ISIoT workshop, at Conference on Distributed
Computing in Sensor Systems, Santorini, Greece, May 2019. See Section 5.3. [MB19]

↪→ Note that we are already working on an extended version that will be submitted to a journal
on Machine Learning for Wireless Communications, in July 2019.

• Upper-Confidence Bound for Channel Selection in LPWA Networks with Retransmissions, by
Rémi Bonnefoi, Lilian Besson, J. Manco-Vasquez & Christophe Moy. 1st International
MOTIoN workshop, at IEEE WCNC, Marrakech, Morocco, April 2019. See Section 5.4.
[BBMVM19]

• GNU Radio Implementation of MALIN: “Multi-Armed bandits Learning for Internet-of-things
Networks”, by Lilian Besson, Rémi Bonnefoi & Christophe Moy. Wireless Communication
and Networks Conference, Marrakech, Morocco, April 2019, See Section 5.3. [BBM19]

• Multi-Player Bandits Revisited, by Lilian Besson & Emilie Kaufmann. Algorithmic Learning
Theory, Lanzarote, Spain, April 2018, See Chapter 6. [BK18a]

• Aggregation of Multi-Armed Bandits learning algorithms for Opportunistic Spectrum Access,
by Lilian Besson, Emilie Kaufmann & Christophe Moy. Wireless Communication and
Networks Conference, Barcelona, Spain, April 2018, See Chapter 4. [BKM18]

• Multi-Armed Bandit Learning in IoT Networks and non-stationary settings, by Rémi Bonnefoi,
Lilian Besson, Christophe Moy, Emilie Kaufmann & J. Palicot. Conference on Cognitive
Radio Oriented Wireless Networks, Lisboa, Portugal, Septembre 2017, Best Paper Award.
See Section 5.2. [BBM+17]

Demonstration in international conferences

• MALIN: “Multi-Arm bandit Learning for Iot Networks” with GRC: A TestBed Implementation
and Demonstration that Learning Helps, by Lilian Besson, Rémi Bonnefoi, Christophe
Moy. Demonstration presented at International Conference on Communication, Saint-Malo,
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France in June 2018. See YouTu.be/HospLNQhcMk for a 6-minutes presentation video.
See Section 5.3. [BBM18]

French language conference with proceedings

• Analyse non asymptotique d’un test séquentiel de détection de ruptures et application aux bandits
non stationnaires (in French), by Lilian Besson & Emilie Kaufmann, GRETSI 2019, August
2019, See Chapter 7. [BK19a]

In progress works waiting for a new submission

• The Generalized Likelihood Ratio Test meets klUCB: an Improved Algorithm for Piece-Wise
Non-Stationary Bandits, by Lilian Besson & Emilie Kaufmann, February 2019.
See Chapter 7. Preprint at HAL.Inria.fr/hal-02006471. [BK19b]

↪→ Note that we are already working on an extended version that will be submitted to a journal
on Machine Learning and Statistical Learning, in autumn 2019.

• SMPyBandits: an Open-Source Research Framework for Single and Multi-Players Multi-Arms
Bandits (MAB) Algorithms in Python, by Lilian Besson, active development between Oc-
tober 2016 and March 2019, HAL.Inria.fr/hal-01840022. It currently consists in about
40000 lines of code, hosted on GitHub.com/SMPyBandits, and a complete documentation
on SMPyBandits.rtfd.io and SMPyBandits.GitHub.io. See Chapter 3. [Bes19, Bes18]

• What Doubling-Trick Can and Can’t Do for Multi-Armed Bandits, by Lilian Besson & Emilie
Kaufmann, September 2018.
See Appendix A. Preprint at HAL.Inria.fr/hal-01736357. [BK18b]

Copyright notice. This document and the additional resources required to compile it (in-
cluding LATEX code, Python snippets, images etc) are publicly published, under the terms of
the open-source MIT License, online at GitHub.com/Naereen/phd-thesis/.

Copyright 2016-2019, © Lilian Besson.
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Introduction to and Simulations of
Multi-Armed Bandits Models
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Chapter 2

The Stochastic Multi-Armed Bandits
Model

In this chapter, we present the common base of all the more sophisticated models studied in
this thesis: the stochastic multi-armed bandit (MAB) model, restricting to the single-player
and stationary stochastic case. We motivate this model and discuss its application to and
beyond cognitive radio, and we review existing MAB algorithms. Some of which are crucially
used in the rest of this thesis, like UCB, kl-UCB and Thompson sampling. We focus on
decision-making models with a finite number of resources, called arms, and on stochastic
models, where an arm is associated with a one-dimensional distribution. We formalize this
MAB model, then we quote some of its important applications. We define the notion of regret
of an algorithm, and quote important results from the literature. A short review of the most
important families of MAB algorithms is then given.

Contents
2.1 The stochastic Multi-Armed Bandit model . . . . . . . . . . . . . . . . . . . 26

2.2 Applications of stochastic MAB . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Measuring the performance of a MAB algorithm . . . . . . . . . . . . . . . 34

2.4 Review of stochastic MAB algorithms . . . . . . . . . . . . . . . . . . . . . 40

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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2.1 The stochastic Multi-Armed Bandit model

Multi-Armed Bandits (MAB) models were introduced by Thompson as early as in 1933 [Tho33],
and later studied from the 1950s by Robbins [Rob52] and others. This family of models was
first proposed for clinical trials, and later applied to a wide range of different problems. Their
name refers to one-armed bandits found in casinos, as shown in Figure 2.2 below. We now
formally introduce the model.

A MAB refers to a decision-making game, where a player has to sequentially select one
action in a usually finite set of actions, and only receives a (random) feedback about the
selected action, also called a reward. We always consider K ∈ N, K ≥ 2 arms, and discrete
times t ∈ N∗. We denote [K] the set {1, . . . , K}. Each arm k ∈ [K] is associated with a
stream of rewards (Yk,t)t∈N∗ , and when the player decides at time t to play (or pull) the arm
A(t) ∈ [K], she receives a reward r(t) .= YA(t),t. She keeps playing an arm and observing a
reward iteratively, and so on for a finite number of steps t (or rounds), from t = 1 until t = T

for an horizon T . A commonly studied goal for the player is to maximize its sum of received
rewards,

∑T
t=1 r(t) (or its mean in stochastic and stationary models).

The difficulty of this decision-making game comes from balancing the trade-off between
exploration, because the player has to observe as much as possible all the arms to get more
knowledge about the distributions of their rewards, and exploitation, because she also has
to select as much as possible the best arm. The MAB model is a famous example of a rein-
forcement learning model, where the decision-making process has to adapt to an unknown
environment using noisy observations and a discrete time, alternating between decisions and
observations. We illustrate this cycle in Figure 2.1 below. For more details on reinforcement
learning, in particular about more generic models, we refer to the famous book [SB18].

Player MAB problem

Chooses a discrete action k = A(t) ∈ {1, . . . , K}

Observes a real-valued reward r(t) = Yk,t ∈ R

Figure 2.1 – Reinforcement learning cycle in a MAB model, for time steps t = 1, . . . , T .

This quantity
∑T

t=1 r(t) can indeed be random, and it usually depends on two aspects.
First, the rewards may depend on the randomness of the environment, i.e., the unknown
and unpredictable values r(t) = YA(t),t. Then this quantity also depends on the player’s
decision-making policy, i.e., the choices A(t), that are based on (all) the past observations,
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i.e., A(1), YA(1),1, . . . , A(t− 1), YA(t−1),t−1, and possibly on an external source of randomness.
Without loss of generality, it can be given by a sequence U0, U1, . . . of i.i.d. random values,
uniformly distributed on [0, 1], and that has to be independent from the samples Yk,t. External
randomness is used in most MAB algorithms, e.g., to break ties uniformly in an index policy.

About notations. We use in this thesis the usual notations from the MAB literature, and a
summary is included in the Nomenclature, included in the Appendix in Part III (Page 274).

Main references for the curious reader. For more details and a more formal introduction
to multi-armed bandits, we suggest to the interested reader to work on a very recent text-book
by Slivkins [Sli19]. Another excellent but reasonably short survey is the book by Bubeck and
Cesa-Bianchi [BCB12], while the more recent book by Lattimore and Szepesvári [LS19] is the
most complete resource about bandit algorithms. Finally, we recommend [BR19] for a short
but good survey on applications of MAB.

2.1.1 Finite arms and stochastic rewards

In all this thesis, we focus on the model with finite arms, that is A(t) ∈ {1, . . . , K} for a fixed
and known number of arms K ∈ N, K ≥ 2. We focus on the stochastic MAB, in which the
reward stream are drawn from some (unknown) distributions. We also restrict to stochastic
rewards, that is we associate a real-valued distribution to each arm, denoted νk for arm k ∈ [K].
Rewards are stationary, meaning that (Yk,t)t∈N∗ is independent and identically distributed
(i.i.d.), and Yk,t ∼ νk for any t ≥ 1. We only consider binary or real-valued rewards, i.e.,
Yk,t ∈ R.

The most common objective for the player is to maximize its expected rewardsE[
∑T

t=1 r(t)] =∑T
t=1 E[YA(t),t]. The expectation E[•] is taken on the rewards (Yk,t)k,t, as well as on the external

random variables (Us)s (i.e., on the algorithm’s decisions). Other commonly studied objectives
include best-arm identification (BAI) [ABM10].

An interactive demo to discover the MAB problem (for the novice). If you are discovering
here the concept of bandits, I would like to recommend you to go online and play a few times
with an interactive demonstration. On this demo, you will be facing a MAB problem with
K = 5 arms, and you have T = 100 decisions to make. The demo is hosted on my website, at
perso.crans.org/besson/phd/MAB_interactive_demo/, and it is illustrated below.

The webpage looks like Figure 2.2 below. The arms follow Bernoulli distributions, i.e.,
νk = B(µk), of unknown means µk ∈ [0, 1], and your goal in this interactive demonstration is
to obtain the highest possible cumulated reward in T = 100 steps, i.e., to maximize

∑100
t=1 r(t).

Your decisions are made sequentially: at time t, you pick one of the arms, A(t) ∈ {1, 2, 3, 4, 5},
then the demo shows the random reward obtained from this (virtual) casino machine (in
yellow), i.e., the binary value r(t) ∈ {0, 1}, that is sampled i.i.d. from νk. The UI of the demo
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Figure 2.2 – Screenshot of the demonstration available online on my website, for a current step of
t = 24.

also shows the current value of t (“total plays”) and
∑t

s=1 r(s) the “total reward”. For each
arm, we show the sum of rewards obtained from that arm, i.e., Xk(t) .=

∑t
s=1 r(s)1(A(s) = k),

in the “Rewards” line, and the number of pulls of that arm, i.e., Nk(t) .=
∑t

s=1 1(A(s) = k)
in the “Pulls” line. The demo also shows the estimated probability of each arm, that is
µ̂k(t) .= Xk(t)/Nk(t) (when Nk(t) > 0), in the “Estimated Probs” line.

In the first Figure 2.2, the current state of the game is shown at time t = 24. At this step, the
player has collected a sum of rewards of 14, by observing X(t) = [6, 2, 2, 2, 2] rewards of value
1 in the K = 5 different arms. Arms were sampled N(t) = [8, 4, 4, 4, 4] times, meaning that
the value 0 was seen respectively [2, 2, 2, 2, 2] times, and currently arm 1 appears to be the best
one. The true means of the arms are µ = [0.6, 0.2, 0.55, 0.7, 0.5], and (much) more samples are
needed before the player can accurately identify arm 4 as the best arm. In the second Figure 2.3
below, we display the result of an example of run, when the player was following the UCB1

algorithm from [ACBF02] (we present it below in Section 2.4.2). After T = 100 steps, the player
obtained a cumulated reward of 56, by playing mostly arms 4, 3, 5, 1, 0 (in decreasing order
of number of plays). The empirical means µ̂k(T ) correctly identify the best arm (arm 4), but
do not correctly rank the arms as arms 1 and 3 obtained means of µ̂1(T ) = 0.5 < µ̂3(T ) = 0.6
but the true means are µ3 = 0.55 < µ1 = 0.6. Other examples of such results, for different
algorithms, and T = 100 or T = 10000, are given in Section 2.4.5.
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Figure 2.3 – Screenshot of the demonstration, at the end of the game after T = 100 steps, where the
player suffers from an empirical regret of RUCB1

T = µ∗T − 56 = 0.7T − 56 = 14 after following the
UCB1 algorithm. You can try it on perso.crans.org/besson/phd/MAB_interactive_demo/

Decisions can (and should) depend on the past observations. A bandit algorithm A is also
referred to as a strategy or a policy. The algorithm A selects an arm A(t) at time t, possibly
by using the past observations and the past external randomness. As shown below, being
oblivious to the past yields very poor performance (cf. the pure exploration policy in Sec-
tion 2.4.1), so efficient policies indeed depend on the successive feedbacks. More formally, an
algorithm can be defined as a sequence of measurable functions (At)t≥1, where At maps the
past observations Ot

.= (U0, YA(1),1, U1, . . . , YA(t−1),t−1, Ut−1) to an arm At(Ot)
.= A(t) ∈ [K]

(we remind that we denote r(s) = YA(s),s the s-th reward). The initial information is reduced to
O1 = (U0), and the first decision is A(1) = A1(O1). Usually, most algorithms starts by selecting
A(1) = 1, . . . , A(K) = K (or a permutation of the K arms) in the K first steps t = 1, . . . , K

(e.g., Algorithm 2.2). An algorithm is said to be deterministic if it does not depend on the
external randomness U0, U1, . . . , but in this thesis we only use non-deterministic algorithms
(in particular, index policies need Ut to break ties in the arg max, see Algorithm 2.2 below).

2.1.2 Common assumptions on the reward distributions

In the example above, we consider Bernoulli distributions, but other real-valued distributions
have been studied in the literature. From now on and until the last chapter of this thesis, we
only consider stochastic rewards. The piece-wise stationary model is studied in Chapter 7.
We also focus only on real-valued rewards, meaning that Yk,t ∈ R for all arm k and time t.
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An important hypothesis is whether rewards are bounded or not, and whether the player
knows if they are bounded or not before starting the bandit game. Moreover, if rewards are
known to be bounded, let say in an interval [a, b], another important hypothesis is whether
the player knows the values of a and b or not. Intuitively, the bandit game is easier if the
player knows the support of the distributions, and we restrict to this case in all the thesis, i.e.,
a, b are always supposed to be known. Most of the algorithms proposed in the literature follow
this hypothesis as well. The mostly used infinitely supported distributions are Gaussian,
exponential and Poisson, while in the literature, the Bernoulli distribution is the most common
case of finitely supported distributions. Continuous-valued distributions with finite support
also included truncated versions of infinitely supported distributions, in particular truncated
Gaussian are used for numerical experiments in lots of research articles.

The normalization trick. If the player knows that reward are bounded in an interval [a, b],
and if she knows a and b (for a < b), then with no loss of generality we can restrict to the interval
[0, 1], as if r ∈ [a, b], the player can instead consider the normalized reward r′ = r−a

b−a that lies
in [0, 1]. Note that this “normalization trick” is implemented for any policy in our library
SMPyBandits, with the lower and amplitude optional arguments, respectively representing a

the lower-bound on rewards and b− a the length of the interval of possible values of rewards.

One-dimensional exponential family. In the literature, parametric assumptions on the
rewards are sometimes considered, typically the assumption that rewards belong to a real-
valued distribution lying in an exponential families. One-dimensional exponential families
include Bernoulli and Poisson distributions, as well as Gaussian distributions with a fixed
variance. Our main interest is Bernoulli distributions, but we prefer to present the more
general notations of exponential families in one dimension.

Given a measure λ, that is usually the natural Lebesgue measure on R, an exponential
family of probability distributions is defined as the distributions whose density (relative to
λ) can be written as Pη(x|λ) = h(x) exp (ηx−A(η)), for a parameter vector η (the canonical
parameter), and a function h. The cumulant function A(η) is entirely determined by η and h,
as A(η) = ln (

∫
h(x) exp(ηx)λ(dx)). The natural parameter space is the set of values of η such

that this integral A(η) is finite, and usually the literature focusses on regular and minimal
exponential families (when the natural parameter space is an non-empty open set in R).

We mention two important results on exponential families:

1. A distribution in such family is entirely characterized by its parameter η. And the mapping
η 7→ Eη[X] is one-to-one, ifEη is the expectation under the probabilistic model Pη. That is
why one-dimensional distributions are entirely characterized by their mean, µ = Eη[X].
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2.1 The stochastic Multi-Armed Bandit model

2. A second important result is a simplified form for the Kullback-Leibler divergence [KL51],
for two distributions lying in the same exponential family. The KL divergence is also
called the relative entropy, and it is a measure of how one probability distribution is
different from a second, reference probability distribution.

Definition 2.1. The Kullback-Leibler divergence between distributions with densities d1 and
d2, wrt to λ, is defined as

KL (d1, d2) .=
∫

d1 ln
(

d2
d1

)
λ(dx) = Ed1

[
ln
(

d2
d1

)]
∈ R ∪ {±∞}. (2.1)

Following this Definition 2.1 for two distributions d1 = P(x|η1) and d2 = P(x|η2), we can
use a shorter notation and write KL(η1, η2) .= KL(P(x|η1),P(x|η2)), which can be simplified to
use only the two parameters η1 and η2 of d1 and d2, and µ1 = Eη1 [X] the mean of distribution
d1, KL (η1, η2) = Ed1 [(η1 − η2)X] − A(η1) + A(η2) = (η1 − η2)µ1 − A(η1) + A(η2). Without
diving more in the details of exponential families, it is interesting to illustrate this definition
and the notations with two important examples:

• Bernoulli distributions can be seen as an exponential family with h(x) = 1, and for a
Bernoulli distribution of mean µ ∈ [0, 1], denoted B(µ), the parameter is η = µ/(1− µ),
giving A(η) = ln(1 + eη) (with the limit behavior η = +∞ if µ = 0).

The KL divergence between B(x) and B(y), of parameters η, η′ is given by kl(x, y) .=
KLB(η, η′) = x ln(x/y)+(1−x) ln((1−x)/(1−y)), and it is also called the relative binary
entropy. It satisfies kl(x, y) ≥ d1/4(x, y) (Pinsker’s inequality).

• Gaussian distributions of a known variance are a one-dimensional exponential family,
and in this thesis we do not consider Gaussian with an unknown variance. For a variance
of σ2, the family uses h(x) = 1/

√
2πσ2 exp(−x2/(2σ2)), and for a Gaussian distribution

with mean µ ∈ R, denotedN (µ, σ2), the parameter is η = µ/σ2, giving A(η) = µ2/(2σ2).

The KL divergence between N (x, σ2) and N (x, σ2), of parameters η, η′ is given by
dσ2(x, y) .= KLN ,σ2(η, η′) = (x− y)2/(2σ2) (see Chapter 8 of [Jor10]).

Hypotheses in this thesis. In the rest of this thesis, we only consider bounded rewards in
the mathematical developments, and we mostly focus on Bernoulli distributions, because
they are usually the most relevant choice for the considered applications. In Chapter 5, we only
study models with binary rewards. Then, when we study multi-players bandits in Chapter 6,
we explain that restricting to the Bernoulli case is interesting and not restrictive, as it is actually
the hardest case (since continuous distributions has a null mass on Yk,t = 0, they yield a
much simpler problem as the sensing/no sensing distinction no longer makes sense), but this
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work can be extended to any one-dimensional exponential families. Finally, in Chapter 7 we
analyze our proposed algorithm for bounded distributions, without restricting to Bernoulli
distributions, but we use the fact that bounded distributions on [0, 1] are sub-Bernoulli, and
we use the Bernoulli Kullback-Leibler divergence kl in our analysis.

Sub-Gaussian and sub-Bernoulli distributions. A lot of research works considers rewards
distributions that are not Gaussian but sub-Gaussian, meaning distributions whose moment
generating function is dominated by that of a Gaussian distribution with the same mean
(and a known variance). For instance, bounded distributions on [0, 1] are known to be 1/4
sub-Gaussian, and this fact is used for instance in [Mai19]. In Chapter 7, we instead consider
sub-Bernoulli distributions, formally introduced in Definition 7.1. Such hypothesis is also
proposed for other families of distributions, for instance the recent article [KT19] analyses
their Follow-the-Perturbed-Leader algorithm for perturbations following any sub-Weibull
distribution (sub-Weibull distributions generalize both sub-Gaussian and sub-Exponential
distributions).

About Markov models. Finally, we note that Markov bandit models have also been consid-
ered for Cognitive Radio applications [LZ08]. They are not studied in this thesis, even though
we did implemented them in SMPyBandits, They were introduced in the 1980s, by Whittle
in [Whi88] and Anantharam and others in [AVW87b]. A Markov MAB model maps an arm
to a Markov chain [Nor98], instead of a distribution, and thus they are no longer stochastic
nor stationary. Such Markov models come in two flavors: rested or restless. For K arms, each
Markov chain has a finite number of states s, each corresponding to a (constant) reward that
the player obtains if she selects this arm while its Markov chain is in state s. Rested Markov
models means that only the state of the selected arm’s Markov chain can change, following
its Markov transition matrix. Restless models remove this hypothesis, making them harder
to track and solve. Such models were less studied than stationary or adversarial models,
but some interesting works applied Markov models or CR applications in the last 10 years
For instance, [MGMM+15] proposed a CR model mixing MAB and Hidden Markov Models
(HMM), solved by a mixed policy called UCB-HMM. A curious reader about Markov chains
could start to read Chapter 3 of [LS19] (Section 3.2) and refer to [Nor98].

2.2 Applications of stochastic MAB

The blooming success of the research on multi-armed bandits is easily explained by the
different spectrum of applications of MAB models to real-world discrete-time decision making
problems. This research field has been very active since the years 2010s, but it started as early
as 1933 with [Tho33], and was active since the 1980s and the seminal works by Lai and Robbins
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[LR85] and by Anantharam and others [AVW87a]. MAB have been applied successfully to
various decision making problems, like the following:

Clinical trials have been the first historical application of MAB models, where an arm
represents a treatment, and the distribution associated with such treatment can be a Bernoulli
distribution: a reward of 0 means the drug did not heal the disease, and a reward of 1 indicates
a success. The mean of an arm, in this application, represents the mean success rate of a
treatment. Following the “best arm identification” model, the goal of a doctor in a clinical
trial is to identify the best treatment, i.e., the arm with highest mean, in a number of trials as
short as possible. And following our model of interest, maximizing the rewards corresponds
to maximize the number of patients being successfully treated.

MAB can also be applied to a broader setting of online content recommandation, with
more than two options. The seminal work of [LCLS10] studies the application of contextual
bandit to news article recommendation, as it is used in practice on platforms such as Microsoft’s
Bing news website, or in applications like Netflix. In such models, the arms correspond to
items to recommend (e.g., articles or movies), and the contexts contain features about each user
of the system. An interesting work is [LRC+16], who studies slowly-varying non-stationary
models applied to recommender systems.

Using bandit algorithms for improved machine learning models or algorithms has been
an active research domain for the last ten years or so. As presented below in Chapter 4, a
certain “leader” bandit algorithm can be used to select on the run the best bandit algorithm
from a pool of “followers” algorithms. Other possible use cases include hyper-parameter
optimization, or features selection. Hyper-parameters include real-valued parameters, like
a step size multiplier γ in a gradient descent, the width ρ of a Radial Based Function (RBF)
kernel, the margin C in a Support Vector Machines (SVM), etc. Discrete-valued parameters are
also common, like a choice in a fixed set of kernel functions or the depth of neural networks,
and higher dimensional or more complex hyper-parameters can for instance be the entire
architecture of a neural network.

Applications for Cognitive Radio. As highlighted in Chapter 1, the focus of this work is
on cognitive radio and IoT networks, where arms can represent wireless orthogonal channels,
but more generally any resource characterizing the communication between a wireless device
and a gateway (e.g., spreading factor for LoRa [KAF+18], power allocation for NOMA etc).
In the model of Opportunistic Spectrum Access (OSA) with sensing [JEMP09, JEMP10], the
samples Yk,t represents the feedback obtained by the CR-equipped device after sensing the
channel k at time t. A reward of r(t) = 1 indicates that no Primary User was sensed, while a
reward of r(t) = 0 indicates that the channel k is busy at time t and no uplink message can
be sent. We study a similar model of using MAB for Cognitive Radio but without the OSA
structre of Primary and Secondary users, i.e., without sensing information but only a collision
indicator, in Chapters 5 and 6.
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The different applications discussed in this Section are still active research directions, and
a curious reader can find other interesting applications of MAB models and algorithms in
[BR19], such as game tree search or network routing in Section 1.2 of [LS19].

2.3 Measuring the performance of a MAB algorithm

As explained above, the main objective of a player facing a bandit game is to maximize its
(expected) cumulated reward. In particular, an efficient algorithm should see its mean reward
converge to the maximum reward. In the bandit literature, the performance of an algorithm is
often measured in terms of regret, a performance measure that we now introduce.

2.3.1 Measuring performance with the (mean) regret

Let us first introduce some notations. We consider a stochastic and stationary MAB problem,
with K arms of distributions ν1, . . . , νK = (νk)k, that generates i.i.d. samples Yk,t ∼ νk, for
any time t. We focus on distributions fully characterized by their means, that can be Bernoulli
or any one-dimensional exponential family. We denote µk

.= E[Yk,t] ∈ R the mean of the
distribution of arm k (it will be referred to as the mean of arm k). To define the regret, we first
need to distinguish between optimal and sub-optimal arms.

Definition 2.2. Consider a bandit problem of K arms with distributions of means µ = µ1, . . . , µk.
Denote µ∗ .= maxk µk the largest mean. The best arm can be non unique, and any arm k having
µk = µ∗ is said to be optimal, while arms satisfying µk < µ∗ are called sub-optimal.

If the goal of the player is to maximize E
[∑T

t=1 r(t)
]
, the optimal strategy for this bandit

problem is to always pull one of the optimal arms (it can be not unique), but it is unrealistic as
the player does not know the true means, nor the optimal arms (as long as they are not all
optimal, i.e., in non trivial problems). Comparing the difference between the performance of a
fixed baseline and that of the player is a common approach in machine learning research, and
here we can compare with the oracle strategy that always obtains an (expected) reward of µ∗.
For a fixed horizon T , if k∗ denotes the index of any optimal arm, let us introduce the (mean)
regret RA

T of an algorithm A as RA
T

.= E
[∑T

t=1(Yk∗,t − r(t))
]
. As the rewards from arm k∗ are

i.i.d. (as for all arms), and by linearity of the expectation, we can rewrite this expression to
obtain the following definition of the regret.
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Definition 2.3 (Regret). For an algorithm A, a bandit problem of K arms characterized by their
means µ1, . . . , µK , with µ∗ .= maxk µk, then its (mean) regret at horizon T is RA

T defined as

RA
T = E

[
T∑

t=1
(Yk∗,t − r(t))

]
= E

 T∑
t=1

Yk∗,t︸ ︷︷ ︸
i.i.d. from νk∗

− E
[

T∑
t=1

r(t)
]

(2.2)

= T × E [Yk∗,1]−
T∑

t=1
E [r(t)] = Tµ∗ −

T∑
t=1

E [r(t)] . (2.3)

One first need to observe that RA
T ≥ 0 for any T and A, and that RA

T ≤ µ∗T , so RA
T ≤ T

if the rewards lie in [0, 1]. Thus any algorithm has RA
T = O(T ), which justifies why we are

interested in efficient algorithms that achieve at least a sub-linear regret, i.e., RA
T = o(T ).

A useful decomposition of the regret. Recall that Nk(t) .=
∑t

s=1 1(A(s) = k) denotes the
number of times arm k was selected between times 1 and t, and that the samples Yk,t are
all i.i.d. of mean µk. The gap between any arm k ∈ [K] and an optimal arm is defined as
∆k

.= µ∗ − µk (an arm k is thus sub-optimal if and only if ∆k > 0), and thus we can write
the following decomposition on the regret. Its proof is simple and it is not a contribution, but we
include it for readers that are unfamiliar with conditioning arguments.

Proposition 2.4 (Regret decomposition). The (mean) regret RA
T can be decomposed as a sum of

the number of selections of sub-optimal arms k, weighted by their gaps:

RA
T =

K∑
k=1

∆k E[Nk(T )] =
∑

k=1,...,K
∆k>0

∆k E[Nk(T )]. (2.4)

Proof. We use the chain rule of expectation and a conditioning on Ot, because the expectation is
taken on the randomness of the (i.i.d.) samples (Yk,t)t and on the decisions of the player (A(t))t,
which are measurable wrt to the past observations Ot = (U0, YA(1),1, U1, . . . , YA(t−1),t−1, Ut−1).
Thus we can rewrite the expected cumulated reward as follows:

E
[

T∑
t=1

r(t)
]

= E
[

T∑
t=1

K∑
k=1

Yk,t1(A(t) = k)
]

=
K∑

k=1

T∑
t=1

E [Yk,t1(A(t) = k)]

=
K∑

k=1

T∑
t=1

E
[
E [Yk,t|Ot]1(A(t) = k)

]
=

K∑
k=1

T∑
t=1

E
[
E [Yk,1]1(A(t) = k)

]
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=
K∑

k=1
E [Yk,1]︸ ︷︷ ︸

µk

T∑
t=1

E [1(A(t) = k)]︸ ︷︷ ︸
=Nk(T )

=
K∑

k=1
µkE [Nk(T )] .

Thus RA
T = Tµ∗ −

∑T
t=1 E [r(t)] = Tµ∗ −

∑K
k=1 µkE[Nk(T )] =

∑K
k=1(µ∗ − µk)E[Nk(T )], as∑K

k=1 E[Nk(T )] = T . The sum is then simplified to only count sub-optimal arms.

Consequences. Such decomposition of the regret can be useful for at least two reasons:

On the one hand, from a numerical simulation point-of-view, when we run a finite number
of repetitions of the same stochastic experiment, if we want to compute and visualize the
regret, we can either use the definition with the rewards, or the decomposition and simply
sum the gaps ∆k with the number of sub-optimal draws. Both quantities are indeed equal in
expectation, but with only a finite number of trajectories and observations, the first estimate is
more noisy than the second one, since the randomness on the rewards is (partially) removed
in the decomposition (2.4) (thanks to the conditioning on Ot done in the proof). In our library
SMPyBandits, we implement both estimators, and all values of regret used in this thesis
are based on the one using the decomposition of Proposition 2.4, because it gives faster
convergence, and also “smoother” plots.

On the other hand, this decomposition is necessary as theoretical analyses of the regret of
(single-player) MAB algorithms are usually based on controlling the suboptimal draws Nk(T )
and not directly the regret RA

T . Even if we prove that controlling Nk(T ) is no longer sufficient
to obtain low regret for the multi-players case, we extend this decomposition in Chapter 3 (in
Lemma 6.5), and it is the first quantity we prove to be bounded by O(ln(T )) when we prove
the regret upper-bound of our proposal MCTopM-kl-UCB.

2.3.2 Regret lower bounds

We include here two well-known results about what bandit algorithms cannot do. First, a
problem-dependent lower-bound states that any algorithm suffers a regret at least Ω(ln T ) on any
problem (from [LR85]). Then, a worst-case result states that for any algorithm, there exists a
certain problem instance such that the algorithm can perform as badly as Ω(

√
KT ) (a result

from [ACBFS02]), In certain families of problems, e.g., K Bernoulli distributed arms, the
difficulty of a problem is characterized by a constant that depends only on the arms means.
This measure of difficulty of a problem is hidden in the Ω notation in these lower-bounds.

In all this section, we restrict to stationary stochastic problems with K ≥ 2 arms. We do
not give proofs of the following theorems, as they can be found in the historical papers, and
simpler proofs are given in recent references, such as [BCB12], [LS19], or Chapter 2 in [Sli19]
for instance. Let I denote the set of all problem instances, with K ≥ 2 arms. We assume the

36



2.3 Measuring the performance of a MAB algorithm

rewards lie in [0, 1], to present the lower-bounds, we prefer to focus on Bernoulli distributions,
for simplicity. To specify the dependency on an instance I ∈ I, we denote the regret of A on
instance I and horizon T by RA

T (I). We also index the Landau notations o(. . . ) and O(. . . )
by I , for instance RA

T (I) = oI(ln(T )) means RA
T (I) = o(cI ln(T )) where the “constant” cI can

depend on the problem instance I (e.g., on its means and on K) but not on the time horizon T .

Problem-dependent lower-bound in Ω(ln T ). The following two theorems were proven
in [LR85]. These lower-bounds are of highest interest to design efficient algorithms, and a
significant part of the research literature on MAB algorithms has focused on finding algorithms
that matches the Lai and Robbins’ lower-bound asymptotically. This means that an upper-
bound is proven on the regret of algorithm A, that asymptotically matches the lower-bound,
with the same constant in the big-O notation (in which case we say that the algorithm is
asymptotically optimal), or with a larger constant (the algorithm is said to be order-optimal in
such case).

Theorem 2.5. No algorithmA can achieve a (mean) regret RA
T (I) = oI(ln(T )) for all Bernoulli

problem instances I ∈ I. [Sli19, Theorem 2.12]

We consider uniformly efficient1 algorithms, to rule out algorithms achieving low regret
on some problem instances while achieving linear regret on other instances. In particular, it is
necessary to rule out algorithms that always pick the same arm, as on some problem instances
such fixed-arm algorithms can achieve zero regret.

Definition 2.6. An algorithm A is uniformly efficient if its (mean) regret satisfies RA
T (I) =

oI(T α), for any value α > 0 and any problem instance I ∈ I.

This family is non-empty as it contains for instance the UCB1 algorithm, since its regret is
proven to be logarithmic on any Bernoulli problem instance (in Theorem 2.12 below). Now
we can state the second logarithmic lower-bound, for algorithms in this family.

Theorem 2.7. If A is uniformly efficient, then for any arbitrary Bernoulli problem instance I , its
regret is asymptotically lower-bounded by CI ln(T ), or in other words, [Sli19, Theorem 2.13],

lim inf
T →∞

RA
T (I)

ln(T ) ≥ CI .

1This notion is then extended to “strongly uniformly efficient algorithms”, in the multi-players case with Defini-
tion 6.7, where we also include a notion of (expected) fairness.
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We state below Theorem 2.12 from [Sli19], to specify a possible value for the constant CI .

Theorem 2.8. If A is uniformly efficient, and I an arbitrary Bernoulli problem instance.

• The bound from Theorem 2.7 holds with CI =
∑

k:∆k>0

∆k
kl(µk,µ∗) .

• For any ε > 0, the bound also holds at finite time with C ′
I = CI−ε, meaning that there exists

a constant CI depending only on I , and a time T0 such that ∀T ≥ T0, RA
T (I) ≥ C ′

I ln(T ).

Moreover, it is interesting to note that the second lower-bound of Theorem 2.8 can be
directly used to design efficient algorithms2, as thanks to the regret decomposition given in
Proposition 2.4 above, the expression of CI essentially says that any efficient algorithm should
sample each sub-optimal arm k about ln(T )/kl(µk, µ∗) times in the total of T time steps.

Many algorithms have been proven to achieve logarithmic regret in the stochastic case, and
in particular it is the case of the algorithms used in this thesis, UCB1 from [ACBF02], Thompson
sampling from [Tho33] and analyzed in [AG12, KKM12], and kl-UCB from [GC11, CGM+13].
Such bounds are valid in different settings, and in particular UCB1 is order-optimal for
bounded rewards or one-dimensional exponential families, while Thompson sampling is
optimal for bounded rewards, and kl-UCB have been proven to be optimal for both cases. For
more details, we refer to Chapter 16 of [LS19].

Worst-case lower-bound in Ω(
√

T ). For a fixed horizon T , it is interesting to note that one can
find instances I that are so “hard” that a logarithmic regret (lower or upper) bound that uses
a constant CI no longer brings any information. Indeed, we can naively bound the regret by
RA

T ≤ (maxk ∆k)T , and thus if (maxk ∆k) can be taken so small that CI ln(T )≫ (maxk ∆k)T ,
a regret upper bound like RA

T ≤ CI ln(T ) is useless.

For this reason, another family of regret bounds is relevant, that are not problem-dependent
but worst-case, or also called minimax [AB09, AB10] or problem-independent. We give
an example of such result below. The following theorem is from [ACBFS02], and [Sli19,
Theorem 2.1]. For more details, we refer to Chapter 15 of [LS19].

Theorem 2.9. Fix the number of arms K, and an algorithm A. Then for any horizon T , there
exists a Bernoulli problem instance IT on which the algorithm suffers at least a regret RA

T (IT ) ≥
Ω(
√

KT ).

2 Tracking this quantity, by using empirical estimates of the means, is used for instance in the OSSB algorithm
proposed in [CMP17], which is proven to attain the lower-bound for a wider range of problems (for problems
called structured stochastic bandits).
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2.3 Measuring the performance of a MAB algorithm

Similarly to what is considered for the first lower-bound, a natural question is to know if
there is an algorithm that achieve a regret upper-bound of the form RA

T (I) ≤ O
(√

KT
)

for
any instance, independently on the problem difficulty. It is the case for the Exp3 algorithm
from [ACBF02], for example. Since a few years, some algorithms were shown to achieve
both a problem-dependent logarithmic and a minimax upper-bounds, like MOSS in [AB09]
or recently kl-UCB++ in [MG17], and such results are usually referred to as “best of both
worlds”.

2.3.3 Other measures of performances

The theoretical results obtained in the rest of this thesis are all expressed in terms of the mean
regret RA

T (in Chapters 6 and 7), but we quickly mention other measures of performances that
we consider in our works and in this manuscript.

First, when doing numerical experiments about bandits, if one studies the regret as an
empirical mean based on a “large” number of random repetitions (e.g., N = 1000 repetitions),
it is important to not only show the mean value but also the variance of the values taken by the
regret on each repetition, to verify that all algorithms perform consistently. Indeed, by only
visualizing the mean of 1000 values, it is possible that we miss some “bad runs”: if 1 run out
of the 1000 gives linear regret (i.e., RA

T ∝ T ) and the 999 other give logarithmic regret, then
the mean will appear logarithmic. This is the case of the Selfish algorithm that is defined and
explored in Chapter 6. By visualizing the entire distribution (as an histogram), or the variance
of the values of RA

T , and if the number N is reasonably large, we can verify that the regret
appears logarithmic for all runs.

The switching cost SCA(T ) counts how many times the player’s decision has changed
from one round to the next one, i.e., SCA(T ) .=

∑T −1
t=1 1(A(t) ̸= A(t + 1)). It has recently

gained interest in the literature, for instance the authors of [TRY17] proposed an algorithm
that adaptively tries to balance the trade-off between minimizing the regret and minimizing
the switching cost. Indeed, in single-player models it is easy to show that achieving logarithmic
regret directly implies a logarithmic upper-bound on the switching cost, and conversely the
lower-bound from [LR85] also gives an asymptotic logarithmic lower-bound. But even if
SCA(T ) = Θ(ln T ) for an efficient algorithm, it can be interesting to numerically evaluate this
quantity, as a large value might indicate an algorithm that is alternating too much between
the optimal arm and other arms. Because it is relevant for cognitive radio applications, as
a hardware reconfiguration costs energy, and so changing channel from two consecutive
time steps has a non trivial energy cost, as highlighted in [DMNM16]. And thus we find
more interesting to study SCA1,...,AM (T ), the sum of the switching costs of the M players in
a multi-players bandit game (if player j uses algorithm Aj for j = 1, . . . , M ), as studied in
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Chapter 6. Our proposed algorithm, MCTopM, achieves order-optimal logarithmic regret as
well as a logarithmic number of switches.

Finally, another interesting measure of performance is the fairness. It was not studied
much for single-player problems, and usually it means that each arm must be explored at
least a given fraction of the total horizon T (i.e., “arm-wise fairness”). It was studied in a very
recent article [PGNN19], where a different notion of regret is introduced to account for the
fairness constraint. The authors show that different algorithms, based on UCB1 or Thompson
sampling, can achieve logarithmic regret while respecting the fairness constraints. In this
thesis, we only consider fairness in the multi-players bandit models, in Chapter 6, where
fairness refers to a different notion (i.e., “cooperative fairness”). We refer to Section 6.3.2 for
more details.

2.4 Review of stochastic MAB algorithms

This Section reviews the most important families of stochastic MAB algorithms, from naive
and simple strategies, to strategies based on the optimism or the Bayesian principles, to recent
“best-of-both-worlds” strategies.

Implementation. We describe our library SMPyBandits in more details in Chapter 3. All
the algorithms described in this chapter are implemented in SMPyBandits, in the Policies
module, alongside with many more algorithms (there are about 65 for single-player stochastic
problems). A complete list of the implemented policies can be found on the following web
page on the documentation, SMPyBandits.GitHub.io/docs/Policies.html.

2.4.1 Naive or simple strategies

Pure exploitation or pure exploration. Let us first describe two naive strategies, that both fail
dramatically. We recall the notations introduced above in Section 2.1.1, the sums of rewards are
Xk(t) .=

∑t
s=1 r(s)1(A(s) = k), and the numbers of samples are Nk(t) .=

∑t
s=1 1(A(s) = k).

The estimated means, or empirical averages, are µ̂k(t) .= Xk(t)/Nk(t) (when Nk(t) > 0).

– The uniform strategy always plays the K arms uniformly at random, ∀t ∈ [T ], A(t) ∼
U([K]), where U(S) denotes the uniform distribution on set S, and U([K]) the uniform dis-
tribution on [K] = {1, . . . , K} (i.e., ∀t,∀k ∈ [K],P(A(t) = k) = 1

K ). The player only explores
without using the collected information, and this strategy fails dramatically for any non trivial
problem (i.e., linear regret). Indeed it obtains a linear (mean) regret RT = 1

K

∑K
k=1 ∆kT which

gives RT ∝ T for any problem with at least one sub-optimal arms (i.e., all non trivial problems,
rulling out the case where µ1 = µ2 = · · · = µK).
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– The “Follow-the-Leader” strategy consists in first playing once each arm, then always
playing A(t) ∈ arg max µ̂k(t). The player only exploits the collected information, and this
strategy can fail dramatically, i.e., obtain linear regret in some problems. Indeed consider
K = 2 Bernoulli arms of means µ1 = 1/2 and µ2 = ε where ε < 1/2, then with probability ε/2
the player observes a reward of 0 for arm 1 then 1 for arm 2 on the first rounds, and so she will
play arm 2 for the T−2 remaining rounds, giving a linear (mean) regret RT ≥ ε

2

(
1
2 − ε

)
(T−1).

Simple efficient strategies: ε-greedy and Explore-then-Exploit. As illustrated by the two
previous examples, an efficient strategy needs to solve the trade-off between exploration and
exploitation. The two following solutions both consist in splitting the T time steps into T0

steps of exploration and T − T0 steps of exploitation. They are detailed in Algorithm 2.1.

– The ε-greedy strategy consists in alternating exploration and exploitation at a certain
ratio [ACBF02]. Fix 0 < ε < 1, then at each round, with probability ε the player selects an arm
uniformly at random (exploration) and with probability 1− ε the arm with highest empirical
mean is selected (exploitation). On the one hand, if ε is constant, then the (mean) regret
still grows linearly, as it is lower bounded by (ε 1

K

∑K
k=1 ∆k)T . In average, T0 = εT steps are

spent on exploration. On the other hand, if a lower-bound d on the positive gaps is known
beforehand, we can consider a sequence (εt)t∈N∗ decreasing with time t, for instance εt = ε0/t

with ε0 = 6K/d2, for a constant 0 < d < mink:∆k>0 ∆k. Then it was shown in [ACBF02] that
the regret of ε-greedy is of the order of K ln(T )/d + o(T ), which leads to an order-optimal
regret of O(K ln(T )). But this is not satisfactory, as mink ∆k needs to be known in advance,
which is usually not the case for real applications. Here again, an average of T0 ≤ ε0 ln(T )
steps are spent on exploration.

– The “Explore-then-Exploit” strategy, as presented for instance in [BCB12], first explores
uniformly the K arms for T0 time steps, then only exploits the arm identified as the best arm
after these first T0 steps (i.e., one of the arms with highest empirical means, after T0/K samples
of each arm). Usually we restrict to T0 being a multiple of K.

Here again, if a lower-bound d > 0 on the positive gaps is known beforehand, one can find
a tuning of T0 that gives a logarithmic regret, as stated in Theorem 2.10 below. It proves that
the “explore-then-exploit” strategy can also obtain an order-optimal regret, RT ≤ K(4/d2)(1 +
ln(d2T/4)) = O(K ln(T )), if it is tuned with a fixed time T0 using prior knowledge on the
problem (i.e., d) and the horizon T . We note that this strategy can also achieve a much larger
regret bound, RT = O

(
T 2/3(K ln(T ))1/3

)
, without prior knowledge on the problem, as shown

in Section 1 of [Sli19].

Theorem 2.10. For any instance I with K arms with Bernoulli distributions in [0, 1], of
means µ1, . . . , µk, and any horizon T > K, and if d ≤ ∆ = mink ∆k is known, let
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1 for t = 1, 2, . . . , T do
2 if ε-greedy then
3 Sample a value uniformly in [0, 1]: Ut ∼ U([0, 1])
4 if Ut < ε (i.e., with probability ε) then
5 Play uniformly at random A(t) ∼ U({1, . . . , K}) // Explore
6 else
7 Play uniformly among the arms of maximal empirical mean:

A(t) ∼ U(arg max
1≤k≤K

µ̂k(t)) // or Exploit

8 if Explore-then-Exploit then
9 if t ≤ T0 then

10 Play sequentially A(t) ∈ 1 + (t mod K) // Explore
11 else
12 if t = T0 then
13 Pick one arm A(T0) = k uniformly among the arms of maximal

empirical mean: A(t) ∼ U(arg max
1≤k≤K

µ̂k(T0)) // then Exploit

14 Play the same arm A(t) = A(T0)
15 Observe a reward r(t), and update Xk(t), Nk(t) and µ̂k(t)
16 end

Algorithm 2.1: Simple efficient strategies: ε-greedy and Explore-then-Exploit.

T0 = ((2K)/d2) ln(d2T/(2K)). Then the Explore-then-Exploit algorithm with parameter T0

verifies the following finite-time regret bound

R
Explore-then-Exploit
T ≤ 2K

d2 ln
(

d2T

2K

)
= O

(
K ln(T )

∆2

)
. (2.5)

Proof. If p denotes the probability that the chosen arm is not optimal, the algorithm suffers
from a linear regret for the first T0 rounds, then with probability p it suffers from a linear
regret for the remaining T − T0 rounds, and with probability 1− p it suffers no regret. Thus
we have RT ≤ (maxk:∆k>0 ∆k)T0 + p(T − T0). We then prove that p ≤ 2K exp(−T0d2/4).

We use Hoeffding’s inequality from [Hoe63], reminded below in Lemma 2.11. First for the
case of two arms: if µ1 = µ2 +∆, then p = P(µ̂1 < µ̂2) ≤ P(µ̂1 < µ1−∆/2)+P(µ̂2 > µ2 +∆/2),
and both terms can be bounded by using Hoeffding’s inequality with a (non-random) number
of samples n ≤ T0/K, to obtain p ≤ 2 exp(−T0∆2/(2K)). Then for K ≥ 2 arms, a simple union
bound on the sub-optimal arms gives p ≤ 2(K − 1) exp(−T0d2/(2K)), if d is a lower-bound
on the positive gaps ∆k.
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So this bound on p gives RT ≤ KT0 + 2K exp(−T0d2/(2K))T (because maxk:∆k>0 ∆k ≤ 1
and T − T0 ≤ T ). Optimizing the right hand-side on T0 gives T0 = ((2K)/d2) ln(d2T/(2K)).
This gives the announced bound.

Lemma 2.11. Let Z1, . . . , Zn be n i.i.d. samples from a Bernoulli distribution of parameter µ

(where n is fixed), of empirical mean Ẑn
.= 1

n

n∑
i=1

Zi, Hoeffding’s inequality gives both

∀x < µ, P(Ẑn < x) ≤ exp(−2n(x− µ)2),

∀x > µ, P(Ẑn > x) ≤ exp(−2n(x− µ)2).
(2.6)

An extension of this strategy is to consider not a fixed time T0 but a random time τ at which
exploration stops. This time τ must be a stopping time3, in the sense that it is a measurable
random variable, dependent of the past observations. The strategy is then referred to as
“explore-then-commit” (ETC), and the idea is to use a statistical test at every time step t, and
stop as soon as enough samples were collected to effectively identify the best arm with a
certain confidence level δ. Choosing δ ∝ 1/T and using a lower-bound d on the gaps typically
lead to an order-optimal algorithm as shown in [GKL16].

For both cases, the strategy obtains sub-optimal regret if it is tuned independently of the
problem at hand, but can be tuned to be efficient (i.e., with logarithmic regret) if a lower-bound
on the gaps ∆k is known. As such, this weakness makes the presented strategies unapplicable
on an unknown problem, and so they are less interesting from a practical point-of-view.

2.4.2 The optimism principle and index policies: UCB1, kl-UCB etc

A large family of algorithms are index based, as they compute an index Uk(t) on each arm k at
time t, and they play the arm that maximizes their index, i.e., A(t) = arg maxk Uk(t). If more
than one indexes maximize (Uk(t))k, the arm is chosen from the set, usually in a uniformly
random manner: A(t) ∼ U(arg maxk Uk(t)) (using the external randomness, as explained
above). The Algorithm 2.2 below details a generic index policy, that includes well known and
efficient algorithms such as UCB1, kl-UCB and many others.

The UCB1 index policy: using Hoeffding’s inequality to build confidence intervals.
Let us consider another approach for adaptive exploration, known as “optimism under un-
certainty”: assume each arm is as good as it can possibly be given the observations so far,
and choose the best arm based on these optimistic estimate. This intuition leads to the UCB1

algorithm, initially introduced in [ACBF02], for bounded rewards. For a parameter α, the
3See Chapter 3 of [LS19], and we use this notion again in Section 7.5.
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1 for t = 1, 2, . . . , T do
2 if t ≤ K then
3 Play arm A(t) = t;
4 else
5 For each arm, compute the index UA

k (t);
6 Play arm A(t) uniformly among the arms of maximal index:

A(t) ∼ U(arg max
1≤k≤K

UA
k (t));

7 Observe a reward r(t) and update Xk(t), Nk(t) and µ̂k(t);
8 end
Algorithm 2.2: A generic index policyA, using indexes UA

k (t) (e.g., UCB1, kl-UCB etc).

UCB indexes are computed as follows, as a sum of the average reward µ̂k(t) .= Xk(t)
Nk(t) and a

confidence radius ξk(t) .=
√

α ln(t)
Nk(t) .

UUCB1
k (t) = UCBk(t) .= Xk(t)

Nk(t)︸ ︷︷ ︸
Exploitation µ̂k(t)

+
√

α
ln (t)
Nk(t)︸ ︷︷ ︸

Exploration ξk(t)

. (2.7)

This selection rule A(t) ∼ U(arg max
1≤k≤K

UA
k (t)) makes sense for the following reasons: an

arm k is chosen at step t because it has a large UCBk(t), which can happen for two reasons. i)
Because the average reward µ̂k(t) is large, in which case this arm is likely to have a high mean
reward µk, ii) and/or because the confidence radius ξk(t) is large, in which case this arm has
not been explored much. Either reason makes this arm worth choosing. One can also observe
that ξk(t) → ∞ if t → ∞ while Nk(t) ≪ ln(t), which can be used to prove that the UCB1

algorithm tries all arms at least Ω(ln(T )) times (in average). Furthermore, these two terms
µ̂k(t) and ξk(t) in the UCB defined in (2.7) respectively represent exploitation and exploration,
and summing them up is a natural way of dealing with the exploitation/exploration trade
off. The constant parameter α in ξk(t) also controls this trade-off, and the theoretical analysis
suggests to restrict to α ≥ 1/2, and to choose α = 1/2 for optimal uniform performance (i.e.,
on all problems, [ACBF02]).

We present the regret bound, which was first stated in [ACBF02], and to explain how
Hoeffding’s inequality is used we prove it below. Note that for the rest of the manuscript, we
use the kl-UCB algorithm (and more subtle concentration inequality) whenever we analyze
the regret of a newly introduced algorithm (i.e., in Chapters 6 and 7), but we think the simpler
proof of UCB1 is enlightening for the reader. This theorem shows that UCB1 achieves an
order-optimal problem-dependent regret, bounded by O(K ln(T )/∆2) (if ∆ .= min

k:∆k>0
∆), and

the result also has the advantage of being non asymptotic.
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Theorem 2.12 (Regret bound for UCB1). For any instance I with K arms with bounded
distributions in [0, 1], of means µ1, . . . , µk, and any horizon T > K, the UCB1 algorithm with its
parameter4 α = 2 verifies the following finite-time regret bound

RUCB1
T (I) ≤

 ∑
k:∆k>0

8
∆k

 ln(T ) +
∑

k:∆k>0
∆k

(
1 + π2

3

)
. (2.8)

Proof. We focus on bounded distributions in [0, 1], for which Hoeffding’s inequality gives the
inequality (2.6), as stated above in Lemma 2.11. Thanks to the regret decomposition from
Proposition 2.4, we can focus on bounding E[Nk(T )] for any sub-optimal arm k.

The first trick consists in writing the following, which is true for any n ≥ 1:

Nk(T ) = 1 +
T∑

t=K+1
1(A(t) = k) ≤ 1 + n +

T∑
t=n

1(A(t) = k, Nk(t) ≥ n). (2.9)

Remember that UCBk(t) = µ̂k(t)+ξk(t) for any arm k. According to the Algorithm 2.2 (see
line 6), a suboptimal arm k can be chosen only if UCBk(t) ≥ UCBk∗(t). Both µ̂k(t) and ξk(t)
use n = Nk(t) samples of arm k, but as (2.9) above started to isolate Nk(t), we add the freedom
of considering different number of samples (using n), so we introduce the notation µ̂k,n(t)
and ξk,n(t) where Nk(t) is replaced with n if n ≤ Nk(t), i.e., µ̂k,n(t) = 1

n

∑t−1
s=1 r(s)1(A(s) =

k, Nk(s) ≤ n) and ξk,n(t) =
√

2 ln(t)/n. Thus, we can continue from (2.9) and write

Nk(T ) ≤ 1 + n +
T∑

t=n

1(A(t) = k, Nk(t) ≥ n)

≤ 1 + n +
T∑

t=n

1(µ̂k∗,Nk∗ (t)(t) + ξk∗,Nk∗ (t)(t) < µ̂k,Nk(t)(t) + ξk,Nk(t)(t), Nk(t) ≥ n)

= 1 + n +
T∑

t=n

1

(
min

0<nk∗ ≤t
µ̂k∗,nk∗ (t) + ξk∗,nk∗ (t) < max

n<nk≤t
µ̂k,nk

(t) + ξk,nk
(t)
)

(2.10)

So two union bounds on nk∗ for the min and on nk for the max give two sums

Nk(T ) ≤ 1 + n +
T∑

t=n

t∑
nk∗ =1

t∑
nk=n

1
(
µ̂k∗,nk∗ (t) + ξk∗,nk∗ (t) < µ̂k,nk

(t) + ξk,nk
(t)
)

(2.11)

4 For simplicity we present the theorem and its prove in the restricted case of α = 2. More details on this
proof can be found for instance in Section 1.3 of [Sli19], while for instance Chapter 2 of [BCB12] Theorem 2.1) and
Chapter 7 of [LS19] (Theorem 7.2) both give more general proofs, in particular for any value of α ≥ 1

2 .
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Now, at time t, this event µ̂k∗,nk∗ (t) + ξk∗,nk∗ (t) < µ̂k,nk
(t) + ξk,nk

(t) implies at least one of
the following three events:


I1

.= (µ̂k∗,nk∗ (t) ≤ µk∗ − ξk∗,nk∗ (t)),

I2
.= (µ̂k,nk

(t) ≥ µk + ξk,nk
(t)),

I3
.= (µk∗ < µk + 2 ξk,nk

(t)).

• For the first two events I1 and I2, we carefully fixed the number of samples so they are no
longer random (they are respectively to nk∗ and nk), we can use Hoeffding’s inequality
to obtain P(Ij) ≤ 1/t4 (for j = 1, 2).

• For the last event I3, observe that µk∗ < µk + 2ξk,nk
(t) means ∆k − 2

√
2 ln(t)/nk < 0,

where we remind the notation of the gap ∆k
.= µk∗−µk. Thus if nk ≥

⌈
8 ln(T )

∆2
k

⌉
≥
⌈

8 ln(t)
∆2

k

⌉
,

then this inequality actually cannot happen: P(∆k − 2
√

2 ln(t)/nk < 0) = 0, so as soon
as nk ≥ 8 ln(T )

∆2
k

, P(I3) = 0.

Taking the expectation of Nk(T ) from (2.10), and setting n = nT
.= ⌈8 ln(T )

∆2
k
⌉ thus gives

E[Nk(T )] ≤ 1 + 8 ln(T )
∆2

k

+
T∑

t=nT

t∑
nk∗ =1

t∑
nk=nT

P
(
µ̂k∗,nk∗ (t) + ξk∗,nk∗ (t) < µ̂k,nk

(t) + ξk,nk
(t)
)

≤ 1 + 8 ln(T )
∆2

k

+
T∑

t=nT

t∑
nk∗ =1

t∑
nk=nT

[
P(I1)︸ ︷︷ ︸
≤1/t4

+P(I2)︸ ︷︷ ︸
≤1/t4

+P(I3)︸ ︷︷ ︸
=0

]

≤ 1 + 8 ln(T )
∆2

k

+
T∑

t=nT

t∑
nk∗ =1

t∑
nk=nT

2 1
t4

We actually have that
t∑

nk∗ =1

t∑
nk=nT

2 1
t4 ≤ 2

t∑
nk∗ =1

1
t3 ≤ 2 1

t2 , whose sum for t = 1 to∞ is 2π2

6 .

≤ 8 ln(T )
∆2

k

+ 1 + 2
T∑

t=1

1
t2 ≤

8 ln(T )
∆2

k

+ 1 + 2
∞∑

t=1

1
t2 ≤

8 ln(T )
∆2

k

+ 1 + π2

3 . (2.12)

To sum up, we obtain the following finite-time bound on Nk(T ) for any sub-optimal arm k

E[Nk(T )] ≤ 8 ln(T )
∆2

k

+
(

1 + π2

3

)
.

By using the regret decomposition from Proposition 2.4, this gives

RUCB1
T =

∑
k:∆k>0

∆kE[Nk(T )]
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≤
∑

k:∆k>0

8
∆k

ln(T ) +
∑

k:∆k>0
∆k

(
1 + π2

3

)
=

∑
k:∆k>0

8
∆k

ln(T ) + o(ln(T )) .

We see in this Theorem 2.12 that UCB1 has the advantage of not relying on any prior
knowledge of the problem difficulty, of being anytime, and computationally simple, for both
memory and time aspects, and it achieves an order-optimal problem-dependent regret upper
bound in O((

∑
k:∆k>0

1
∆k

) ln(T )). UCB1 requires a constant storage capacity for each arm
(storing Xk(t) and Nk(t) require two integers or a float and an integer, i.e., O(1)), giving a
storage capacity of O(K), independently of the horizon T . It also needs to perform some
mathematical operations, but a square-root and a logarithm are cheap, thus it costs a O(1)
constant time for each arm and time step, thus a time O(KT ) for the T time steps. We use
UCB1 as the base building block for other policies in Chapter 5, for these reasons. Moreover,
the UCB1 algorithm has the advantage of being easy to explain and understand, and its
decisions can be interpreted clearly: by reading the values of µ̂k(t) and UCBk(t), anyone can
see why an arm was chosen at anytime. This is why it is used in our demonstration presented
in Section 5.3.

The kl-UCB index policy. The kl-UCB algorithm follows the same spirit as the UCB1 al-
gorithm presented above, it is an index policy (see Algorithm 2.2), which also builds upper
confidence bounds on the unknown mean of each arm. The KL-UCB algorithm was first
proposed in [GC11] for one-dimensional exponential families, and then the kl-UCB algorithm
was introduced in [CGM+13] for bounded rewards. In all this thesis, we either restrict to
exponential families or to bounded rewards in [0, 1] and use the fact that they are sub-Bernoulli,
thus we prefer to only present kl-UCB.

Instead of using a confidence radius ξk(t) based on Hoeffding’s inequality, the kl-UCB
algorithm rather uses the Chernoff concentration inequality for the considered exponential
family The indexes are computed as follows, for an exploration function f(t) that is typically
chosen as f(t) .= ln(t) + c ln(ln(t)) for the theoretical analyses (with c ≥ 3), and f(t) .= ln(t) in
practice.

Ukl-UCB
k (t) .= sup

q∈[0,1]

{
q : kl

(
Xk(t)
Nk(t) , q

)
≤ f(t

Nk(t)

}
. (2.13)

For Bernoulli distributions, kl-UCB builds tighter confidence intervals than UCB1, in the
sense that Ukl-UCB

k (t) < UUCB
k (t) but with the same probability coverage. This is justified by

Pinkser’s inequality, which gives kl(x, y) ≥ 2(x− y)2. The KL-UCB and kl-UCB algorithms
achieve finite-time regret logarithmic upper-bounds on their regret, and have been proven
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to be asymptotically optimal, respectively for one-dimensional exponential families and for
bounded rewards distributions [GC11, CGM+13].

A note about the implementation of kl-UCB algorithms. Implementing this kind of
policy requires to implement two things. The first piece is usually easy: one has to implement
a way to compute kl(x, y) the Kullback-Leibler divergence of the considered one-dimensional
family, for instance kl for Bernoulli distributions has a closed form and is easy to compute.
The second piece is less obvious: one has to solve the optimisation problem defining the sup in
(2.13). Any iterative algorithm for numerical optimization of one-dimensional functions can
be used (e.g., see [BV04] for a survey), but as the kl(x, •) function is usually convex (for any x),
two practical and mathematically correct solutions are Newton’s method or a bisection search.
The search space for q can be restricted to [Xk(t)/Nk(t), 1] instead of [0, 1], and for simplicity
and efficiency, in this case a naive bisection search works well. For instance, ε = 10−8 is
enough for numerical simulations, and typically the bisection search terminates in between 5
to 20 steps.

If we perform numerical simulations with kl-UCB algorithms, we are interested in having
efficient implementations, and ideally kl-UCB should not be significantly slower than UCB.
The bottleneck of the performance is the computations of the KL functions and the optimization
problem, and we note that our library SMPyBandits implements both parts in both a naive
Python implementation (file kullback.py) and in a Python module written in a C file5, in an
optimized way (file kullback_py3.c). For the supported families of distributions (including
Bernoulli, Gaussian, exponential and Poisson), we wrote both a naive and an optimized version
of KL(x, y) and the supq KL(x, q) ≤ z optimization problem, using Newton’s method.

Variants on UCB1. Many variants of the UCB1 algorithms have been studied in the
multi-armed bandits literature. For instance, UCB-H replaces the ln(t) by a ln(T ) (as well as
kl-UCB-H), and it actually corresponds to the first algorithm analyzed in [ACBF02]. Using
an estimator for the variance of the arms’ samples gives UCB-V, which was for instance
proven to be efficient against Gaussian distributions with unknown variance. Other variants
include UCB+, UCB† from [Lat18], UCBoost, and many more. All these variants are usually
comparable to the original UCB1 algorithm, in terms of time and memory complexity, and
they achieve improved regret upper bounds in the same setting or some extensions of the
initial setting.

5 Note that we also wrote an intermediate implementation that uses Cython [BBS+19], to have
a file with a syntax closer to Python, while gaining from almost the same performance speed-
up as with the optimized C version, see file kullback_cython.pyx. These implementations of
KL(x, y) and kl-UCB indexes are also published as an independent Python package, hosted on
GitHub.com/Naereen/Kullback-Leibler-divergences-and-kl-UCB-indexes and installable from Pypi. A Julia
version of the same package is also available at GitHub.com/Naereen/KullbackLeibler.jl.
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2.4.3 Bayesian policies

Thompson sampling is the oldest known MAB algorithms, dating back from the first paper by
Thompson in 1933 [Tho33]. It became popular since its asymptotical and finite-time analyses
in [AG12, KKM12]. Thompson sampling uses a Bayesian point of view: instead of building
confidence intervals on the means of the arms like UCB1 does, it starts with a prior πk(0) on
the K distributions (e.g., a flat uniform prior), and then after every observation (k, r(t)) it
updates the posterior distribution of the arm k with a new data r(t), from πk(t) to πk(t + 1).
Thompson sampling makes its decision at time t by first sampling a random sample sk ∼ πk(t),
and then playing according to the “optimism under uncertainty” philosophy if these samples
represent the arms (expected) quality, i.e., A(t) ∈ arg maxk sk.

For problems with Bernoulli distributions on the K arms, the best choice of prior is a
Beta distribution, that starts as an initially uniform prior (i.e., ∀k, πk(0) .= Beta(1, 1)), and
maintain a distribution πk(t) .= Beta(Xk(t)+1, Nk(t)−Xk(t)+1), as Xk(t) counts the number
of successes observed on arm k, and Nk(t)−Xk(t) counts the number of failures. We detail
the Thompson sampling algorithm in this case, below in Algorithm 2.3, as it corresponds to
the case used in Chapter 5 in Section 5.2.4. In this setting as well as for Gaussian distributions,
Thompson sampling was proven to achieve asymptotical optimal problem-dependent bounds
[KKM12, AG12].

1 for t = 1, 2, . . . , T do
2 For each arm, sample sk(t) ∼ πk(t− 1) from the posterior of arm k,

πk(t− 1) = Beta(Xk(t− 1) + 1, Nk(t− 1)−Xk(t− 1) + 1);
3 Play arm A(t) uniformly among the arms of maximal random sample:

A(t) ∼ U(arg max
1≤k≤K

Uk(t));

4 Observe a reward r(t) and update Xk(t) and Nk(t);
5 end
Algorithm 2.3: Thompson Sampling for Beta prior and posteriors, on Bernoulli re-
wards.

Bayes-UCB from [KCG12] also uses the Bayesian point of view, updated like for Thompson
sampling, but used in a different way. Instead of sampling from the posteriors and playing
the arms with maximum sample, Bayes-UCB computes the (1− 1/(t(ln(t))5) quantile of each
arm, at time t, and plays the arm with the largest quantile. It was also proven to achieve
asymptotical optimal problem-dependent bounds [KCG12]. Bayes-UCB is comparable to
Thompson sampling in terms of memory complexity, but it can be slower, as computing a
quantile is generally more costly than just sampling from a distribution.

For curiosity, we mention a third Bayesian algorithm, AdBandits introduced in [TdSCC13],
mainly because it has not gained any popularity despite its good empirical performance.
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AdBandits follows the same assumptions as Thompson sampling and Bayes-UCB, and for
instance for Bernoulli problems it uses a Beta posterior on each arm. It uses a random mixture
between the two algorithms, and with a certain probability it uses the Thompson sampling
decision rule, otherwise it uses the Bayes-UCB decision rule. It was proposed in this article
[TdSCC13] and illustrated on empirical simulations, but no theoretical analysis was given.
We found that in practice it can achieve very good performance, as illustrated in Section 3.3.

Finally, we would like to mention that a recent work [KT19] presented an approach that
closes the gap between the two aforementioned point-of-views, frequentist algorithms such
as UCB and Bayesian algorithms such as Thompson sampling. The authors of [KT19] showed
that their Randomized Confidence Bound (RCB) algorithm can achieve the same regret upper
bounds as UCB1 or Thompson sampling, with uniformly distributed perturbations. Their
RCB algorithm ressembles UCB1, and builds the same confidence interval [LCBk(t), UCBk(t)]
on arm k at time t (the lower confidence bound is LCBk(t) .= µ̂k(t) − ξk(t)), but instead of
maximizing the UCB, a random sample is taken on each interval sk ∼ U([LCBk(t), UCBk(t)]),
and the played arm is the one maximizing this sample, i.e., A(t) ∈ arg maxk sk.

2.4.4 Other policies

We can briefly mention other families of policies.

BESA (Best Empirical Sampled Average) was introduced in [BMM14], in order to fix a
simple observation: if arm 1 has 100 samples and arm 2 has 50 samples, it should make more
sense to only use 50 samples of arm 1 to compute and compare their empirical means. Based
on this idea, the BESA algorithm for K = 2 arms is quite simple: at each time step, if arms 1
and 2 have respectively n1 and n2 samples, and if n1 > n2 (for instance), first it sub-samples
n2 observations from n1, then it computes the mean of these observations, and play the arm
maximizing this mean (now that there is the same number of observations for both arms, it
makes more sense to compare these quantities). It was analyzed partially, for the two-armed
case it was proven to be asymptotically optimal for one-dimensional exponential families, and
the authors illustrated that it can be very efficient empirically. Analyzing it in the generic case
was found to be difficult, and it is still an open problem.

Policies for adversarial bandits. Another important family of bandits algorithms are the
algorithms proposed for the adversarial setting [ACBFS02]. The first of them is the Exp3
policy, for “Exponential weights for Exploitation and Exploration”, which is an example of the
well-known multiplicative weights update algorithm6, a family of algorithms developed since the
1950s, and applied to a wide range of different domains. The Exp3 policy maintains weights

6 For more details see this blog post by Jeremy Kun, JeremyKun.com/2017/02/27/the-reasonable-
effectiveness-of-the-multiplicative-weights-update-algorithm, which comes with an interactive online
demonstration to help understanding the behavior of the algorithm, hosted at j2kun.GitHub.io/mwua/ (accessed
the 24th of May 2019). More details can be found in the survey [AHK12].
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wk(t) on the K arms, and at time t it samples an arm from the distribution which is a mixture of
w(t) = [w1(t), . . . , wK(t)] and the uniform distribution, i.e., P(A(t) = k) .= (1− γ)wk(t) + γ 1

K .
The weights are initially uniform, i.e., wk(0) = 1/K, and then at each time after observing a
reward Yk,t from arm k, Exp3 updates the weight of the chosen arm multiplicatively, using
wk(t + 1) = wk(t)× exp(r̂k(t)/(γNk(t))). The weights are then renormalized, to have a sum∑

k wk(t + 1) = 1. This notation r̂k(t) means an unbiased estimator of the reward r(t) = Yk,t,
that is, r̂k(t) = r(t)/P(A(t) = k). Like for the ε-greedy policy, the parameter γ can be constant,
or can be a non-increasing sequence (γt)t∈N∗ . It was proven in [ACBFS02] that Exp3 with
constant parameter γ achieves RT = O

(√
KT ln(T )

)
problem-independent regret, while

using a decreasing sequence, such as γt =
√

ln(K)/K ln(t)/t gives an order-optimal problem-
independent regret upper-bound of O

(√
KT

)
. A short proof of this results and more details

on Exp3 are given in [BCB12]. Many other policies have been proposed for adversarial bandits,
like Follow-the-Perturbed-Leader or Follow-the-Regularized-Leader for linear adversarial
bandits, and we refer to Parts III and VI of [LS19] for more details.

Hybrid policies. As explained before, in the last few years, the MAB research community
has been interested in finding algorithms which achieves both a problem-dependent logarith-
mic and a minimax upper-bounds. We present here some solutions that are index-based (see
Algorithm 2.2). The first example is MOSS from [AB09], or kl-UCB++ in [MG17]. If we denote
g(t, T, K) = ln+(y(t)(1 + ln+(y(t))2)), and y(t) = T

Kt , with ln+(x) = max(0, ln(x)), then they
use the following indexes:

UMOSS
k (t) .= Xk(t)

Nk(t) + max

0,

√√√√ ln
(

t
KNk(t)

)
Nk(t)

 .

Ukl-UCB++
k (t) .= sup

q∈[0,1]

{
q : kl

(
Xk(t)
Nk(t) , q

)
≤ g(Nk(t), T, K)

Nk(t)

}
.

Both algorithms are index policies, but they are not anytime. For any K, T , and problem
instances I in a certain family I (e.g., with Bernoulli distributions), they enjoy regret bounds
like the following, for two constants cA and c′

A that depend on the algorithm, and a constant
CI that depend on the problem instance only: RA

T ≤ min(cA
√

KT, c′
ACI ln(T )).

More recently, the kl-UCB-switch from [GHMS18] is the first algorithm to be proven to en-
joy simultaneously a distribution-free regret bound of optimal order

√
KT , and a distribution-

dependent regret bound of optimal order as well, that is, matching the CI ln(T ) lower bound
by [LR85]. It is an index policy that uses modified versions of the indexes of kl-UCB+ for arms
that are not sampled much (see [Hon19] for more details), and of MOSS+ for the other arms.
If the two indexes are defined by UMOSS+

k (t) .= Xk(t)
Nk(t) +max

(
0,
√

ln (T/(KNk(t))) /Nk(t)
)

and

UKL-UCB+
k (t) .= sup

q∈[0,1]

{
q : kl

(
Xk(t)
Nk(t) , q

)
≤ ln(T/(KNk(t)))/Nk(t)

}
, and if f(T, K) = ⌊(T/K)γ⌋
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for γ = 1/5, then kl-UCB-switch uses the index defined as follows:

Ukl-UCB-switch
k (t) .=

UKL-UCB+
k (t) if Nk(t) ≤ f(T, K),

UMOSS+
k (t) if Nk(t) > f(T, K).

.

Finally, it is worth mentioning the Exp3++ algorithm, as a recent variant of Exp3, proposed
by [SL17], that uses an adaptive tuning of its parameters. It is anytime, and it was also proven
to obtain good “best-of-both-world” performance.

2.4.5 Comparison of the main algorithms on the example Bernoulli problem from
the online interactive demonstration

We finish this Section 2.4 by illustrating the performance of different algorithms, on the small
MAB problem used in the online demonstration shown above (see Figures 2.2 and 2.3). We
consider K = 5 arms following Bernoulli distributions, of means µ1 = 0.6, µ2 = 0.2, µ3 =
0.55, µ4 = 0.7, µ5 = 0.5 (unknown to the algorithms), and first an horizon T = 100 (like in
the online demo) then a large value of T = 10000. The best arm is µ4 and the smallest gap is
∆ = 0.1, thus a lower-bound on the gaps is taken as d = ∆.

The different algorithms being compared are the following, in the order they were pre-
sented above: first we include the pure-exploration and pure-exploitation algorithms, then
the ε-greedy (with εt = ε0/t and ε0 = 6K/d2 = 3000) and Explore-then-Commit (with
T0 = K4/d2 ln(d2T/4) = 2000 ln(T/400)) algorithms from Section 2.4.1, which both uses a
tuning based on a prior knowledge of ∆ (that gives large values of ε0 and T0 yielding linear
regret for small horizon). We then include efficient algorithms, that do not need prior knowl-
edge of the T (they are anytime) nor ∆ (their are robust and efficient on unknown problems):
UCB1 (with α = 1), kl-UCB (with Bernoulli kl = KLB), and Thompson sampling (with Beta
posteriors and flat uniform priors).

We first give in Table 2.1 the cumulated rewards as well as the estimated regrets of the dif-
ferent algorithms, for one simulation. First, the rewards are computed as 1

N

∑N
j=1

∑T
t=1 r

(j)
A(t)(t),

where r
(j)
k (t) means the reward stream of the different runs j = 1, . . . , N . Then the estimated

regret is not computed as 1
N

∑N
j=1

∑T
t=1 r

(j)
k∗ (t) − r

(j)
A(t)(t), as this first formula could give a

negative regret and is more noisy, but as µ∗T − 1
N

∑N
j=1

∑K
k=1 µkN

(j)
k (T ), as this later formula

gives a more robust estimator, as noted the proof of Proposition 2.4 (in Page 36 above). It
shows that the performance can fluctuate a lot, as on both cases the pure exploitation strategy
was very lucky and obtains close-to-optimal performance, even though we proved that it
suffers from a linear mean regret.

Then in Table 2.2 we show the results of the average on N = 1000 independent runs. We also
include in Figures 2.4, 2.5 below the mean cumulated rewards and mean regrets as functions
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Algorithms rewards regret for T = 100 rewards regret for T = 10000
Pure exploration 46 20.9 5171 1886.4
Pure exploitation 65 1.15 6997 0.95

ε-greedy 50 20.9 6657 382.2
Explore-then-Commit 49 15 5766 1199.8

UCB1 63 10.3 6920 78.4
kl-UCB 56 12.4 6922 70.2

Thompson sampling 51 12.2 6949 44.2

Table 2.1 – Cumulated rewards and regret, for horizons T = 100 and T = 10000, for only one run of the
simulation, for different algorithms.

of the current time step t, for T = 10000 (and N = 1000). The reward of the best arm is
also plotted in Figure 2.4, and it serves as an upper-bound to illustrate convergence of the
average rewards (i.e., 1

t (r(1) + · · · + r(t))), which should converge to µ∗ when t → ∞ for
efficient algorithms. Conversely, we also add the Lai & Robbins’ logarithmic lower-bound on
regret (CI ln(t) from Theorem 2.8) on the regret plot in Figure 2.5. It should not be surprising
that the black line of the lower-bound is above the values of the regret as the lower-bound is
only asymptotic. We can clearly identify the behavior of the different strategies: the three
efficient strategies indeed achieve a sub-linear regret, that looks logarithmic as supported
by the theory, while the naive strategies achieve linear regret. The two simple strategies also
achieve sub-linear regret but are less efficient: both ε-greedy and Explore-then-Commit starts
as pure exploration, respectively until ε0/t becomes smaller than 1 and until t > T0, then they
usually identify correctly the best arm and start to catch up with the best policies.

Algorithms rewards regret for T = 100 rewards regret for T = 10000
Pure exploration 51 19 5099 1900
Pure exploitation 62 8.3 6349 653

ε-greedy 51 18.7 6460 542
Explore-then-Commit 57 12.9 5795 1207

UCB1 60 9.8 6921 79
kl-UCB 61 9.3 6927 72

Thompson sampling 60 9.6 6951 49

Table 2.2 – Cumulated rewards and regret, for horizons T = 100 and T = 10000, averaged over N = 1000
independent simulations (j = 1, . . . , N ), for different algorithms.

Summary of this review of MAB algorithms. We gave an overview of the most well known
families of algorithms for multi-armed bandits, focussing on algorithms designed and an-
alyzed for the single-player stationary and stochastic MAB model. Except the naive and
simple strategies given as introductory examples, most of the policies presented above are
order-optimal for Bernoulli distributed problems or bounded rewards (or one-dimensional
exponential families), and some of them are known to be optimal in different settings. To
clearly understand the different in their empirical behaviors, we illustrated the performance of
two naive and two simple strategies against three efficient ones, on the example of Bernoulli-

53



The Stochastic Multi-Armed Bandits Model

0 2000 4000 6000 8000 10000
Time steps t= 1. . . T, horizon T= 10000

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n 
re

wa
rd

, a
ve

ra
ge

 o
n 

tim
e 
r̃ t

=
1 t

t ∑ s
=

1 
5 ∑ k
=

1µ
k

10
00

[T
k
(t

)]

Mean rewards for different bandit algorithms, averaged 1000 times
5 arms: [B(0.6), B(0.2), B(0.55), B(0.7) ∗ , B(0.5)]

Pure exploration
Pure exploitation
ε-greedy
Explore-then-Exploit
UCB(α= 1)
Bernoulli kl-UCB
Thompson sampling
Largest mean = 0.7

Figure 2.4 – Average of the cumulated rewards, as function of t, for T = 10000 and N = 1000.

0 2000 4000 6000 8000 10000
Time steps t= 1. . . T, horizon T= 10000

0

250

500

750

1000

1250

1500

1750

Re
gr

et
 R

t
=
tµ

∗
−

t ∑ s
=

1 
5 ∑ k
=

1µ
k

10
00

[T
k
(t

)]

Cumulated regrets for different bandit algorithms, averaged 1000 times
5 arms: [B(0.6), B(0.2), B(0.55), B(0.7) ∗ , B(0.5)]

Pure exploration
Pure exploitation
ε-greedy
Explore-then-Exploit
UCB(α= 1)
Bernoulli kl-UCB
Thompson sampling
[Lai & Robbins] lower bound = 10.7 log(t)

Figure 2.5 – Mean regret Rt as function of t for T = 10000 and N = 1000.

54



2.4 Review of stochastic MAB algorithms

distributed problem used for the online demonstration from Section 2.1 (see Figures 2.2 and
2.3). This also serves as a first example of numerical simulation performed with our library
SMPyBandits, before the large-scale experiments of Section 3.3 below. In the rest of this thesis,
we mainly use the UCB1 or Thompson sampling algorithms when simplicity and realistic
deployment is favored (i.e., Chapter 5), and the kl-UCB algorithm when we give mathematical
developments (i.e., Chapters 6 and 7).
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2.5 Conclusion

In this chapter, we presented the multi-armed bandit model, focussing on a finite number of
arms, and real-valued rewards. Our main focus is on one-dimensional exponential families
of distributions, and on stochastic and stationary problems. By showcasing an interactive
demonstration made available online, we presented the notations used in all this thesis. We
also showed a small numerical simulation, comparing some algorithms on a small Bernoulli-
distributed problem, using our Python open-source library, SMPyBandits, that is presented in
details in the next Chapter 3.

We presented the simplest MAB model studied in this chapter, by focussing on one
agent playing a stationary game. Both hypotheses are removed or weaken in the rest of
this manuscript, first by considering players facing a stationary problem in a decentralized
way in Chapter 6, and then by considering a single player facing a non-stationary or a piece-
wise stationary problem in Chapter 7. For both directions, we present in the two final chapters
natural extensions of the base model, and we detail our contributions that obtained state-
of-the-art results for the two problems of stationary multi-players and piece-wise stationary
bandits.

We take another approach in Chapter 5, where the MAB model is generalized to study
decentralized learning of a large set of independent players, all having different activation
times. This extension is significantly harder than the two previously evoked ones, and we were
unfortunately unable to obtain any strong theoretical results under these loose hypotheses.
This model is however more generic and as such it was found suitable for applications to
Internet of Things (IoT) networks, where arms model orthogonal wireless channels, players
model communicating devices (i.e., IoT end-devices) and rewards model successes or failures
of a wireless packet sent by a device.

Possible future works. We focused in this thesis on finite-arms and one-dimensional bandit
problems, and thus two possible directions of future works could be to extend our works to
MAB models with either multidimensional rewards, like contextual bandits, or infinite arms,
like Lipschitz bandits.
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Chapter 3

SMPyBandits: a state-of-the-art
Python library to simulate MAB
problems

SMPyBandits is a Python package I have developed since the beginning of my PhD. It is
designed to allow easy and fast numerical simulations on single-player and multi-players
Multi-Armed Bandits (MAB) algorithms. It is the most exhaustive open-source implementa-
tion of state-of-the-art algorithms and different kinds of MAB models. This chapter details
the organization of the library, what it implements in terms of arm distributions, models,
algorithms and visualizations. Then we use it to perform a numerical comparisons of the
main state-of-the-art single-player MAB algorithms, and a study to compare time and memory
costs of the main algorithms.
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SMPyBandits: a state-of-the-art Python library to simulate MAB problems

3.1 Introduction

SMPyBandits is a Python package I have developed since the beginning of my PhD. It is
designed to allow easy and fast numerical simulations on single-player and multi-players
Multi-Armed Bandits (MAB) algorithms. This library is by far the most exhaustive open-
source implementation of state-of-the-art algorithms and different kinds of MAB models. It
aims at being exhaustive, simple to use and maintain, and has a clean and well documented
codebase, and it uses the popular open-source Python language. It allows fast prototyping
of simulations, with an easy configuration system and command-line options to customize
experiments. Experiment results are saved in an optimized binary format (HDF5) as well as
high quality plots of many useful visualizations. More than two years of active development
have shown how easy it can be to add new algorithms, new arm distributions, and new bandit
models (e.g., Markov or non-stationary). It is hosted on GitHub, and uses the state-of-the-art
development technologies, by using two online services of continuous integration to run
automated tests and to build its online documentation.

SMPyBandits stands for Single- and Multi-Player Bandits in Python. The library does not
aim at being blazing fast or optimized in terms of memory usage, as it comes with a pure
Python implementation [Fou17], and uses only standard open-source Python packages (i.e.,
no hard to install dependencies). Some critical parts are also available as a C Python extension,
and the just-in-time Numba compiler [I+17] is used whenever it is possible, so we can note that
we optimized the time efficiency of what could be (easily) optimized. However if simulation
speed really matters, one should rather refer to less exhaustive but faster implementations,
like for example [Lat16a] in C++ or [Raj17] in Julia. Note that both are not maintained anymore,
and contain just a few algorithms for the simple stationary MAB model.

In this Chapter 3, we start by presenting in Section 3.2 the organization of the library. We
use the library to compare the most famous and most efficient single-player MAB algorithms in
Section 3.3, then we discuss in Section 3.4 about the time and memory costs of MAB algorithms.
The take away messages are two-fold: from a practical point-of-view, it is usually advised to
use the simplest algorithm and we advise to use UCB (as we do in the next Chapter 5), and
that for theoretical works where optimality of the MAB algorithm matters, we advise to use
kl-UCB (as we do in the next Chapters 6 and 7). Finally, in Appendix 3.6 we include some
small files showing how to use the library, and we conclude with some details regarding the
use of parallel computing to speed-up simulations.

References. The code for SMPyBandits is hosted at GitHub.com/SMPyBandits/SMPyBandits,
its documentation is at SMPyBandits.GitHub.io, and all the library is freely publicly released
under the MIT open-source License. This chapter is based on our article [Bes18].
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3.2 Presentation of the library

We start by explaining how SMPyBandits simulates MAB problems, by detailing its compo-
nents: MAB problems (single- or multi-players), and reward distributions. We then detail
how it implements MAB algorithms (e.g., UCB), and what kind of information is displayed,
saved and plotted after a batch of simulations of bandit problems. The main goal of the library
is to be easily able to simulate MAB algorithms (e.g., three algorithms like UCB, kl-UCB and
Thompson sampling) on one or more bandit models (single- or multi-players) defined by
the number of arms K and the distributions νk, for some time from t = 1 to the horizon T .
After the simulation, the library then displays statistical summary of the (mean) rewards
accumulated by each algorithm, as well as regret and other visualizations. The same problem
is simulated for N independent repetitions (e.g., N = 100) in order to show mean results with
a low variance.

3.2.1 Single- and multi-players MAB problems

For the classical single-player stochastic MAB model, as defined in Chapter 2, a stochastic
MAB problem is defined by K > 1 distributions νk (also called arms), used to generate the
i.i.d. samples Yk,t ∼ νk,∀t. An agent chooses arm A(t) ∈ [K] at time t and observes the reward
r(t) = YA(t),t without knowing the other (hidden) rewards. Her goal is to maximize

∑T
t=1 r(t)

by sequentially exploring the K arms, and she essentially has to find and exploit the best one
as fast as possible.

Simulation loop for single-player MAB. Any simulation library targeting single-player
bandit problems must implement at least three components: reward distributions, MAB algo-
rithm, and a simulation loop that essentially looks like this. First, initialize the MAB problem
and one or more algorithms, Then, for t = 1 to t = T (known before hand), repeat the following
block (for each algorithm). Ask algorithm A her chosen arm A(t), then sample a (random)
reward r(t) (i.i.d.) from distribution νA(t), and finally feeds the observation (A(t), r(t)) to the
algorithm, At the end, compute the cumulated reward, the regret, plot visualizations etc. Note
that the second step is repeated a large number of times (e.g., N = 100), in order to study mean
regret and not only the regret in one single trajectory. If one wants to compare algorithms on
a same problem, it is possible to sample all the rewards (Yk,t)k∈[K],t∈[T ] before-hand, and store
them so that for each repetition of the simulation, the randomness from the environment (i.e.,
the rewards) has the same impact on all the algorithms.

Simulation loop for multi-players MAB. For Cognitive Radio dealing with OSA problems
and other applications, a well-studied extension is to consider M ≥ 2 players, interacting
on the same K arms. Whenever two or more players select the same arm at the same time
(e.g., for OSA, the same frequency channel), they all suffer from a radio collision. Different
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collision models have been proposed, and the simplest one consists in giving a 0 reward to each
colliding players. Without any centralized supervision or coordination between players, they
must learn to access the M best resources (i.e., arms with highest means) without collisions.
We refer to Chapter 6 which introduces the multi-players bandit model.

SMPyBandits implements all collision models found in the literature (in the module
Environment.CollisionModels), as well as all the algorithms known by the authors (in the
module PoliciesMultiPlayers). It includes rhoRand from [AMTA11], MEGA from [AM15],
MusicalChair from [RSS16], and our state-of-the-art algorithms RandTopM and MCTopM from
[BK18a]. For comparison, realistic (e.g., UCB for multiple play) or full-knowledge centralized
algorithms are also implemented.

Any simulation library targeting multi-players bandit problems must implement at least
another component: a simulation loop that essentially looks like this. First, initialize the MAB
problem with M players, and one or more cohorts of M players (one player is one algorithm,
usually M times the same one), Then, for t = 1 to t = T (known before hand), repeat the
following block (for each algorithm). Ask each player A(j) her chosen arm A(j)(t), then query
the collision model1 to know which player will get a zero reward (for a collision) and which
player will get a random reward from the environment. The sample (random) feedback Yk,t

(i.i.d.) from distributions νk, and compute the rewards r(j)(t) from the random feedback and
the collision model. Finally feeds the observation (A(j)(t), YA(j)(t)(t), r(j)(t)) to player j, for all
the M players, At the end, compute the accumulated reward, the regret, plot visualizations
etc.

3.2.2 Reward distributions

We focus on one dimensional distributions, implemented in the Arms module. The library sup-
ports discrete distributions: Bernoulli (Bernoulli), binomial (Binomial), Poisson (Poisson), and
a generic discrete distribution (DiscreteArm), as well as continuous distributions, which can
be truncated to an interval [a, b] or have unbounded support (R): exponential (Exponential),
gamma (Gamma), Gaussian (Gaussian) and uniform (Uniform). The default is to use the same
distribution for the K arms, as this is the setting studied in the literature, but it also possible to
mix them. For instance the following code in Code 3.1 creates three arms, following a Bernoulli
distribution with respective means 0.1, 0.5, 0.9, and a MAB object which encapsulates the prob-
lem. We give another example for truncated Gaussian distributions, and a visualization of a
histogram of 10000 rewards obtained from the arms, below in Figure 3.1.

For more details, an interested reader can refer to the following Jupyter notebook [K+16]:
SMPyBandits.GitHub.io/notebooks/Easily_creating_MAB_problems.html.

1 The default collision model is the most widely studied in the literature, where a player encounters a collision
(i.e., received a zero reward Y (j)(t) = 0) if she is not the only one to have chosen an arm k = A(j)(t), otherwise
Y (j)(t) = rA(j)(t)(t) if she is the only one playing this arm.
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1 from SMPyBandits.Arms import *
2 arm1 = Bernoulli(0.1)
3 arm2 = Bernoulli(0.5)
4 arm3 = Bernoulli(0.9)
5

6 means = [0.1, 0.5, 0.9]
7 from SMPyBandits.Environment import MAB
8 bernoulli_problem = MAB([arm1, arm2, arm3])
9 # but also

10 bernoulli_problem = MAB({'arm_type': Bernoulli, 'params': means})
11

12 gaussian_problem = MAB({'arm_type': Gaussian, 'params': means})
13 gaussian_problem.plotHistogram() # display the histogram shown below

Code Example 3.1 – Example of Python code to create Bernoulli and Gaussian arms, a MAB problem
with K = 3 arms, a plot a histogram of rewards, with SMPyBandits
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Figure 3.1 – Histogram of 10000 i.i.d. rewards obtained from three arms with a Gaussian distribution
truncated to [0, 1], of respective means 0.1, 0.5 and 0.9.

We have not yet added support for higher dimensional distributions of rewards, e.g., linear
bandit, but it would be an interesting extension of SMPyBandits. However, note that our
library does support finite-state real-valued Markov MAB models, where arms correspond to
Markov chains [Nor98], in the two rested/restless variants, as introduced by [AVW87b].

3.2.3 Multi-Armed Bandits algorithms

SMPyBandits is a complete open-source implementation of single-player (classical) bandit
algorithms, containing over 65 algorithms (in the module Policies). It uses a well-designed
hierarchical structure and class inheritance scheme (as detailed on the various UML diagrams
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shown on the uml_diagrams folder) to minimize redundancy in the codebase. For instance,
most existing algorithms are index policies (see Algorithm 2.2), and new ones are easily
written by inheriting from the IndexPolicy class (Policies.IndexPolicy). They compute
an index Ik(t) ∈ R for each arm k at time t, and play A(t) = arg maxk Ik(t). For instance the
code specific to UCB1 is as short as this (and fully documented):

1 from numpy import sqrt, log
2 from .IndexPolicy import IndexPolicy
3

4 class UCB(IndexPolicy):
5 """ The UCB policy for bounded bandits.
6 Reference: [Lai & Robbins, 1985]. """
7

8 def computeIndex(self, arm):
9 r""" Compute the current index, at time t and

10 after :math:`N_k(t)` pulls of arm k:
11

12 .. math::
13

14 I_k(t) = \frac{X_k(t)}{N_k(t)}
15 + \sqrt{\frac{2 \log(t)}{N_k(t)}}.
16 """
17 if self.pulls[arm] < 1: # forced exploration
18 return float('+inf') # in the first steps
19 else: # or compute UCB index
20 estimated_mean = (self.rewards[arm] / self.pulls[arm])
21 exploration_bias = sqrt((2 * log(self.t)) / self.pulls[arm])
22 return estimated_mean + exploration_bias

Code Example 3.2 – Code defining the UCB algorithm, as a simple example of an Index Policy.

3.2.4 Summary of the features

With this numerical framework, simulations can run on a single CPU or a multi-core machine
using joblib [Var17] (see Appendix 3.6.6), and summary plots are automatically saved as high-
quality PNG, PDF and EPS, using matplotlib [Hun07] and seaborn [W+17]. Raw data from
each simulation is also saved in an HDF5 file, using h5py [C+18], an efficient and compressed
binary format, to allow easy post-mortem manipulation of any simulation results. Making new
simulations is very easy, one only needs to write a configuration script (configuration.py),
without needing a complete knowledge of the internal code architecture.
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3.2.5 Documentation

A complete documentation, for each algorithm and the entire codebase, is available online
at SMPyBandits.GitHub.io. It uses the Sphinx software [B+18], and the content is directly
written in the Python files as docstrings, so users have access to the documentation from within
their IDE or the Python console. The most interesting component of the library is the many
MAB algorithms being implemented: for each of them, the documentation gives a reference
to a research paper (e.g., [KCG12] for BayesUCB), as well as a bird-eye view of its behavior. For
most algorithms, especially for index policies, the internal variables of the implementation
are carefully linked to the notations of each paper, and formulas explaining the way the
algorithm selects its arm are usually given. Whenever it is needed, we also included warnings
or information about the empirical performance of the more costly algorithms.

The documentation also contains extensive examples of all intermediate numerical func-
tions, that are also used as tests (using doctest.testmod from the standard library). For
example, Figures 3.2 and 3.3 below show four screenshots from the documentation. We show
the main page, the list of algorithms in the Policies module, an example of the documenta-
tion of one algorithm (for the kl-UCB-Switch algorithm from [GHMS18]), and a page detailing
the API and organization of the library as well as instructions to follow if someone wants to
implement a new model or a new algorithm.

Figure 3.2 – Screenshots from two pages of the documentation: the homepage
(SMPyBandits.GitHub.io), and a list of all the algorithms in the Policies module.
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Figure 3.3 – Screenshots from two other pages of the documentation: the klUCBSwitch policy, and
details of the code organization, to know how to add a new policy.

3.2.6 How to run experiments?

We show how to install SMPyBandits, and an example of how to run a simple experiment. See
this page SMPyBandits.GitHub.io/How_to_run_the_code.html for more details. SMPyBan-
dits is also available on Pypi, see pypi.org/project/SMPyBandits, you can install it directly
with sudo pip install SMPyBandits, or from a virtualenv [BP+16]. This bash code shows
how to clone the code, and install the requirements for Python 3 (once):

1 # 1. get the code in the folder you want
2 $ git clone https://GitHub.com/SMPyBandits/SMPyBandits.git
3 $ cd SMPyBandits.git
4 # 2. install the requirements
5 $ pip install -r requirements.txt

Code Example 3.3 – Example of Bash code to download and install dependencies of SMPyBandits.

Simulations are easily executed, e.g., Code 3.4 shows how to start N = 1000 repetitions of a
simple non-Bayesian Bernoulli-distributed problem, for K = 9 arms, an horizon of T = 10000
and on 4 CPU. It takes about 20 min, on a 4-core 64-bit GNU/Linux laptop. Environment
variables (N=1000 etc) in the command line are not required, but they are convenient.

3.2.7 Example of a simulation and illustration

A small script configuration.py is used to import the arm classes (Arms module), the pol-
icy classes (Policies module) and define the problems and the experiments. Choosing
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1 # 3. run a single-player simulation
2 $ BAYES=False ARM_TYPE=Bernoulli N=1000 T=10000 K=9 N_JOBS=4 \
3 MEANS=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] \
4 python3 main.py configuration.py

Code Example 3.4 – Example of Bash code to run a simple experiment with SMPyBandits.

the algorithms to include is done by changing the configuration["policies"] list in the
configuration.py file. For instance, one can compare the standard anytime kl-UCB algo-
rithm (class klUCB in Policies module) against the non-anytime variant kl-UCB++ algorithm
(klUCBPlusPlus), and also UCB with α = 1 (UCB) and Thompson sampling (Thompson) with
a Beta posterior (Posterior.Beta)).

1 configuration["policies"] = [
2 {"archtype": klUCB, "params": {"klucb": klucbBern}},
3 {"archtype": klUCBPlusPlus,
4 "params": {"horizon": T, "klucb": klucbBern}},
5 {"archtype": UCBalpha, "params": {"alpha": 1}},
6 {"archtype": Thompson, "params": {"posterior": Beta}}
7 ]

Code Example 3.5 – Example of Python code to configure the list of algorithms tested on a problem.

Running the simulation as shown above will save figures in a sub-folder, as well as save
data (pulls, rewards, regret and other data) in a HDF5 file2 [C+18]. Figure 3.4 above shows
the average regret for these 4 algorithms. The Figure 3.5 below shows the histogram of regret
obtained at the end of the experiment (i.e., RT ) for the same example.

3.2.8 Dependencies

This library is written in Python [Fou17], for versions 2.7+ or 3.4+, using matplotlib [Hun07]
for 2D plotting, numpy [vdWCV11] for data storing, random number generations and opera-
tions on arrays, scipy [JOP+01] for statistical and special functions, and seaborn [W+17] for
clean plotting and colorblind-aware colormaps.

Optional dependencies include joblib [Var17] for parallel simulations, numba [I+17] for
automatic speed-up on small functions using a Just-in-Time compiler, sphinx [B+18] for
generating the documentation, virtualenv [BP+16] for launching simulations in isolated
environments, and jupyter [K+16] used with ipython [PG07] to experiment with the code.

2 For example, this simulation produced this HDF5 file
GitHub.com/SMPyBandits/SMPyBandits/blob/master/plots/paper/example.hdf5
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Figure 3.4 – Example of a single-player simulation showing the average regret of four algorithms. They
all perform very well: each algorithm is known to be order-optimal (i.e., its regret is proven to match
the lower-bound up-to a constant), and each but UCB is known to be asymptotically optimal (i.e., with
the constant matching the lower-bound).
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All the quoted libraries are free and open-source and can be installed in one command
using the pip (pip.PyPa.io) or conda (conda.anaconda.org) package manager. When SMPy-
Bandits is installed using pip install SMPyBandits, the dependencies are of course auto-
matically installed if not already present.

3.2.9 Continuous integration with Read the Docs and Travis CI

Since 2017 and 2018, SMPyBandits is using two online continuous integration (CI) service,
to automatically build and host the documentation, and to automatically test the library on
some numerical simulations. These CI services are free for open-source works, and are both
triggered whenever a modification of the codebase is sent to the hosting platform (i.e., GitHub).

Read the Docs. Since 2017, we have been using the free web service provided by Read the
Docs (ReadTheDocs.org). Read the Docs allows to automatically build the documentation
after every commit. This allows to regularly check that the library is well formatted and can be
imported correctly, as well as keeping the online documentation up-to-date. Moreover, they
offer to host the documentation online, at SMPyBandits.ReadTheDocs.io. For more details,
see ReadTheDocs.org/projects/SMPyBandits. Since its first use, the service did about 180
builds, and about 10% of them were useful to detect newly introduced issues or bugs in
the code. The build is configured using the .readthedocs.yml file in SMPyBandits main
folder, and it builds the documentation in about two minutes. I have also been building the
documentation manually on a weekly basis, to also host it on SMPyBandits.GitHub.io thanks
to GitHub pages. In the last two years, the documentation saw about 8500 unique visits, while
the GitHub project have been visited about 3500 unique visits.

Travis CI. Since 2018, we use the free web service provided by Travis CI (Travis-CI.org).
Travis CI allows to automatically run short numerical simulations after every commit. This
allows to check that each modification on any part of the codebase does not break anything,
as well as giving an up-to-date example of log files that shows online the results of different
examples of experiments. The tests covers all the main models and almost all the algorithms
implemented in SMPyBandits, and it has been proven very useful to quickly find and fix
new bugs. For more details, see Travis-CI.org/SMPyBandits/SMPyBandits. Since its first
use, the service did about 160 builds, and about 30% of them were useful to detect newly
introduced issues or bugs in the code. The build is configured using the .travis.yml file
in SMPyBandits main folder, and it runs numerical experiments with a short horizon (e.g.,
T = 100 or T = 1000) and a small number of repetitions (i.e., N = 4), but covering all the
different models implemented by SMPyBandits (and even including some that are not covered
in this chapter, like the Markov model, or the sparse multi-players model). Builds typically
run for 15 minutes, and Travis CI have been proven to be very useful in our development
process.
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3.2.10 List of research works using SMPyBandits

SMPyBandits has been used for the following research articles since 2017, and it is used for
the previous and the next chapters of this thesis (except in Chapter 5).

• In [BKM18] and in Chapter 2 above, we used SMPyBandits to illustrate and compare
different aggregation algorithms3. We designed a variant of the Exp4 algorithm for
online aggregation of experts [BCB12], called Aggregator.

• In [BK18a] and in Chapter 6 below, we used SMPyBandits for all the simulations for
multi-players bandit algorithms4. We designed the two RandTopM and MCTopM algorithms
and proved than they obtain logarithmic regret in the usual setting, and outperform sig-
nificantly the previous state-of-the-art solutions (i.e., rhoRand, MEGA and MusicalChair).

• In [BK18b] (quickly presented in Appendix A), we used SMPyBandits to illustrate and
compare different "doubling trick" schemes5.

• In [BK19b] and [BK19a], and in Chapter 7 below, we used SMPyBandits for piece-wise
stationary MAB models (only for the single-player case). We illustrate and compare
different algorithms designed for this family of non-stationary problems6. We designed
the GLRklUCB policy, and implemented most of the state-of-the-art passive or active
adaptive policies, both adversarial- or stochastic-based, designed to tackle the piece-
wise stationary MAB problems. We also implemented a large benchmark of different
problems.

3.3 Experimental comparisons of state-of-the-art algorithms

In this section, we use the SMPyBandits library to compare experimentally various state-of-
the-art (single-player) algorithms on some MAB problems. We first detail the list of different
algorithms that we compare. We then give the results of the numerical experiments, in terms
of mean regret at the end of the experiment of different horizons T . Additional results in terms
of real measurements of time and memory are given and discussed in the next Section 3.4.

3 See the page SMPyBandits.GitHub.io/Aggregation.html on the documentation, which gives detailed in-
structions to reproduce the results presented in this research paper, details about the models and the notations,
and bibliographic references.

4 Similarly, see the page SMPyBandits.GitHub.io/MultiPlayers.html on the documentation.
5 Similarly, see the page SMPyBandits.GitHub.io/DoublingTrick.html on the documentation.
6 Similarly, see the page SMPyBandits.GitHub.io/NonStationary.html on the documentation.
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3.3 Experimental comparisons of state-of-the-art algorithms

3.3.1 Experimental setup: algorithms and problems

We consider the 9 following algorithms, and 7 more are described in Appendix 3.6.4. For
each of them, we give a bibliographic reference, that corresponds to a recent article studying
it and not the first one which introduced it. We give the chosen tuning of its parameters,
for parametric algorithms. Algorithms that are “not anytime” use the exact value of the
horizon T , and when increasing values of T are studied for the same problem, they use
the correct successive values. For reproducibility, we also give in “typewriter font” the
name of the corresponding class in the Policies module in SMPyBandits (e.g., UCB1 is
Policies.UCBalpha).

1. ε-greedy [BCB12] (EpsilonDecreasing), using εt = ε0/t, and ε0 = 0.1 (chosen arbitrar-
ily). It has a very small cost in terms of time and memory, but it usually achieves linear
regret.

2. Explore-then-Commit [GKL16] (ETC_KnownGap), that knows the horizon, and a lower-
bound on the gap between arms (chosen arbitrarily as δ = 0.01, valid for all problems).
Similarly to ε-greedy, it has a very small footprint in terms of time and memory, but
most of the times it only obtains large (linear) regret.

3. Exp3++ from [SL17] (Exp3PlusPlus), using α = 3 and β = 256 as advised. It is a recent
anytime variant of the Exp3 algorithm, which was proven to obtain good “best of both
world” performances.

4. UCB1 from [ACBF02] (UCBalpha), shown in Algorithm 2.2 above, using α = 1. It achieves
order-optimal problem-dependent bounds with a O(K ln(T )/∆2) regret.

5. kl-UCB from [CGM+13] (klUCB), also shown in Algorithm 2.2 above, using the Bernoulli
KL divergence and the corresponding kl-UCB indexes (coded as kullback.klucbBern).
It is computationally more costly that UCB, as at each time step t and for each arm k, a
convex optimization problem must be solved approximately, in order to compute the
K indexes. In practice, a few steps of a simple bisection search method are enough to
obtain a good numerical precision, and empirically we found that even in the worst
cases kl-UCB is no more than one order of magnitude slower than UCB.

6. Thompson sampling from [KKM12] (Thompson), using a Beta prior and posterior, initially
uniform (i.e., πk(0) = Beta(1, 1)). It is efficient in terms of storage, and even if K random
samples must be sampled from the arms posteriors at each time step t, Thompson
sampling is not much slower than UCB, if the random number generator used for the
simulations is efficient (it is the case for SMPyBandits, as we use numpy.random module
which relies on highly optimized C or Cython code).
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7. Bayes-UCB from [KCG12] (BayesUCB), using a Beta prior and posterior, initially uniform,
i.e., πk(0) = Beta(1, 1). It is comparable to Thompson sampling in terms of memory
complexity, but slower as computing a quantile is more costly than sampling from a
distribution. But in particular for Bernoulli distributed arms and for Beta posteriors and
priors, Bayes-UCB is only about twice as slow as Thompson sampling.

8. AdBandits from [TdSCC13] (AdBandits), using α = 1. In practice, it is usually (slightly)
more efficient than both Thompson sampling and Bayes-UCB in terms of regret, it is
comparable in terms of computation times, but costs more memory.

9. BESA (Best Empirical Sampled Average) from [BMM14], which is implemented with a
binary tournament, written in a naive but efficient way (i.e., not using recursive functions,
by using the BESA class with the ”non_recursive”=True option). But the extension to
K > 2 arms is still costly in terms of both time and memory, as illustrated below, and
blows-up exponentially when K increases.

We focused here on the most well known algorithms, discussed in Section 2.4, and two
others that are efficient but less known (AdBandits and BESA). To highlight that SMPyBandits
implements many other MAB algorithms proposed in recent works, we detail in Appendix 3.6.4
7 other algorithms. They are more recent (some from 2016, 3 from 2018 and 2 from early 2019)
and are usually more complex, or are based on a different point-of-view. The numerical
results presented below include these extra algorithms, to justify empirically that despite their
respective qualities, and despite being very efficient, it is reasonable to focus on UCB and
kl-UCB in the rest of this thesis, as they stay comparable with the state-of-the-art algorithms
but are simpler to implement (e.g., when comparing UCB to ApproximatedFHGittins or
MOSS-Anytime) to manipulate theoretically (e.g., when comparing kl-UCB to BESA, PHE or
RCB).

Randomly sampled problems. For brevity, we prefer to focus on a single kind of distribu-
tions (Bernoulli), but similar results were observed for other distributions, in particular for
(possibly truncated) Gaussian distributions.

For a fixed number of arms K ≥ 2, instead of simulating a large number of times the
same problem, we generate a new random problem for each independent run. We consider a
randomly generated vector of means, each being sampled uniformly at random in [0, 1], with a
minimum gap of ∆min, µ ∼ E(∆min, µmin, µmax), as well as minimum and maximum values of
µmin and µmax. This space E∆min is defined as {µ ∈ [µmin, µmax]K : mink ̸=k′ |µk −µk′ | ≥ ∆min}.
We use µmin = ∆min and µmax = 1−∆min, and the value used for ∆min is 0.1 for K ≤ 3 (for
“easy” problems), and 1

3K for K ≥ 5 (for “harder” problems).

Other parameters of the experiments. On the one hand, we fix K = 8 and we consider
increasing values for the horizon, from T = 1000 to T = 50000. On the other hand, we fix
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T = 5000 and we consider as well an increasing number of arms, from K = 2 to K = 32. For
all experiments, we run N = 1000 independent simulations. We show in Code 3.10 in the
Appendix below more details about how to run these experiments.

3.3.2 Experiments results

We give in the figures below the results of the experiments.
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Figure 3.6 – Regret vs different values of K (RT / ln(T )), for T = 5000 and for 16 algorithms. The y-axis
is in log-scale. All algorithms appear to have a regret slowly growing with respect to K, as predicted
by the regret bounds which are linear with respect to the number of arms, as predicted. Bayesian
algorithms appear to be the most efficient, and kl-UCB as well as UCB are also shown to be efficient.
Both the ε-greedy and Explore-then-Commit algorithms performed poorly, actually they achieve linear
regret.

Summary of the experiments. In the two Figures 3.6 and 3.7 included in this section, we are
able to check empirically that the regret of all the efficient algorithm indeed scales as predicted
by the theory, that is linearly in the number of arms, and logarithmically in the horizon, i.e.,
RT = O(K ln T ). The main take-away message is the following: in all the rest of this thesis,
we focus on two algorithms depending if simplicity or efficiency is favored:

• UCB is used in the more applied Chapter 5, when simplicity is favored,
• kl-UCB is used, in the two more theoretical Chapters 6 and 7, when efficiency is favored,

and when we analyze mathematically the performance of an algorithm that is running
on top of a classical stationary MAB policy, like our two contributions, MCTopM and
GLR.
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Figure 3.7 – Regret vs different values of T (RT /K), for K = 32 and for 16 algorithms. All efficient
algorithms appear to have a logarithmic regret with respect to the horizon, as predicted. The respective
ranking of all the algorithms also appears to remain preserved for different values of T , which is also
backed-up by theoretical results: if two algorithms A and A′ has a regret close to their regret bounds,
of the form RT ≤ O(K ln(T )), and the bound for A use a smaller constant than the bound for A′, A
should obtain a smaller regret than A′ no matter the horizon. Bayesian algorithms appear to be the
most efficient, and kl-UCB as well as UCB are also shown to be efficient. Finally, we also observe once
more than both the ε-greedy and Explore-then-Commit algorithms performed poorly, achieving linear
regret.

3.4 Comparing real measurements of time and memory costs

In this section, we report additional experiment results from the simulations described in
the previous Section 3.3. Instead of studying on the efficiency of the algorithms (i.e., their
regret), we report results of real measurements in terms of computational time as well as
memory storage. While the results reported in the previous section should not depend
on the implementation of the different algorithms, the results in this section concern real
measurements of both time and memory consumptions of the simulation software used for
these simulations. Hence, the reported results highly depend on many factors, including how
the code is written, and where and when it is run. We take precautions to ensure the fairness
of the comparison between the different algorithms, as detailed in Appendix 3.6.5.

Computational time. In Figure 3.8, we can see that Bayesian algorithms appear to be the
most efficient (i.e., in the bottom left corner), and kl-UCB is very close to their best empirical
performances. UCB, algorithms that were proven to perform similarly to UCB (i.e., PHE
and RCB), and other index policies inspired by UCB (ApprFHG, UCB†) enjoy very similar
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performances: a larger regret than Bayesian algorithms and kl-UCB, but a shorter running
time. This highlights a trade-off between optimality in terms of regret and computational
efficiency.

Moreover, in the two Figures 3.9 and 3.10, we are able to check empirically that the
computational time of all the efficient algorithm indeed scales as predicted by the theory, that
is linearly in the number of arms in the horizon, i.e., TT = O(KT ).
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Figure 3.8 – Normalized mean regret vs normalized running time (in micro-seconds), aggregating
the results from different values of K and T , for 16 algorithms. Both the x-axis and y-axis are in
log-scale. UCB and kl-UCB are among the best algorithms, while AdBandits, Thompson sampling
and Bayes-UCB slightly outperform them in terms of regret, and have similar running times.

Memory cost. Like for the computational cost discussed above, in Figure 3.11, we can see
that Bayesian algorithms like Thompson sampling again appear to be the most efficient (i.e.,
in the bottom left corner), and kl-UCB is close to their best empirical performances. UCB and
other index policies inspired by UCB (ApprFHG, UCB†) enjoy very similar performances:
a larger regret than Bayesian algorithms and kl-UCB, but a similar memory cost. This time,
there is no clear trade-off between optimality in terms of regret and memory cost, and based
on simply this Figure 3.11, one could advise to use Thompson sampling rather than kl-UCB.

Moreover, in the two Figures 3.12 and 3.13, we are able to check empirically that the
memory cost of all the efficient algorithm indeed scales as predicted by the theory, that is
linearly in the number of arms but independently of the horizon, i.e.,MT = O(K).
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Figure 3.9 – Normalized running time vs different values of K (TT /T ), for T = 5000 and for 16
algorithms. y-axis is in log-scale. All algorithms except BESA has a linear normalized running time,
meaning that for K arms they use a computation time proportional to K, as predicted: TT = O(KT ).
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Figure 3.10 – Normalized running time vs different values of T (TT /T ), for K = 32 and for 16 algorithms.
y-axis is in log-scale. All algorithms except BESA has a constant normalized running time, meaning
that for T rounds they use a computation time proportional to T , as predicted: TT = O(KT ).

Summary of the experiments. The main take-away message is the following: the simplest
(but most efficient) algorithms have a memory cost proportional to the number of arms but
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Figure 3.11 – Normalized mean regret vs normalized memory costs (in bytes), aggregating the results
from different values of K and T , for 16 algorithms. Both the x-axis and y-axis are in log-scale.
Thompson sampling appears as the best algorithm in this visualization, while UCB has the advantage
of being memory efficient, and kl-UCB obtains similar performances.
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Figure 3.12 – Normalized memory cost vs different values of K (MT /K), for T = 5000 and for 16
algorithms. y-axis is in log-scale. All algorithms (except BESA) has an almost constant memory cost,
meaning that for K arms they use a storage proportional to K, as predicted: MT = O(K).

75



SMPyBandits: a state-of-the-art Python library to simulate MAB problems

0 10000 20000 30000 40000 50000
Different values of T the horizon of the experiment 

6

4

2

0

2

No
rm

al
ize

d 
m

em
or

y 
co

ns
um

pt
io

n 
T K
 (l

og
 sc

al
e) Normalized mean results as function of T (K = 8)

EpsilonDecreasing
ETC_KnownGap
Exp3++
UCB
kl-UCB
Thompson
BayesUCB
AdBandits
BESA
MOSS-Anytime
ApprFHG
UCB
kl-UCB-switch
Tsallis-Inf
RCB
PHE

Figure 3.13 – Normalized memory cost vs different values of T (MT /K), for K = 32 and for 16
algorithms. y-axis is in log-scale. All algorithms have a growing normalized memory cost, meaning
that for T rounds they use a computation time almost independent of T , as predicted: MT = O(K).

independent of the horizons, i.e., bounded by O(K), and a time complexity at each time step
t ∈ [T ] bounded by O(K), independent of t.

We also shown a trade-off between optimality in terms of regret, and efficiency in terms
of time complexity or memory cost. Our position regarding this trade-off is motivated by
Occam’s razor principle. On the first hand, if the algorithm should be implemented on a
cognitive radio device that has limited hardware capacity (for instance), one can reasonably
aim at the simplest yet order-optimal algorithms, and we advise to use UCB and algorithms
running on top of this simple index policy, as we do in Chapter 5. On the other hand, if one is
more interested in the mathematical developments and wants to prove the tightest possible
regret upper bounds, aiming at more efficient but more complex algorithms is interesting,
and we chose the kl-UCB algorithm in Chapters 6 and 7.
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3.5 Conclusion

In this chapter, we presented our Python library SMPyBandits, by detailing three main points:
(i) its purpose and qualities, (ii) its organization, and (iii) an overview of its usage:

(i) Its purpose is to easily implement numerical simulations of stochastic or piece-wise
stochastic problems of single- or multi-players multi-armed bandits. SMPyBandits is dis-
tributed on GitHub and Pypi freely, under an open-source license, and it is extensively docu-
mented (at SMPyBandits.GitHub.io). Our library allows any researcher to easily run numer-
ical simulations of different kinds of multi-armed bandit problems, requiring only a small
knowledge of Python thanks to its documentation, its well-designed API, and many examples
of simulation scripts and configuration files included.

(ii) We detailed how SMPyBandits is implementing arms, problems, algorithms, and
use these components to implement a simulation loop, with various visualizations being
performed after the simulation. As far as now, SMPyBandits is restricted to the finite-arm cases,
but it supports a wide range of arms distributions. Different kinds of models are implemented,
from stationary single-player to piece-wise stationary multi-players with different collision
models. One of the main qualities of the library is that it is quite exhaustive, as all the main
families of algorithms covering these different models have been implemented, even very
recent algorithms from the literature, as we tried our best in following the active research
since December 2016 to June 2019. More than 65 algorithms or variants of algorithms are
implemented for the single-player case, 5 for the expert aggregation problem, about 15 for
the multi-players case, and about 20 for the piece-wise stationary problem. All the codebase
is fully documented, and the library is using continuous integration to run automated tests
on the code after every modification. When comparing algorithms on a problem, the main
performance measure is the regret, but the library also computes, stores and visualizes other
measures, such as best-arm selection rate or mean cumulated reward, as well as real time and
memory costs.

(iii) Finally, we presented how to use SMPyBandits, if one wants to run some pre-designed
simulations or design new simulations. Running a simulation is very easy, and different
examples showed that the main parameters such as the time horizon T or the number of
repetitions can be configured directly from the command line when running the Python script,
or by modifying the code. Designing a new simulation requires to have a basic knowledge of
Python, but not to dive into the implementation of the library. We give below in Appendix 3.6
a small but complete example of the two files that has to be written for a new simulation:
a main file which essentially defines the desired visualizations after the simulation, and a
configuration file which defines the problems to simulate and their parameters, as well as
the algorithms that will be compared.
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We want to conclude by highlighting that a significant amount of time during my PhD was
devoted to the development of SMPyBandits, and as such the library, its documentation and
this chapter are considered an important contribution of this thesis. Our library is used for the
numerical simulations in all this thesis, except Chapter 5. We also used it in other publications
not included in this thesis, like our work on doubling tricks [BK18b] (see Appendix A).

Future works. An interesting future work left on our library SMPyBandits could be to imple-
ment variants of the single-player stochastic models, as well as variants for the multi-players or
the non-stationary cases. For more details, see the issue tickets at GitHub.com/SMPyBandits
/SMPyBandits/issues/. For instance it would be interesting to extend the library for prob-
lems with non-finite arms, e.g., linear or contextual bandit (ticket 117), or to add support for
the “dynamic case” of multi-players bandits to allow arrivals or departures of players (ticket
124). At the end of Chapter 6, we present many extensions of the multi-players bandit model,
and even if some have already been implemented, a major future work is to implement the
most interesting ones (tickets 120, 124, 185).

Since 2017, I also received by emails or by GitHub issues some requests to implement new
features or models. Most of them were implemented quickly, but some would require more
time and are left as possible future works. Two example of requests include a model where
the number of arm can change at some or all time step (an example of such model is called
“sleeping bandit”, issue 123), to implement the model of rotting bandits (issue 156), or to add
a web-based user interface for an even easier usage of the library requiring no command line
or knowledge of Python (issue 133).

Finally, the most exciting thing that could happen to our SMPyBandits library would be to
see it gaining popularity! Its documentation has seen already about 20000 visits, the project on
GitHub had 88 stars in June 2019, and based on the features requested and the emails received
about it, we counted between 15 to 25 researchers in other labs we use or used SMPyBandits.
While this is a good start, we believe that the library is mature and interesting enough to
hope to see it being used by more people. We have submitted a summary paper presenting
SMPyBandits [Bes18] to the MLOSS track of the Journal of Machine Learning Research (JMLR),
and we hope to be accepted, as it would give more visibility to our work.

As a personal note, I would like to continue working on SMPyBandits, and implement the
most important requested features, as well as maintain it, and possibly continue to add recent
algorithms by following actively the research in this community. I would also love to be able
in the next to teach a graduate or under-graduate course on multi-armed bandits, and use my
library as a support to illustrate the course, as well as practical sessions.
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3.6 Appendix

We start by giving a small but complete example of use of SMPyBandits, then we give additional
experimental results completing those presented in Section 3.3 and 3.4 above. We conclude by
a discussion on parallel multi-core CPU computations to speed-up SMPyBandits.

3.6.1 Minimalist example of use of SMPyBandits

Below is presented in Code 3.6 a minimalist example of use of the library, to define a toy bandit
problem with K = 2 Bernoulli distributed arms (of means µ = 0.1 and µ = 0.9), one UCB
algorithm, and play one experiment of horizon T = 1000. Only the mean reward is printed at
the end of the simulation. With Python 3.6 this example shows that the algorithm got a mean
reward very close to the optimal arm, µ̂ = 0.886 ≃ 0.9 = µ∗ = µ2.

The UCB algorithm obtains here a mean reward = 0.886

1 """ Example of use of SMPyBandits.
2 See https://SMPyBandits.GitHub.io/API.html for more details!"""
3 import numpy as np
4 np.random.seed(0) # for reproducibility
5 from SMPyBandits.Arms import Bernoulli
6 arms = [Bernoulli(0.1), Bernoulli(0.9)]
7 from SMPyBandits.Environment import MAB
8 my_MAB_problem = MAB(arms)
9 nbArms = my_MAB_problem.nbArms # 2 arms !

10 from SMPyBandits.Policies import UCB
11 my_UCB_algo = UCB(nbArms)
12 my_UCB_algo.startGame() # reset internal memory
13

14 horizon = 1000
15 for t in range(horizon): # simulation loop
16 chosen_arm = my_UCB_algo.choice()
17 observed_reward = my_MAB_problem.draw(chosen_arm)
18 my_UCB_algo.getReward(chosen_arm, observed_reward)
19

20 cumulated_reward = sum(my_UCB_algo.rewards) # random!
21 number_of_plays = sum(my_UCB_algo.pulls) # horizon = 1000
22 mean_reward = cumulated_reward / number_of_plays
23 print("The UCB algorithm obtains here a mean reward =", mean_reward)

Code Example 3.6 – Example of use of SMPyBandits.
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3.6.2 A minimalist main.py file

We present below in Code 3.7 a full example of a minimalist main.py file, which is used to
load the configuration, run the experiment and then print and plot various visualizations for
the simulation.

1 """ An example of a simple 'main' script.
2 Main scripts load the config, run the simulations, and plot them/
3 For the single player case.
4 """
5 from example_of_configuration_singleplayer import configuration
6 from SMPyBandits.Environment import Evaluator
7

8 configuration['showplot'] = True
9 evaluation = Evaluator(configuration)

10

11 # Start the evaluation and then print final ranking
12 # and do and show plot, for each environment
13 for envId, env in enumerate(evaluation.envs):
14 # Evaluate just that env
15 evaluation.startOneEnv(envId, env)
16

17 # Compare them
18 for envId, env in enumerate(evaluation.envs):
19 evaluation.plotHistoryOfMeans(envId)
20

21 print("\nGiving all the vector of final regrets ...")
22 evaluation.printLastRegrets(envId)
23 print("\nGiving the final ranking ...")
24 evaluation.printFinalRanking(envId)
25

26 print("\n\n- Plotting the last regrets...")
27 evaluation.plotLastRegrets(envId, boxplot=True)
28

29 print("\nGiving the mean and std running times ...")
30 evaluation.printRunningTimes(envId)
31 evaluation.plotRunningTimes(envId)
32

33 print("\nGiving the mean and std running times ...")
34 evaluation.printMemoryConsumption(envId)
35 evaluation.plotMemoryConsumption(envId)
36

37 print("\n\n- Plotting the mean reward...")
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38 evaluation.plotRegrets(envId, meanReward=True)
39

40 print("\n\n- Plotting the regret...")
41 evaluation.plotRegrets(envId)
42

43 print("\n- Plotting the probability of picking the best arm...")
44 evaluation.plotBestArmPulls(envId)
45

46 print("\n- Plotting the histograms of regrets...")
47 evaluation.plotLastRegrets(envId, sharex=True, sharey=True)
48

49 # Done
50 print("Done for simulations example_of_main_singleplayer ...")

Code Example 3.7 – Example of main.py file.

3.6.3 A minimalist configuration.py file

We present below in Code 3.9 a full example of a minimalist configuration.py file, which is
used to define the experiment. It defines the number of arms K and their distribution, the
horizon T , the policies to test etc. It uses environment variables, so a user can configure some
parameters of the simulation when launching them from a terminal:

1 $ T=50000 N=100 K=10 ARM_TYPE=Gaussian python main.py

Code Example 3.8 – Example of Bash code to run an experiment

1 """ An example of a configuration file to launch some the simulations
2 For the single-player case.
3 """
4 from os import getenv # to get command line variables
5

6 # Import arms
7 from SMPyBandits.Arms import *
8 # Import contained classes
9 from SMPyBandits.Environment import MAB

10 # Import single-player algorithms
11 from SMPyBandits.Policies import *
12

13 # HORIZON : number of time steps of the experiments.
14 # Warning Should be >= 10000 to be interesting "asymptotically".
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15 HORIZON = int(getenv('T', 10000))
16

17 # REPETITIONS : number of repetitions of the experiments.
18 # Warning: Should be >= 10 to be statistically trustworthy.
19 REPETITIONS = int(getenv('N', 100))
20

21 # Number of jobs to use for the parallel computations.
22 # -1 means all the CPU cores, 1 means no parallelization.
23 N_JOBS = int(getenv('N_JOBS', -1))
24

25 # Number of arms for non-hard-coded problems
26 NB_ARMS = int(getenv('K', 3))
27

28 # Lower value of means
29 LOWER = float(getenv('LOWER', 0))
30 # Amplitude value of means
31 AMPLITUDE = float(getenv('AMPLITUDE', 1))
32

33 # Type of arms for non-hard-coded problems
34 ARM_TYPE = mapping_ARM_TYPE[str(getenv('ARM_TYPE', "Bernoulli"))]
35

36 # Means of arms for non-hard-coded problems
37 MEANS = uniformMeans(nbArms=NB_ARMS, delta=0.05,
38 lower=LOWER, amplitude=AMPLITUDE, isSorted=True
39 )
40

41 # This dictionary configures the experiments
42 configuration = {
43 # --- Duration of the experiment
44 "horizon": HORIZON,
45 # --- Number of repetition of the experiment (to have an average)
46 "repetitions": REPETITIONS,
47 # --- Parameters for the use of joblib.Parallel
48 "n_jobs": N_JOBS, # = nb of CPU cores
49 # --- Should we plot the lower-bounds or not?
50 "plot_lowerbounds": True, # Default
51 # --- Arms: a list of configuration of environments
52 "environment": [
53 { # Use vector from command line
54 "arm_type": ARM_TYPE,
55 "params": MEANS
56 },
57 ],
58 # --- Policies: a list of configuration of algorithms
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59 "policies": [
60 # --- Stupid algorithm
61 {
62 "archtype": Uniform, # The stupidest policy, fully uniform
63 "params": {}
64 }, { # --- Fixed arm algorithm
65 "archtype": TakeFixedArm, # Take worse arm!
66 "params": { "armIndex": 0 },
67 }, {
68 "archtype": TakeFixedArm, # Take second worse arm!
69 "params": { "armIndex": 1 },
70 }, {
71 "archtype": TakeFixedArm, # Take third worse arm!
72 "params": { "armIndex": min(2, nbArms - 1) },
73 }, { # --- UCB algorithm
74 "archtype": UCBalpha, # UCB with alpha=1 parameter
75 "params": { "alpha": 1.0 }
76 }, { # --- Thompson algorithm
77 "archtype": Thompson,
78 "params": { "posterior": Beta }
79 }, { # --- KL UCB algorithm
80 "archtype": klUCB,
81 "params": { "klucb": klBern }
82 },
83 ]
84 } # DONE
85

86 print("Loaded experiments configuration:")
87 print("configuration =", configuration) # DEBUG

Code Example 3.9 – Example of configuration.py file.

3.6.4 Additional details about numerical experiments in Section 3.3

This Appendix section starts by describing 7 more algorithms that are also compared with the
9 presented above in Section 3.3.

10. MOSS-Anytime from [DP16], using α = 1 (MOSSAnytime). It is a recent variant of the
MOSS algorithm [BS12], using an adaptive tuning of its parameter. It is anytime, and
obtains good “best of both world” performances, meaning that it achievesO(K ln(T )/∆2)
regret for problem-dependent bounds, and O(

√
KT ) for problem-independent bounds.

Empirically, it performs usually similarly to UCB, and is slightly more costly in terms of
both time and memory.
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11. Approximated Finite-Horizon Gittins from [Lat16b] (ApproximatedFHGittins), using
α = 1. It mimics the UCB algorithm but uses a more complicated function to compute
the upper confidence bounds. It achieves order-optimal problem-dependent bounds
with a O(K ln(T )/∆2) regret. Empirically, it performs usually similarly to UCB and
MOSS-Anytime, and is slightly more costly in terms of both time and memory.

12. UCB† from the same author [Lat18] (UCBdagger), using α = 1. It mimics the UCB
algorithm but uses a much more complicated function to compute the upper confidence
bounds, and uses more storage. It also achieves order-optimal problem-dependent
bounds with a O(K ln(T )/∆2) regret. Empirically, it performs usually similarly to UCB
and MOSS-Anytime, and is slightly more costly in computation time, but it is much
more costly in terms of memory.

13. Anytime variant of KL-UCB-Switch from [GHMS18] (klUCBswitchAnytime), is a very
recent variant of the KL-UCB algorithm [CGM+13]. It mimics the KL-UCB algorithm
but uses a much more complicated function to compute the upper confidence bounds,
and uses more storage. It is anytime, and was prove to obtain good “best of both
world” performances, meaning that it achieves an asymptotically optimal O(ln(T ))
regret for problem-dependent bounds, and O(

√
KT ) for problem-independent bounds.

Empirically, it usually outperforms (slightly) kl-UCB in terms of regret, and costs about
the same memory, but it is slower.

14. Tsallis-Inf from [ZS18] (TsallisInf), using α = 1/2 (it seems to be the most efficient
of the algorithms described in the article). It is based on the online mirror descent
algorithm with a Tsallis entropy regularizer, and it is anytime. It was also proven to
obtain good “best of both world” performances. Empirically, we were unable to find
any problem were it performs as well as UCB (or any other efficient algorithm), and we
are confident that our implementation is correct7. Tsallis-Inf is also slower than UCB
(about as slow as KL-UCB-Switch), and costs an-order-of-magnitude more memory.

15. RCB (Randomized Confidence Bound) from [KT19] (RCB), using α = 1 and perturbations
uniformly sampled in [0, 1]. We prefer to use the simplest of the algorithms described in
the article, and other algorithms in the same article used other families of distributions for
the perturbations. It was analyzed and found to be order-optimal for problem-dependent
bounds, and empirically we found that it is usually performs slightly worse than UCB,
in terms of regret, time and memory. It is included because it remains comparably
efficient with the other state-of-the-art algorithms, and because the key message from

7Despite a serious amount of time spent on this implementation, maybe it has some bug which explains the
poor empirical performance obtained by Tsallis-Inf in our simulations. Exploring in more details this kind of
algorithms is very interesting, as algorithms based on online mirror descent make a rich connexion between
multi-armed bandit and online convex optimization [H+16], and a short-term future work in SMPyBandits will be
to explore different values of α for Tsallis entropy regularization, or other families of regularization.
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[KT19] is very interesting: “the optimism embedded in UCB can be replaced by simple
randomization”.

16. PHE (Perturbed-History Exploration) from [KSGB19] (PHE), using a perturbation scale
of 0.5 as advised. The algorithm adds O(t) i.i.d. pseudo-rewards to its history in round
t, and then pulls the arm with the highest estimated value in its perturbed history. It
was also analyzed and found to be comparable with UCB. Like RCB, PHE was found
to be empirically slightly worse than other state-of-the-art algorithms. Interestingly, its
time and memory consumption stay constant with respect to the step number t and
the horizon T , because generating and summing t pseudo-rewards from a Bernoulli
distribution can actually be done in O(1) time and space, by using efficient sampling
methods for sampling from a Binomial distribution.

Bash command to run these experiments. We give below in Code 3.10 a Bash command
to run the experiments presented in Sections 3.3 and 3.6.4 above. It uses for loops and
environment variables from Bash, and not Python, mainly for concision, but we could also
have done the same by writing a Python script that calls the main.py script for these values of
T and K.

1 $ for T in $(seq 5000 5000 50000); do \
2 DEBUG=False NOPLOTS=False SAVEALL=True N_JOBS=-1 N=1000 BAYES=True \
3 T=$T K=8 python3 main.py configuration.py \
4 && cp logs/main_py3_log.txt logs/main_py3_log__N1000_BAYES_T{T}_K8.txt \
5 done
6 $ for K in $(seq 2 2 32); do \
7 DEBUG=False NOPLOTS=False SAVEALL=True N_JOBS=-1 N=1000 BAYES=True \
8 T=5000 K=$K python3 main.py configuration.py \
9 && cp logs/main_py3_log.txt logs/main_py3_log__N1000_BAYES_T5000_K{K}.txt \

10 done

Code Example 3.10 – Bash code to run the large-scale experiments presented in Sections 3.3 and 3.6.4,
for K = 8 and T ∈ {5000, . . . , 50000} and T = 5000 and K ∈ {2, . . . , 32}.

3.6.5 Methodology details for measurements of time and memory

The results reported in Section 3.4 highly depend on many factors, including how the code is
written, and where and when it is run. We detail both below:

Quality and optimization of the code: The same level of optimization is used in all the codebase
of SMPyBandits, and most of the time, the code is pure and naive Python and was not
optimized. Mathematical functions (e.g.,

√
•, ln) and random numbers used are using numpy
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and numpy.random modules [vdWCV11], which are based on C and Cython code [BBS+19]
and can be considered highly efficient. Computations of Kullback-Leibler and indexes for
kl-UCB algorithms are based on a compiled CPython extension written in C [Fou17] and
can also be considered highly efficient. As we can safely affirm that the code of the different
algorithms has the same level of optimization, the comparison is fair, and we do not favor any
algorithm in their implementation in SMPyBandits.

About the experimental environment: the exact measurements used for the figures displayed
below highly depend on the machine used for the simulation, the version of the language and
its libraries (see above in Section 3.2.8 for details about SMPyBandits), as well as the number
of CPU cores being used (here, we used 12 cores in a 12-core desktop) etc. As long as the
different algorithms and simulations are performed on the same environment, the comparison
we make from them are fair and do make sense.

About the measurement protocol. To be precise, we used the two following approaches to
measure the real time and memory costs of the different algorithms.

For time, we used the time.time() function from Python’s standard library, that gives the
current time in micro-seconds. In the Evaluator object of SMPyBandits, before launching
the “for” loop on t ∈ [T ] for one algorithm, the system time is stored, and when the loop
is finished, the time used for this loop is the current system time minus the starting time.
This measurement gets averaged on the N = 100 (independent) repetitions, and consistently
measure the time efficiency of the algorithms.

For memory, we use two different approaches whether the code runs on a UNIX or a
Windows system. On UNIX, the resource module allows to measure the memory of the
current process, and by counting the difference in memory used by the Evaluator object
before and after the “for” loop, we can track the memory used by the algorithm to store all its
interior variables.

In both cases, the “for” loop takes some time and stores many variables, but the only
difference in terms of both time or memory between two algorithms is explained by the
difference in the implementation of the algorithms.

Comparing measurements. But what is important in these simulation results is not the exact
values, but rather to compare the costs of the different algorithms, and thus only the relative
difference in terms of time and memory costs are important. Relative difference for costs do
not depend much on the code and the machine used for the simulation. The computation
time is normalized, that is it is divided by the horizon, to count the (average) time used by
an algorithm at time t from t = 1 to t = T , while the memory cost is not normalized. Thus,
we can check that efficient algorithms have a running time independent on the horizon T ,
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instead of just observing a linear dependency, and we can check that efficient algorithms have
a memory cost independent on the horizon. All the considered algorithms in this Chapter
are efficient in this aspect, but in Chapter 7 we study algorithms that essentially have to store,
and run computations, on an increasing number of observations (e.g., CUSUM-UCB), so their
computation cost at time t increases (linearly) with t, and thus they are more costly. We can
also check that efficient algorithms have a running time and a memory cost linear in the
number of arms K, while more complex algorithms like BESA suffer from an exponential
blow-up of their complexity when K increases.

Normalizing data. The two figures below regret normalized data, in the following way. For
each algorithm, we ran simulations to obtain its (empirical) regret, computation time and space
requirement, for different problems with different values of K and T . Simply considering
the average of such measurements makes no sense, as for instance two values of the regret
for T = 1000 or T = 50000 do not have the same order of magnitude. We know that efficient
algorithms are expected to follow these patterns:

• The final regret RT should scale as O(K ln(T )),
• The total computation time TT should scale as O(KT ) (i.e., a computation time of O(K)

for each time step t),
• The total memory costMT should scale as O(K), independent of the horizon.

Thus, on the one hand, when we show aggregated results from all the different values of K

and T , we normalized the data by dividing the regrets by K ln(T ), the times by KT and the
memory by K. On the other hand, when we plot a quantity (RT , TT ,MT ) as a function of T

(resp. of K) we only normalize by K (resp. by T ).

3.6.6 Using multi-cores parallelism to speed-up simulations in SMPyBandits

Nowadays, parallelism is everywhere in the computational world, and any serious framework
for numerical simulations must try to gain performance from parallelism. In this last section,
we quickly review the chosen approach for SMPyBandits (multi-core on one machine).

For all the numerical simulations presented in this thesis, the setting is the same: we
consider a small set of p different problems, of time horizon T that we want to simulate for
N independent runs (e.g., p = 6, T = 10000 and N = 1000 like in Chapter 7). Because of the
fundamentally sequential nature of bandit games, each repetition of the simulation must be
sequential regarding the time steps t = 1, . . . , T , and so no parallelism can be done to speed
up this axis. But parallelism can help greatly for the two other axes: if we have a way to run in
parallel 4 processes, and we have p = 4 problems to simulate, then running a process for each
problem directly brings a speed-up factor of 4. Similarly, if we want to run 1000 repetitions of
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the same (random) problem, and we can run 4 processes in parallel, then running 1000/4 = 25
repetitions on each process also bring a speed-up factor close to 4.

Joblib for multi-core simulations. The first approach is to use multiple cores of the same
machines, and because it is both the simplest and the less financially as well as ecologically
costly, this is the approach implemented in SMPyBandits. The machines I had access to during
my thesis, either my own laptop or a workstation hosted the SCEE team in CentraleSupélec
campus, were equipped with i5 or i7 Intel CPU with 4 or 12 cores. As explained in the page
SMPyBandits.GitHub.io/How_to_run_the_code.html, we implemented in SMPyBandits an
easy way to run any simulations on n cores of a machine, using the Joblib [Var17] library.

It is implemented in a completely transparent way, and if someone uses the command-
line variable to configure experiments, switching from using one core to using all the cores
of the machine is as simple as changing N_JOBS=1 to N_JOBS=-1, like in the Code Exam-
ple 3.11 below. Similarly, changing from within the Python code is simple, by changing the
configuration["n_jobs"] value.

1 $ BAYES=False ARM_TYPE=Bernoulli N=1000 T=10000 K=9 N_JOBS=1 \
2 python3 main.py configuration.py # on only one core
3

4 $ BAYES=False ARM_TYPE=Bernoulli N=1000 T=10000 K=9 N_JOBS=-1 \
5 python3 main.py configuration.py # parallel on all the cores
6

7 $ BAYES=False ARM_TYPE=Bernoulli N=1000 T=10000 K=9 N_JOBS=100 \
8 python3 main.py configuration.py # parallel with too many jobs

Code Example 3.11 – Running a simulation using either one CPU core with N_JOBS=1, or all of them
with N_JOBS=-1, or more jobs than CPU cores with N_JOBS=20 (if there are 4 cores). The later option is
not advised, and N_JOBS=-1 gives the optimal speed-up factor.

Effect of the number of jobs. As long as the number of jobs (N_JOBS here) is less then
or equal to the number of physical cores in the CPU of the computer, the final speed-up in
terms of total computation runtime is almost optimal. But jobs are implemented as threads,
so the speed-up cannot be more than the number of cores, and using for instance 20 jobs on
4-cores for the 20 repetitions is sub-optimal, as the CPU will essentially spend all its time
(and memory) managing the different jobs, and not actually doing the simulations. Using
the above example, we illustrate the effect of using multi-jobs and multi-cores on the time
efficiency of simulations using SMPyBandits. We consider three values of N_JOBS, 1 to use
only one core and one job, 4 to use all the 4 cores of my i5 Intel CPU, and 100 jobs. We give in
Table 3.1 an example of running time of an experiment with T = 10000, and different number
of repetitions and number of jobs. These three experiments correspond to the three lines of
Code Example 3.11 shown above. The results of Table 3.1 clearly illustrate that using more jobs
than the number of CPU is sub-optimal, and that as soon as the number of repetitions is large
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enough, using one job by available CPU core (i.e., here 4 jobs) gives a significant speed-up time.
Due to the cost of orchestrating the different jobs, and memory exchanges at the end of each
repetition, the parallel version is not 4 times faster, but empirically we always found it to be 2 to
3.5 times faster. Similar conclusions can be drawn from Figure 3.14, which reports the results
of the same experiment on a machine with ncores = 12 CPU cores. More details are included
in the documentation page SMPyBandits.github.io/About_parallel_computations.html

Repetitions N_JOBS= 1 N_JOBS= 4 (= ncores) N_JOBS=20 (> ncores)
N = 1 repetition 15 s 26 s (0.57%) 43 s (0.34%)

N = 10 repetitions 87 s 51 s (1.70%) 76 s (1.14%)
N = 100 repetitions 749 s 272 s (2.75%) 308 s (2.43%)
N = 500 repetitions 2944 s 1530 s (1.92%) 1846 s (1.59%)

Table 3.1 – Effect on the running time of using N_JOBS jobs in parallel, on a machine with ncores = 4
CPU cores, for a simulation with 9 different algorithms, for K = 9 arms, a time horizon of T = 10000.
The percentages are the relative gains in comparison with the non-parallel simulation.
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Figure 3.14 – Relative gain on the running time in comparison to using one job, as a function of the
number of jobs N_JOBS, for a ncores = 12-core machine running the simulation of Code Example 3.11.
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Chapter 4

Expert aggregation for online MAB
algorithms selection

In this chapter, we discuss the question of online algorithm selection. We tackle the question of
how to select a particular bandit algorithm when a practitioner is facing a particular (unknown)
bandit problem. Instead of always choosing a fixed algorithm, or running costly benchmarks
before real-world deployment of the chosen algorithm, we advise to select a few candidate
algorithms, where at least one is expected to be very efficient for the given problem, and use
online algorithm selection to automatically and dynamically decide the best candidate. We
proposed an extension of the Exp4 algorithm for this problem, Aggregator, and illustrate its
performance on some bandit problems.
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4.1 Different approaches on algorithm selection

For any real-world applications of MAB algorithms, several solutions have been explored
based on various models, and for any model, typically there are many algorithms available,
as we have seen above. We gave in Section 2.4 an overview of the main families of algorithms
designed to tackle stochastic MAB problems, and we mainly focused on the UCB1, kl-UCB and
Thompson sampling algorithms. But a rich research literature has produced many different
algorithms tackling the MAB problem, as suggested for instance by the length of the reference
book [LS19]. Thus, when a practitioner is facing a problem where MAB algorithms could
be used, it is not an easy task to decide which algorithm to use. It is hard to predict which
solution could be the best for real-world conditions at every instant, and even by assuming a
stationary environment, when one is facing a certain problem but has limited information
about it, it is hard to know beforehand which algorithm can be the best solution.

In this chapter, we first present two naive approaches for selecting an algorithm when
facing a new problem, and then we detail the online approach that uses a “leader” MAB
algorithm running on top of a pool of “followers” algorithms, and we present our contribution
that is a new “leader” algorithm based on Exp4.

Publication. This chapter is based on our article [BKM18].

Outline. This chapter is organized as follows. First, we give more motivations in the
rest of this section, then we explain how to combine such stationary MAB algorithms and
aggregate them. We present our proposed algorithm, called Aggregator, in Section 4.2, Finally,
we present numerical experiments in Section 4.3, on Bernoulli and non-Bernoulli MAB prob-
lems, comparing the regret of several algorithms against different aggregation algorithms.
Theoretical guarantees are shortly discussed, before we conclude in Section 4.4.

4.1.1 Motivation for online algorithm selection

Many different learning algorithms have been proposed by the machine learning community,
and most of them depend on several parameters, for instance α for UCB1, the prior for Thomp-
son sampling or BayesUCB, the kl function for kl-UCB etc. Every time a new MAB algorithm
A is introduced, it is compared and benchmarked on some bandit instances, parameterized
by µ = (µ1, . . . , µK), usually by focusing on its expected regret RA

T . For a known and specific
instance, simulations help to select the best algorithm in a pool of algorithms, but when one
wants to tackle an unknown real-world problem, one expects to be efficient against any problem,
of any size and complexity in a certain family: ideally one would like to use an algorithm that
can be applied identically against any problem of such family.
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Naive approaches: On the one hand, a practitioner can decide to pick one algorithm, maybe
because it seems efficient on other problems, or maybe because it is simple enough to be used
in its application. It might be unrealistic to implement complicated algorithms on limited
hardware such as embedded chips in a very low-cost IoT end-device, and for instance a
practitioner could chose to only consider the UCB1 algorithm (or other low-cost algorithms).
On the other hand, if prior knowledge on the application at hand is available, one could
implement some benchmarks, and compare a set of algorithms on different problems. If a
leader appears clearly, it is then possible to choose it for the application.

Illustrative example: For instance, if you know that the considered problem can either have
K arms with very close means, or one optimal arm far away from the other, two versions
of UCB1 will perform quite differently in the two problems: using a large α, i.e., favoring
exploration, will give low regret in the first case, while using a low α, i.e., favoring exploitation,
will give low regret in the second case. One approach can be to use an intermediate value, as
α = 1/2 suggested by theory, but another approach could be to consider an aggregated vote
of different versions of UCB1, each running with a different value of α (e.g., in a logarithmic
grid), and let another learning algorithm decide which value of α is the best for the problem at
hand.

4.1.2 Online algorithm selection with expert aggregation

Another possibility is to consider an online approach, which is interested in the case where
the computation power or memory storage of the application is not a limitation factor, but
where one cannot run benchmarks before deploying the application. We consider a fixed set
of algorithms, and we use another learning algorithm on top of this set, to learn on the fly
which one should be trusted more, and eventually, used on its own.

The aggregation approach is especially interesting if we know that the problem the appli-
cation will face is one of a few known kinds of problems. In such cases, if there are N different
sorts of problems, and if the practitioner has prior knowledge on it, one can use the naive
approach to select an algorithm Ai which should perform well on problem i, for i ∈ [N ], and
use the aggregation of A1, . . . ,AN when facing the unknown problem.

As we said, a third possible approach is to select on the run the best algorithm for a specific
situation, for which the so called expert aggregation algorithms framework can be useful. To the
best of our knowledge, aggregation algorithms, such as Exp4 which dates back from 2002
[ACBF02], have never been used in practice for stochastic MAB problems. For instance, if
we look at the applications of MAB for Opportunistic Spectrum Access, like it was proposed
in [JEMP09, JEMP10, JMP12], online selection of MAB algorithms was never discussed, and
usually the considered algorithm is simply UCB1, without discussion regarding this choice.
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4.1.3 Aggregating bandit algorithms

We assume to have N ≥ 2 MAB algorithms, A1, . . . ,AN , and let Aaggr be an aggregation
algorithm, which runs the N algorithms in parallel (with the same slotted time), and use
them to choose its arms based on a voting from their N decisions. Aaggr depends on a pool
of algorithms and a set of parameters. We would like that Aaggr performs almost as well as
the best of the Aa, with a good choice of its parameters, independently of the MAB problem.
Ideally Aaggr should perform similarly to the best of the Aa. To simplify the presentation, we
restrict in Algorithm 4.1 to bandit algorithms that give deterministic recommendations: one
arm is chosen with probability 1 and the others with probability 0. However, both Exp4 and
Aggregator can be adapted to aggregate randomized bandit algorithms, i.e., algorithms that
output a probability distribution q(t) = (qk(t))k∈[K] over the K arms at each time step, and
draw the next selected arm according to this distribution. For instance, Thompson sampling
uses its posterior distribution, or UCB can use a distribution with a mass of 1/n if there are
n ≥ 2 arms of maximal index, in case of tie in the arg max.

The aggregation algorithm maintains a probability distribution πt on the N algorithms
Aa (i.e., πt ∈ ∆N the simplex of dimension N ), starting from a uniform distribution: πt

a is
the probability of trusting the decision made by algorithm Aa at time t. Aaggr then simply
performs a weighted vote on its algorithms: it first decides whom to trust by sampling a ∈ [N ]
from πt, then follows Aa’s decision: a ∼ πt, Aaggr(t) = A(t) = Aa(t). We prove below
that it is equivalent to first let all the algorithms decide their arm, i.e., Aa(t), and then to
compute ∀k ∈ [K], pt

k
.=
∑N

a=1 πt
a × 1({Aa(t) = k}), the weighted probability that one of the

N aggregated algorithms chose arm k, and finally to sample A(t) ∼ πt.

Proposition 4.1. The two following sampling schemes for the aggregated algorithm
Aaggr [A1, . . . ,AN ] are equivalent, i.e., they give the same distribution on the action chosen
by Aaggr, Aaggr(t) = A(t).

1. Sample a(t) ∼ πt first, then trusts Aa(t)’s decision: Aaggr(t) = A(t) = Aa(t)(t),

2. Let Aa(t) be the arm chosen by algorithm Aa (sampled from qt
a), for each a ∈ [N ], and

compute ∀k ∈ [K], pt
k

.=
N∑

a=1
πt

a × 1(Aa(t) = k). Then, play Aaggr(t) = A(t) ∼ pt.

Proof. For any fixed time step t ∈ [T ], we denote respectively P (t) and P ′(t) the distribu-
tion of action of the aggregated algorithm Aaggr at time t, respectively under the first and
second sampling scheme. Let qt

a ∈ ∆K be the distribution of the chosen action by algo-
rithm Aa (for a ∈ [N ]), that depends on the past observations (as well as some external
randomness, see Section 2.1). The first sampling scheme gives Pk(t) = P(Aaggr(t) = k) =
P(∪· Na=1Aaggr(t) = Aa(t) = k, a(t) = a) =

∑N
a=1 P(Aa(t) = k)P(a(t) = a) =

∑N
a=1 qa,k(t)πt

a,
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by independence of a(t) ∼ πt and Ai(t) ∼ qi(t) (for all i). The second sampling scheme
gives P ′

k(t) = P(Aaggr(t) = k) = E[pt
k] by definition, and E[pt

k] =
∑N

a=1 πt
aE[1(Aa(t) = k)] =∑N

a=1 πt
aP(Aa(t) = k) =

∑N
a=1 qa,k(t)πt

a. Thus we showed that Pk(t) = P ′
k(t), so the two

sampling schemes are equivalent, as claimed.

The main questions are then to know what observations (i.e., arms and rewards) should
be given as feedback to which algorithms, and how to update the trusts at each step, and
our proposal Aggregator differs from Exp4 on these very points. The considered aggregation
algorithms are special cases of the well-known multiplicative weights update algorithm.

4.2 Our contribution: the Aggregator algorithm

Our proposed Aggregator is detailed in Algorithm 4.1. At every time step, after having
observed a reward r(t) = YA(t),t for its chosen action A(t), the algorithm updates the trust
probabilities from πt to πt+1 by a multiplicative exponential factor (using the learning rate
and the unbiased reward). Only the algorithmsAa who advised the last decision get their trust
updated, in order to trust more the “reliable” algorithms.

Unbiased estimate of the rewards. The reward estimate is unbiased in the following sense.
If one had access to the samples Yk,t for all arms k, the reward incurred by algorithm a at time
t would be ra(t) = YAa(t),t. But we are not in the full information setting (see [CBL06]), but in
the bandit setting, so only one of the samples Yk,t can be observed, r(t) = YA(t),t. This quantity
can only be observed for those algorithms a for which At

a = A(t). However, by dividing by
the probability of observing this recommendation, one obtains an unbiased estimate of ra(t).
More precisely, if we define the estimate by

r̂a(t) .=
YAa(t),t
pt

Aa(t)
1(Aa(t) = A(t)) (4.1)

then it satisfies EOt [r̂a(t)|Ot] = YAa(t),t, for all a, where the expectation is taken conditionally
to the history of observations up to round t, Ot. Observe that r̂a(t) = 0 for all algorithms a

such that Aa(t) ̸= A(t).

An important feature of Aggregator is the feedback provided to each underlying bandit
algorithm, upon the observation of arm A(t). Rather than updating only the trusted algorithms
(that is the algorithms which would have drawn arm A(t)) with the observed reward r(t),
we found that updating each algorithm with the (original) reward observed for arm A(t)
improves the performance drastically. As expected, the more feedback they get, the faster the
underlying algorithms learn, and the better the aggregation algorithm is. This intuition is
backed up by theory explained in [MM11].
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1 Input: N bandit algorithms, A1, . . . ,AN , with N ≥ 2
2 Input: A sequence of learning rates, (ηt)t≥1, e.g., ηt = ln(N)/(tK)
3 Data: Initial uniform distribution, π0 = U([N ])
4 Result: Aaggr = Aggregator [A1, . . . ,AN ]
5 for t = 1, . . . , T do // At every time step
6 for a = 1, . . . , N do // Can be parallel
7 Aa updates its internal state (e.g., UCB indexes);
8 It chooses Aa(t) ∈ [K].
9 end

10 Let pt
k

.=
N∑

a=1
πt

a × 1(Aa(t) = k), ∀k ∈ [K];

11 Then Aaggr chooses arm A(t) ∼ pt;
12 Give original reward (A(t), r(t)) to each Aa (maybe not on its chosen arm);
13 Compute an unbiased estimate of the reward, r̂(t) = r(t)/pt

A(t);
14 for a = 1, . . . , N do
15 if Aa was trusted, i.e., Aa(t) = A(t) then
16 πt+1

a = exp(ηtr̂(t))× πt
a ; // Trusted more

17 else
18 πt+1

a = πt
a ; // Do not update the trust now

19 end
20 Renormalize the new weights πt+1: πt+1 .= πt+1/

∑N
a=1 πt+1

a .
21 end

Algorithm 4.1: Our algorithm Aggregator aggregating A1, . . . ,AN .

Regarding the update of πt, one can note that the trust probabilities are not all updated
before the normalization step, and an alternative would be to increase πa if Aa(t) = A(t) and
to decrease it otherwise. It would not be so different, as there is a final renormalization step, and
empirically this variation has little impact on the performance of Aggregator.

Comparison with Exp4: The Exp4 algorithm dates from [ACBFS02], and for instance it
is also well explained in Section 4.2 of [BCB12]. It is similar to Aggregator, presented in
Algorithm 4.1, but differs in the two following points. The first difference is that a ∼ πt is
sampled first and the arm chosen byAa is trusted, whereas Aggregator needs to listen to the N

decisions to perform the updates on πt. Then, Exp4 gives back an observation (i.e., a pair arm,
reward) only to the last trusted algorithm whereas Aggregator gives it to all algorithms. The
second difference is that after having computed the reward estimate r̂a(t), Exp4 updates the
estimated cumulative reward for each algorithm, R̃a(t) =

∑t
s=1 r̂a(t)×1(As

a = As
aggr). Instead

of updating πt multiplicatively as we do for our proposal, Exp4 recomputes it, proportionally
to exp(ηtR̃a(t)). Note that there is no difference for the case of constant learning rates, and it
does not differ much for decreasing learning rates as well.
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We also note that Exp4 uses losses instead of rewards, with ℓ(t) = 1− r(t), but this is only
a change of vocabulary.

How to choose the learning rates (ηt): The sequence of non-negative learning rates (ηt)t≥1

used by Exp4 can be arbitrary. It can be constant but should be non-increasing [BCB12,
Theorem 4.2]. If the horizon T is known (and fixed), the best choice is given by ηt

.= η =
2 ln(N)/(TK). However, for real-world communication problems, it can be considered unre-
alistic to assume a fixed and known time horizon. For more discussion on this hypothesis,
we refer to Section 1 of our article [BK18b], that we shortly present in Appendix A. Thus we
prefer the alternative horizon-free choice of learning rates, ηt

.= ln(N)/(tK) suggested by
[BCB12]. It is non-increasing, and is obtained by minimizing the upper-bound on the regret
derived in [BCB12, pp48]. We compared both approaches empirically, and the second one
usually performs better. We also stick to this sequence (ηt)t≥1 of decreasing learning rates for
Aggregator.

4.3 Experiments on simulated MAB problems

We focus on i.i.d. MAB problems, with K = 9 arms1. For Bernoulli problem, the first one
uses µ = [0.1, . . . , 0.9], and is considered as a “simple” problem. The second one is divided
in three groups: 2 very bad arms (µ = 0.01, 0.02), 5 average arms (µ = 0.3 to 0.6) and 3 very
good arms (µ = 0.78, 0.8, 0.82), and it is considered as a “harder” problem. The horizon is
set to T = 20000 (but its value is unknown to all algorithms), and simulations are repeated
1000 times, to estimate the expected regret. This empirical estimation of the expected regret
RT is plotted below2, as a function of T , comparing some algorithms A1, . . . ,AN (for N = 6),
and their aggregation with Aggregator (displayed in orange bold), using the parameter-free
learning rate sequence, ηt

.= ln N/(tK).

Note that for each of the N = 1000 simulations, we choose to generate all the rewards
beforehand, i.e., one full matrix (rk(t))1≤k≤K,1≤t≤T (for every repetition), in order to compare
the algorithms on the same realizations3 of the MAB problem.

We compare our Aggregator algorithm, as well as other aggregation algorithms, Exp4
from [BCB12], CORRAL from [ALNS17] and LearnExp from [AHK17], all with their default
parameters. The aggregated algorithms consist in: a naive uniform exploration (to have at

1 Similar behaviors are observed for other values, e.g., trying up-to K = 100 gave the same results.
2 The Lai & Robbins’ logarithmic lower-bound [LR85] is also plotted. It corresponds to the second case in

Theorem 2.7. It is crucial to note that the lower-bound is only asymptotic, and as such one should not be surprised
to see regret curves smaller than the lower-bound (e.g., for the easier Bernoulli problem in Figure 4.1).

3 Similar plots and similar results are obtained if this choice is not made, but it makes more sense to compare
them against the same randomization. Note that this choice is the default in SMPyBandits, but the other possibility
is implemented as well, by changing cache_rewards to true or false in the configuration dictionary. See
Section 3.6.3 for explanations on this configuration.py file, or the online documentation.
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least one algorithm with bad performances, i.e., linear regret, that is not included in the plots to
reduce clutter), UCB with α = 1/2, three kl-UCB algorithms (resp. with Bernoulli, Gaussian
and exponential kl functions), and BayesUCB and Thompson sampling with uniform prior.

Figures 4.1 and 4.4 are in semilog-y scale, this helps to see that the best algorithms can be an
order of magnitude more efficient than the worst, and the Aggregator performs similarly to the
best ones, when the other aggregation algorithms are usually amongst the worst. Figure 4.5 is
in semilog-x scale to show that the regret of efficient algorithms are indeed logarithmic.
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Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4), B(0.5), B(0.6), B(0.7), B(0.8), B(0.9) ∗ ]

Aggregator(N= 6)
Exp4(N= 6)
CORRAL(N= 6, broadcast to all)
LearnExp(N= 6, η= 0.9)
UCB(α= 1)
Thompson
KL-UCB(Bern)
KL-UCB(Exp)
KL-UCB(Gauss)
BayesUCB
Lai & Robbins lower bound = 7.52 log(T)

Figure 4.1 – On a “simple” Bernoulli problem (semilog-y scale).

For Bernoulli problems (Figures 4.1 and 4.2), UCB with α = 1/2, Thompson sampling,
BayesUCB and kl-UCB+ (with the binary kl function) all perform similarly, and Aggregator
is found to be as efficient as all of them. For Gaussian and exponential arms, rewards are
truncated into [0, 1], and the variance of Gaussian distributions is fixed to σ2 = 0.05 for all
arms, and can be known to the algorithms (the kl function is adapted to this one-dimensional
exponential family). Figure 4.3 uses only Gaussian arms, with a large gap between their
means and a relatively small variance, giving an “easy” problem. And Figure 4.4 shows
a considerably harder “mixed” problem, when the distributions are no longer in the same
one-dimensional exponential family and so the Lai & Robbins’ lower-bound no longer holds.

For each of the 4 problems considered, the Aggregator algorithm with default option (i.e.,
broadcast rewards to all the aggregated algorithms) is the best of all the aggregation algorithms,
and its regret is very close to the best of the aggregated algorithms. Especially in difficult
problems with mixed or unknown distributions, Aggregator showed to be more efficient
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Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [B(0.01), B(0.02), B(0.3), B(0.4), B(0.5), B(0.6), B(0.795), B(0.8), B(0.805) ∗ ]

Aggregator(N= 6)
Exp4(N= 6)
CORRAL(N= 6, broadcast to all)
LearnExp(N= 6, η= 0.9)
UCB(α= 1)
Thompson
KL-UCB(Bern)
KL-UCB(Exp)
KL-UCB(Gauss)
BayesUCB
Lai & Robbins lower bound = 101 log(T)

Figure 4.2 – On a “harder” Bernoulli problem, they all have similar performances, except LearnExp,
and our proposal Aggregator outperforms its competitors.
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Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [G(0.1, 0.05), G(0.2, 0.05), G(0.3, 0.05), G(0.4, 0.05), G(0.5, 0.05), G(0.6, 0.05), G(0.7, 0.05), G(0.8, 0.05), G(0.9, 0.05) ∗ ]

Aggregator(N= 6)
Exp4(N= 6)
CORRAL(N= 6, broadcast to all)
LearnExp(N= 6, η= 0.9)
UCB(α= 1)
Thompson
KL-UCB(Bern)
KL-UCB(Exp)
KL-UCB(Gauss)
BayesUCB
Lai & Robbins lower bound = 2.72 log(T)

Figure 4.3 – On an “easy” Gaussian problem, only Aggregator shows reasonable performances, thanks
to BayesUCB and Thompson sampling.

that Exp4 and orders of magnitude better than the other reference aggregation algorithms
LearnExp and CORRAL (see Figures 4.4 and 4.5).
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Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [B(0.1), G(0.1, 0.05),Exp(10, 1), B(0.5), G(0.5, 0.05),Exp(1.59, 1), B(0.9) ∗ , G(0.9, 0.05) ∗ ,Exp(0.215, 1) ∗ ]

Aggregator(N= 6)
Exp4(N= 6)
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KL-UCB(Gauss)
BayesUCB
Lai & Robbins lower bound = 7.39e+ 07 log(T)

Figure 4.4 – On a harder problem, mixing Bernoulli, Gaussian, Exponential arms, with 3 arms of each
type with the same mean.
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Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [B(0.1), G(0.1, 0.05),Exp(10, 1), B(0.5), G(0.5, 0.05),Exp(1.59, 1), B(0.9) ∗ , G(0.9, 0.05) ∗ ,Exp(0.215, 1) ∗ ]

Aggregator(N= 6)
Exp4(N= 6)
CORRAL(N= 6, broadcast to all)
LearnExp(N= 6, η= 0.9)
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Figure 4.5 – The semilog-x scale clearly shows the logarithmic growth of the regret for the best algo-
rithms and our proposal Aggregator, even in a hard “mixed” problem (cf. Figure 4.4).
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4.3.1 No theoretical guarantees.

The Aggregator does not have satisfying theoretical guarantees in terms of regret RT , unlike
many bandit algorithms. Another notion, the adversarial regret, denoted by RT , measures
the difference in terms of rewards, between the aggregation algorithm Aaggr and the best
aggregated algorithm Aa. This is in contrast with the (classical) regret, which measure the
difference with the best fixed-arm strategy (Definition 2.3). Thus, even if the aggregated
algorithms have logarithmic (classical) regret, having an adversarial regret scaling as

√
T does

not permit to obtain a logarithmic (classical) regret for the aggregation algorithm. Under some
additional hypotheses, [BCB12, Theorem 4.2] proves that Exp4 have a bounded adversarial
regret, RT ≤ 2

√
TN ln(K), with the good choice of the learning rate sequence (ηt)t≥1.

Our proposed algorithm follows quite closely the architecture of Exp4, and a similar
bound for Aggregator is expected to hold. This would be a first theoretical guarantee, but
not satisfactory as we saw above that simple algorithms (like UCB) have regrets scaling as
ln(T ) [ACBF02, BCB12], not

√
T . Regret bounds in several different settings are proven for the

CORRAL algorithm [ALNS17], but no logarithmic upper-bound can be obtained from their
technique, even in the simplest setting of stochastic bandits. However, Aggregator always
seems to have a (finite-horizon) logarithmic regret in all the experiments we performed, for both
Bernoulli and non-Bernoulli problems (e.g., Gaussian, exponential and Poisson distributions).
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4.4 Conclusion

In this chapter, we presented the first contribution of this manuscript, that corresponds to our
article [BKM18]. We presented the use of aggregation algorithms, especially for the real-world
setting of unknown problem instances, when tuning parameters before-hand is no longer
possible and an adaptive algorithm is preferable. Our proposed Aggregator was presented in
details, and we also highlighted its differences with Exp4.

We presented experiments on simple MAB problems, coming from previous work on
bandits for OSA [JEMP10], and the simulations results showed that Aggregator is able to
identify on the fly the best algorithm to trust for a specific problem, as expected. Experiments
on problems mixing different families of distributions were also presented, with similar
conclusions in favor of Aggregator.

Exp4 has theoretical guarantees in terms of adversarial regret, and even if the same result
could hold for Aggregator, results in terms of classical regret are yet to be proven. Empirically,
Aggregator showed to always have a logarithmic regret RT if it aggregates algorithms with
logarithmic regrets (like UCB, kl-UCB, Thompson sampling, BayesUCB etc). It usually suc-
ceeds to be close to the best of the aggregated algorithms, both in term of regret and best arm
pull frequency. As expected, the Aggregator is never able to outperform any of the aggregated
algorithms, but this was an over-optimistic goal.

What matters the most is that, empirically, Aggregator is able to quickly discover on the fly
the best algorithms to trust, and then performs almost as well as if it was following it from
the beginning. Our Aggregator algorithm could probably be rewritten as an Online Mirror
Descent (for more details, see for instance [H+16, ZS18]), as it is the case for both Exp4 and
CORRAL. But this direction does not appear very useful, as in the case of CORRAL the
analysis cannot bring a logarithmic regret bound, even by aggregating asymptotically optimal
algorithms.

Reproducility of the experiments. Experiments presented in this Section are based on
our library SMPyBandits, and the page SMPyBandits.GitHub.io/Aggregation.html gives
instructions to reproduce them.
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Chapter 5

Improving Spectrum Usage of IoT
Networks with Selfish MAB Learning

In this chapter, we propose two models of Internet of Things (IoT) networks, composed
of many independent IoT end-devices, that can use low-cost RL (Reinforcement Learning)
algorithms to learn to improve their spectrum access. Decentralized RL for IoT lets the devices
use acknowledgements sent by their Base Station as a reward, instead of sensing feedback
like for OSA. We consider many independent “dynamic” devices, communicating with a
small probability at every instant. Simulations show that dynamic devices can improve their
spectrum efficiency, by using MAB algorithms like UCB. We also developed a proof-of-
concept using USRP platforms, for a real-world validation of this approach. The first model
is interesting for its simplicity, and because considering no retransmission can improve the
battery life of IoT devices, at the cost of a lower Quality of Service (QoS).

However, in case of failed transmission of a message, a dynamic device can also retransmit
it up-to a fixed number of retransmission. We compare different heuristics, based on UCB,
and numerical simulations confirm that the non-naive heuristics significantly improve the
network efficiency. The second model is more interesting if the main target is an improvement
of the QoS, rather than a longer battery life.

Contents
5.1 Introduction and motivations for MAB learning for IoT Networks . . . . . 106

5.2 Selfish learning for many dynamic devices in an IoT network . . . . . . . 107

5.3 Test-bed implementation of our model for real-world validation . . . . . . 120

5.4 Extending the model to account for retransmissions . . . . . . . . . . . . . 128

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

105



Improving Spectrum Usage of IoT Networks with Selfish MAB Learning

5.1 Introduction and motivations for MAB learning for IoT Networks

After the first chapters that presented the model of MAB, we go back to the initial problems
studied in this thesis, and thus we focus on Internet of Things (IoT) networks. As explained in
the introduction in Chapter 1, unlicensed bands are more and more used and considered for
mobile and LAN communication standards (WiFi, LTE-U), and for Internet of Things (IoT)
standards for short-range (ZigBee, Z-Wave, Bluetooth) and long-range (LoRaWAN, SIGFOX,
Ingenu, Weightless) communications [CVZZ16]. This heavy use of unlicensed bands, in
particular with the expected exponential growth of the number of IoT devices, will cause
performance drop, due to radio collisions that could even compromise IoT promises.

Efficient Medium Access (MAC) policies allow devices to avoid interfering traffic and can
significantly reduce the spectrum contention problem in unlicensed bands. As end-devices
battery life is a key constraint of IoT networks, and as IoT networks are decentralized, because
the devices initiate transmissions, this leads to IoT protocols using as low signaling overhead as
possible and simple ALOHA-based mechanisms. In this chapter, we analyze the performance
of Multi-Armed Bandits (MAB) algorithms, that could be used in combination with a time-
frequency slotted ALOHA-based protocol. We highlight that even without changing anything
on the level of IoT standards, our proposal is just an add-on capability that can be used on
a unit-per-unit basis. We consider the Upper-Confidence Bound (UCB) [ACBF02], and the
Thompson-Sampling (TS) algorithms [Tho33, AG12, KKM12], for the first model. For the
demonstration as well as for the second model, without loss of generality, we preferred to
focus on heuristics based on the simplest algorithm (i.e., UCB), to give a clear presentation of
the different ideas explored to solve the problem of learning in order to retransmit efficiently.

We present in Section 5.2 how the MAB algorithms can be used in a unlicensed but
frequency- and time-slotted IoT network. Several devices are using bandit algorithms, and the
assumptions made by the stochastic bandit algorithms are not satisfied: as several agents learn
simultaneously and their activation processes are random, their behavior is not stationary.
As far as we know, we provide the first practical study to confirm robustness of the use of
stochastic bandit algorithms for decision making in IoT networks with a large number of
intelligent devices in the network, which makes the environment “highly not stationary”. This
specific context makes it very hard to give mathematical proofs of convergence and efficiency
for bandit algorithms (that is why we relax the hypothesis and only consider up-to M ≤ K

players in Chapter 6). We then validate the model with a hardware implementation on real
radio signals, detailed in Section 5.3. We conclude this chapter by presenting in Section 5.4 an
extension of this model to take into account another aspect of the ALOHA protocol, that is
the possibility for dynamic devices to retransmit their packet if the Ack was not received.

Publications. This chapter is mainly based on our articles [BBM+17, BBM18, BBM19,
BBMVM19, MB19].
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5.2 Selfish learning for many dynamic devices with low activation
probabilities in an IoT network

As explained before in Chapter 1, the future IoT networks will require to support more and
more communicating devices. In this section, we show that intelligent devices in unlicensed
bands can use MAB learning algorithms to improve spectral resource exploitation. We evaluate
the performance of two classical MAB learning algorithms, UCB and Thomson Sampling, to
handle the decentralized decision-making of Spectrum Access, applied to IoT networks. We
mean by decentralized that learning is performed on the device side, and is spread on the totality
of the devices in a network. We also evaluate the learning performance when the number
of intelligent end-devices grows. We show that using learning algorithms firstly extends
devices battery autonomy (by reducing the packet-loss-ratio or equivalently, by improving the
successful-communication rate), and secondly does help to fit more devices in such networks,
even when all end-devices are intelligent and are dynamically switching from channel to
channel. In the studied settings, stochastic MAB learning has near optimal performance even
in non-stationary settings with a majority of intelligent devices.

The aim of this section is to assess the potential gain of learning algorithms in IoT scenarios,
even when the number of intelligent devices in the network increases, and the network usage
is more and more fluctuatating. To do that, we suppose an IoT network made of two types
of devices: static devices that use only one channel (fixed in time), and dynamic devices that
can choose the channel for each of their transmissions. Static devices form an interfering
traffic, which could be generated by devices using other standards as well. Note that instead
of assuming that each static device uses a fixed channel, we could also assume a looser
hypothesis: if each static device uses a fixed sub-set of the K channels, and a purely uniform
random access in its set of considered channels, then in average the observed occupancy of
the K channels can be modeled as if it were occupied by (more) static devices using only one
channel. So our first hypothesis is actually not constraining. We first evaluate the probability
of collision if dynamic devices randomly select channels (that is, a naive approach), and if a
centralized controller would optimally distribute all of them in the channels at the beginning
of the scenario. This second approach is ideal, but not realistic the most common situation of
decentralized co-located IoT networks, and it is just used here as a reference. Then, these three
reference scenarios allow to evaluate the performance of bandit algorithms, such as UCB and
TS, in a decentralized network, in terms of successful communication rate, as it reflects the
network efficiency. We show that these algorithms have near-optimal performance, even when
the proportion of end-devices increases and the interfering traffic from other devices becomes
less and less stochastic, more and more fluctuating and unpredictable.
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Figure 5.1 – In our system model, some dynamic devices (in the IoT network in blue) transmit packets
to a gateway and suffer from the interference generated by neighboring networks (in orange left/right).

5.2.1 System model and notations

We present our system model, which consists of one gateway and many IoT devices, using a
frequency- and time- slotted protocol.

One gateway and many devices. We consider the system model presented in Figure 5.1,
where a set of devices all sends uplink packets to a (unique) network gateway. Messages can
be sent in a fixed number K ≥ 2 of wireless channels, that are assumed to be orthogonal,
that is, a message in channel k will not cause collision to a message in another channel
j ̸= k. The communication between IoT devices and this gateway is done through a simple
pure acknowledged ALOHA-based protocol where devices transmit uplink packets of fixed
duration whenever they want. We mean here by ALOHA-based that devices do not use sensing,
and we do not consider retransmissions of packets (we relax this hypothesis in Section 5.4).

The devices can transmit their packets in one of the K channels. In the case where the
gateway –of the corresponding IoT network– receives an uplink message in one channel, it
transmits an acknowledgement to the end-device in the same channel, after a fixed delay. This
is realistic in IoT networks such as networks based on LoRaWAN. In a more general setting, if
there were more than one gateway in the same IoT network being considered, the network
would reply to the device by letting only one gateway sends back an acknowledgement. The
natural choice is for the network to send this acknowledgement by the gateway which received
the uplink message. For simplicity but without loss of generality, we consider a network with
only one gateway, but still it is important to observe the distinction between the gateway,
which is simply a RF node, and the IoT network in charge of receiving, handling, and replying
to the incoming uplink messages from the IoT devices being paired in the network.
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These communications operate in unlicensed ISM bands and, consequently, they can suffer
from interference generated by uncoordinated co-localized and/or neighboring networks
(two are shown in orange in Figure 5.1, in left or right). This interfering traffic is uncontrolled,
and is most likely unevenly distributed over the K different channels, as each IoT protocol or
IoT networks can choose to use a different subset of channels. In order to simulate networks
designed for the IoT, we consider a protocol with no sensing and no repetition of uplink
messages. The gateway is in charge of sending back an acknowledgement, after some fixed-
time delay, to any device paired with this gateway in this network (i.e., in blue in Figure 5.1)
who succeeded in sending an uplink packet. By considering a small number of orthogonal
wireless channels, and a unique PHY layer configuration (i.e., modulation, waveform, etc),
and in case of a non-uniform traffic in the different channels, the device can improve their
usage of the network if they are able to learn on the fly the best channels to use, that is, the
most vacant one. Indeed, in this model, the quality of the channels (i.e., the ressources) are
identified by their vacancy, or one minus their occupancy rates.

We note that MAB learning has also started to be applied to also optimize the PHY layer
parameters, see for instance [KAF+18] following our article [BBM+17], but in this thesis we
chose to restrict to the spectrum access problem and thus we only MAB models where the
arms correspond to orthogonal frequency bands.

Slotted protocol. For simplicity, and for consistency with the rest of this thesis, we only
consider a discrete protocol (i.e., slotted). As illustrated in Figure 5.2, we suppose a slotted
protocol, in both time and frequency. All devices share a synchronized time, and know in
advance K, the finite number of available RF channels. In each time slot, the devices try to
send packets to the unique gateway, which listens continuously to all channels, following an
ALOHA-based communication, with no sensing. Each time slot is divided in two parts: first
for uplink communications in which data packets are sent by end-devices to the gateway. In
one channel, if only one packet is sent in this part of the slot, the gateway can decode it and
sends an acknowledgement to the device in the second part (on the same channel). If two
or more devices send an uplink packet in the same slot, the uplink packets collide, and the
acknowledgement (Ack) is not transmitted. In this case, we say that there is a collision in this
time slot. In other words, if the gateway cannot successfully decode the incoming (uplink)
messages because they were corrupted by collisions, it does not send any Ack back. This way,
no collision can occur on the downlink messages, easing the analysis of collisions.

Static vs dynamic devices. We make the following assumptions on the network. We assume
that there are two types of end-devices in the network:

• Static end-devices are identical, and each of them uses only one channel to communicate
with the gateway, with no loss of generality. Their choice is assumed to be fixed in time
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Figure 5.2 – The considered time-frequency slotted protocol. Each frame is composed by a fixed
duration uplink slot in which the end-devices transmit their (uplink) packets. If a packet is well
received, the gateway replies by transmitting an Ack, after the ack delay.

(i.e., stationary). The traffic generated by these devices is considered as an interfering
traffic for other devices.

• Dynamic (or smart) end-devices can use all the available channels, by quickly changing
their communication channel at any time slot, following a Machine Learning policy.
For that end, they use their history of past communication successes or failures they
experienced in each channel, to learn about channel availability. We also assume that the
dynamic end-devices can run simple embedded decision making algorithms, and have
limited but reasonable computing as well as storage capacities. Note that of course we
assume a limited storage capacity, so no device stores the full history of communication
successes and failures, but they only store average rates (which can be stored using one
float number for each of the K channels). Our goal is to propose a learning algorithm
than can be implemented by each dynamic device, in a decentralized and independent
manner, in order to improve their successful communication rate automatically.

We further assume that there are K ≥ 2 channels, D ≥ 0 dynamic end-devices, and S ≥ 0
static devices with 0 ≤ Sk ≤ S static devices in channel k ∈ [K] (so S =

∑K
k=1 Sk).

Random emission patterns: We suppose that all devices follow the same emission pattern,
being fixed in time, and we choose to model it as a simple Bernoulli process: all devices have
the same probability to send a packet in any (discrete) temporal slot, and we denote p ∈ (0, 1)
this probability1. The parameter p essentially controls the frequency of communication for
each device, once the time scale is fixed, and 1/p is proportional to the duty cycle. For instance,

1 In the experiments below, p is about 10−3, because in a crowded network p should be smaller than K/(S + D)
for all devices to communicate successfully (in average).
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for IoT devices sending messages with a duration of 1 second and possibly at every second,
then on a daily basis we have p = 1/(12× 60× 60) ≃ 1.5× 10−5.

Some assumptions on the network occupation: We focus on dense networks, in which the
number of devices S +D is very large compared to K (for instance, about 1000 to 100000, while
K is about 4 to 256). As this problem is only interesting if devices are able to communicate
reasonably efficiently with the gateway, we assume that devices only communicate occasion-
ally, i.e., with a low duty cycle, as it is always considered for IoT. Note that even unlicensed
bands have such limitations, as for instance this is a strict requirement for any device using
the 868 MHz ISM band in Europe (and its regulation also enforces a maximum transmission
power, but we do not consider power transmission in this work). We prefer this choice rather
than non-crowded networks, i.e., where S + D ≤ K, as the former makes more sense for
realistic IoT networks.

On the opposite, imagine if there were only K = 4 channels being occupied by D+S = 100
devices, each communicating with a high rate of p = 1/10, with a non-zero occupancy in each
channel (i.e., ∀k, Sk > 0). Then, almost all time slots will lead to collisions in all channels, for a
uniformly random access scheme, and thus the network efficiency (i.e., successful communica-
tion rate) will be so close to zero that using learning algorithms cannot improve much. Such
scenario is not our target of interest, and thus we prefer to only consider feasible scenarios
where p is smaller than K/(S + D), in order to have an average of active devices not larger2 than
the number of channels.

Link with the MAB model: All devices follow a Bernoulli emission process. Consider
the network from the point of view of one dynamic device: every time a dynamic device
has to communicate with the gateway, it has to choose one channel (at each transmission
t ≥ 1, t ∈ N), denoted as A(t) = k ∈ [K]. Then, the dynamic device waits in this channel A(t)
for an acknowledgement sent by the gateway, during a certain period (e.g., 5 seconds for the
example considered above). Before sending another message (i.e., at time t + 1), the dynamic
device knows if it received or not this Ack message. For this reason, selecting channel (or arm)
k at time t yields a (random) feedback, called a (binary) reward, r(t) .= Yk,t ∈ {0, 1}, being 0 if
no Ack was received before the next message, or 1 if Ack was successfully received. The goal
of the dynamic device is to minimize its packet loss ratio, or equivalently, to maximize its
number of successful transmissions, or its cumulative reward,

∑T
t=1 r(t), which is the usual

objective in MAB problems (see Section 2.1).

This problem is a special case of the stochastic MAB with Bernoulli distributions. Contrarily
to many previous work done in the CR field and for Opportunistic Spectrum Access [JEMP10,
JMP12], the reward r(t) does not come from a sensing phase before sending the t-th message,
as it would do for any “listen-before-talk” model. In our model, rewards rather come from
receiving or not an acknowledgement from the gateway, between the t-th and t+1-th messages.

2 In Chapter 6 we simply consider the case of p = 1 and M = D ≤ K dynamic devices, referred to as players.
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A reward of one indicates that the acknowledgement was received on time, and a reward of
zero indicates the opposite.

The problem parameters are S1, . . . , SK which represent the (stationary) occupancy of the
channels by the static devices, and they are unknown to each dynamic device, so to maximize
their cumulated rewards, they must learn the distributions of the channels, in order to be
able to progressively improve their respective successful communication rate. The goal is
thus to propose a simple sequential algorithm to be applied identically and independently
by each dynamic device, in a fully distributed setting (each device runs its own algorithm,
from its observations), in order to minimize collisions and maximize the fraction of successful
transmissions of all the dynamic devices. This requires to tackle the so-called exploration-
exploitation dilemma: a device has to try all channels a sufficient number of times to get a robust
estimate of their qualities, while not selecting the worst channels too many times. Before
presenting the MAB algorithms used in the experiments, we present some simple baseline
(reference) policies.

5.2.2 Three reference policies

We present three different policies that can be used to assess the efficiency of the learning
algorithms presented later on. The first one is naive but can be used in practice, while the
two others are very efficient but require full knowledge on the system (i.e., an oracle) and are
thus unpractical. They are however useful for our numerical simulations, and are used as
references, to show that our MAB-based approaches quickly learn to perform almost optimally.
Their short names are used in the legend on Figures 5.3, 5.5), and are given in “quotes” in the
corresponding paragraphs.

1st - Naive policy: Random Channel Selection (“Random”)

We derive here the probability of having a successful transmission, for a dynamic device, in
the case where all the dynamic devices make a purely random channel selection (i.e., uniform
on i ∈ [K]). This reflects a naive policy that could be implemented by all the dynamic devices,
and it provides a reference scenario to compare against. Note that even nowadays this is still
the solution implemented for real IoT devices deployed in new LoRaWAN networks.

In this case, for one dynamic device, a successful transmission happens if it is the only
device to choose channel k, at that time slot. the Sk static devices in each channel k are assumed
to be independent, and static and dynamic devices are assumed to not transmit at each time t

with a fixed probability 1− p, so probability of successful transmission is computed as follows
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P(success|sent) =
K∑

k=1
P(success|sent in channel k)︸ ︷︷ ︸

No one else sent in channel k

P(sent in channel k)︸ ︷︷ ︸
=1/K, by uniform choice

(5.1)

All dynamic devices follow the same policy in this case, so the probability of transmitting
at that time in channel k for any dynamic device is p/K, and there are D − 1 other dynamic
devices. As they are independent, the probability that no other dynamic device sent in
i is q = P(

⋂D−1
k=1 device k did not sent in i) =

∏D−1
k=1 P(device k did not sent in i). And

P(device k sent in i) = p× 1/K, by uniform choice on channels and the Bernoulli emission
hypothesis. So q =

∏D−1
k=1 (1− p/K) = (1− p/K)D−1. Thus we can conclude,

P(success|sent) =
K∑

k=1
(1− p/K)D−1︸ ︷︷ ︸

No other dynamic device

× (1− p)Sk︸ ︷︷ ︸
No static device

× 1
K

= 1
K

(
1− p

K

)D−1 K∑
k=1

(1− p)Sk . (5.2)

This expression (5.2) is constant (in time), and easy to compute numerically, but comparing
the successful transmission rate of any policy against this naive policy is important, as any
efficient learning algorithm should outperform it (maybe after a long enough initial learning
period).

2nd - (Unachievable) Optimal oracle policy (“Optimal”)

We investigate here the optimal policy that can be achieved if the dynamic devices have a
perfect knowledge of the repartition of static devices (Sk)k, and a fully centralized decision
making3 is possible. We want to find the stationary repartition of devices into channels that
maximizes the probability of having a successful transmission.

If the oracle chooses a fixed configuration of dynamic devices, it means that for each
dynamic device the oracle affects it to a unique channel for all time steps. Then there is a
number Dk of devices affected to channel k being fixed in time (i.e., stationary), and thus this
probability is computed as before:

P(success|sent) =
K∑

k=1
P(success|sent in channel k) P(sent in channel k)

=
K∑

k=1
(1− p)Dk−1︸ ︷︷ ︸

Dk−1 others

× (1− p)Sk︸ ︷︷ ︸
No static device

× Dk/D︸ ︷︷ ︸
Sent in channel k

. (5.3)

3 This optimal policy needs an oracle seeing the entire system, and affecting all the dynamic devices, once and
for all, for a fixed stationary scenario, in order to avoid any signaling overhead. This is not possible in IoT contexts
as several completely independent networks may operate in a single place.
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Consequently, an optimal allocation vector (D1, . . . , DK) is a solution of the following
real-valued constraint optimization problem:

arg max
D1,...,DK

K∑
k=1

Dk(1− p)Sk+Dk−1, (5.4a)

such that
K∑

k=1
Dk = D, (5.4b)

Dk ≥ 0 ∀k ∈ J1; KK. (5.4c)

Proposition 5.1. The Lagrange multipliers method [BV04] can be used to solve the constraint
real-valued maximization problem introduced in equation (5.4). It gives a closed form expression
for the (unique) optimal solution D∗

k(λ), depending on the system parameters, and the unknown
Lagrange multiplier λ ∈ R.

D∗
k(λ) =

( 1
ln(1− p)

[
W
(

λe
(1− p)Sk−1

)
− 1

])+
. (5.5)

Proof. • In a realistic scenario, we can assume that Dk ≤ −2
ln(1−p) ≈

2
p , ∀k ∈ J1; KK. For

such values for Dk, the objective function f : (D1, . . . , DK) 7→
∑K

k=1 Dk(1− p)Sk+Dk−1

is concave as the sum of concave functions 4.

• The Lagrange multipliers method can be applied to the optimization problem (5.4a), with
a concave objective function f , linear equality constraints (5.4b) and linear inequality
constraints (5.4c). The strong duality condition is satisfied in this case [BV04], so finding
the saddle points will be enough to find the maximizers.

More details are given in Section 5.6.1 in the Appendix of this Chapter.

Where in the equation (5.5), (a)+ .= max(a, 0), andW denotes theW-Lambert function
which is the reciprocal bijection of x 7→ xex on R+ = [0, +∞) (which can be computed
numerically in an efficient manner, [CGH+96]). Moreover, condition (5.4b) implies that the
Lagrange multiplier λ is the solution of the constraint

∑K
k=1 D∗

k(λ) = D. This single constraint
can be solved numerically, with simple one-dimensional root finding algorithms. Solving
the optimization problem provides the optimal real number value for D∗

k, which has to be
rounded5 to find the optimal number of devices for channel k: D̂k = ⌊D∗

k⌋ for 1 ≤ k < K, and
D̂K = D −

∑K−1
k=1 D̂k.

4 It is worth noting that f is neither concave nor quasi-concave on [0, ∞)K [Lue68, Yaa77].
5 Any rounding choice will give about the same repartition, up-to a difference of only one device by channel,

and so we chose to round from below for the first channels.

114



5.2 Selfish learning for many dynamic devices in an IoT network

3rd - A greedy approach of the oracle strategy (“Good sub-optimal”)

We propose a sequential approximation of the optimal policy: the third solution is a
sub-optimal naive policy, simple to set up, but also unpractical as it also needs an oracle.
End-devices are iteratively inserted in the channels with the lowest load (i.e., the index k

minimizing Sk + Dk(τ) at global time step τ ). Once the number of devices in each channel is
computed, the probability of sending successfully a message is also given by equation (5.3).
This is the policy that would be used by dynamic devices if they were inserted one after the
other, and if they had a perfect knowledge of the channel loads.

5.2.3 Sequential policies based on bandit algorithms

While the stochastic MAB model has been used to describe some aspects of Cognitive Radio
systems, it is in principle not suitable for our IoT model, due to the non-stationarity of the
channels occupancy, caused partly by the learning policy used by dynamic devices, but mainly
by their random activation processes. In our model, every dynamic device implements its
own learning algorithm, independently. For one device, the time t refers to the number of
time it accessed the network (following its Bernoulli transmission process, i.e., its duty cycle),
not the total number of time slots from the beginning, as rewards are only obtained after a
transmission, and IoT devices only transmit sporadically, due to low transmission duty cycles.

Using a bandit algorithm for IoT devices: Our IoT application is challenging in that there
are multiple players (the dynamic devices) interacting with the same arms (the channels),
without any centralized communication (they do not even know the total number of dynamic
devices). We propose algorithms in which each dynamic device ignores all the other one
and implements a learning algorithm to play a bandit game. In each time slot, if it has to
communicate (which happens with probability p), then it chooses a channel and it receives a
reward 1 if the transmission is successful, 0 otherwise. Each device aims at maximizing the
sum of the rewards collected during its communication instants, which shall indeed maximize
the fraction of successful transmissions. Besides the modified time scale (rewards are no
longer collected at every time step), this looks like a usual bandit problem. However, it cannot
be modeled as a stochastic MAB, as the rewards are (unfortunately) not i.i.d.: they not only
depend on the (stationary, i.i.d.) behavior of the static devices, but also on the behavior of
other dynamic devices, that is not stationary (because of learning and random activation of
each device). Despite this, we show in the next subsection that running a stochastic bandit
algorithm for each device based on its own rewards is surprisingly successful.

Considered algorithms. The two algorithms we consider are UCB (“UCB” in the figures)
and Thompson sampling (TS) (“Thompson-sampling”), and they are presented in Section 2.4.
The UCB algorithm uses α = 1/2 in our experiments. The TS algorithm is known to be
empirically efficient, and for these reasons it has been used successfully in various applications,
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including problems from Cognitive Radio [TCLM16, MTC+16], and also in previous work on
decentralized IoT-like networks [DMP16].

Adversarial bandit algorithms? Instead of using MAB algorithms assuming a stochastic
hypothesis on the system, we could try to use MAB algorithms designed to tackle a more
general problem, that makes no hypothesis on the interfering traffic. The adversarial MAB algo-
rithms is a broader family, of which a well-known and efficient example is the Exp3 algorithm
[ACBF02, BCB12]. Empirically, the Exp3 algorithm turned out to perform significantly worse
than both UCB and TS in the same experiments, therefore we did not report results here.

5.2.4 Numerical results

We suppose a network with S + D = 2000 end-devices, and one IoT gateway. Each device
sends packets following a Bernoulli process, of probability p = 10−3 (e.g., this is realistic: one
packet sent about every 20 minutes, for time slots of 1s). The RF band is divided in K = 10
channels. Each static device only uses one channel, and their uneven repartition in the 10
channels is chosen as (S1, · · · , SK) = S × (0.3, 0.2, 0.1, 0.1, 0.05, 0.05, 0.02, 0.08, 0.01, 0.09),
to keep the same proportions when S decreases. The dynamic devices have access to all the
channels, and use learning algorithms. We simulate the network during 106 discrete time
slots, during which each device transmits on average 1000 packets (i.e., the learning time is
about 1000 steps, for each algorithm). We tried similar experiments with other values for K

and this repartition vector, and results were similar for non-homogeneous repartitions.

Clearly, the problem is less interesting for a homogeneous repartition, as all channels
appear the same for dynamic devices, and so even with D small in comparison to S, the
system behaves like in Figure 5.3d, where the performance of the five approaches are very
close.

First results. Figure 5.3 presents the successful transmission rate as a function of time. The
two MAB algorithms, UCB and Thompson Sampling (TS), are compared against the naive
random policy (which are outperformed easily by the MAB algorithms), and the two (optimal
and greedy) oracle policies (which outperform slightly the MAB algorithms). The results are
displayed when 10%, 30%, 50% and 100% of the traffic is generated by dynamic devices.

We can see in Figure 5.3 that the TS algorithm (in red) outperforms the UCB algorithm
(in blue), when the number of end-devices is below 50%. When the number of end-devices
is higher, both algorithms have almost the same performance, and perform well after a
small number of transmissions (i.e., they show quick convergence). Moreover, we can see in
Figures 5.3a, 5.3b, and 5.3c that both have better success rate than the random policy and the
probability of successful transmission is between the optimal oracle and suboptimal oracle
policies. For instance, for 10% of dynamic devices, after about 1000 transmissions, using UCB
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(a) 10% of dynamic devices
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(c) 50% of dynamic devices
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Figure 5.3 – Performance of two MAB algorithms (UCB and Thompson Sampling), compared to
extreme reference policies without learning or oracle knowledge, when the proportion of dynamic
end-devices in the network increases, from 10% to 100%.

over the naive uniform policy improved the successful transmission rate from 83% to 88%,
and using Thompson Sampling improved it to 89%. Increasing the number of end-devices
decreases the gap between the optimal and random policies: as expected intuitively, the more
dynamic devices, the less useful are learning algorithms, and basically for networks with only
dynamic devices, the random policy is as efficient as the optimal one, as seen in Figures 5.3d
and on the right end side of Figure 5.4.

Successful transmission rate as a function of the number of dynamic devices. To better
assess the evolution of the optimal policy compared to the random one, we have displayed on
Figure 5.4 the evolution of the gain, in terms of successful transmission rate, provided by the
optimal oracle and the two learning policies, after 106 time slots, i.e., about 1000 transmissions
for each IoT device. We can see that when the proportion of end-devices is low (e.g., 1%
of devices are dynamic), the optimal policy provides an improvement of 16% compared to
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Figure 5.4 – Learning with UCB and Thomson Sampling, with many dynamic devices. The learning
gain, for each device, decreases with the proportion of dynamic devices in the network. Note that the
values (16% etc) depend on the repartition of static devices into the K channels (i.e., S1, . . . , SK) but
the general profile of this plot does not depend much on these parameters.

random channel selection. The TS algorithm always provides near-optimal performance, but
the UCB algorithm has a lowest rate of convergence and performs consequently worse after
1000 transmissions, for instance it only provides a gain of 12% for the same proportion of
dynamic devices (1%), for the considered values of S1, . . . , SK .

Figure 5.4 also shows that learning keeps near-optimal performance even when the propor-
tion of devices becomes large. Note that when this proportion increases, the assumptions of a
stochastic MAB model are clearly violated, and there is no mathematical justification for the
efficiency of TS and UCB algorithms. Hence, it is surprising to have near optimal performance
with stochastic MAB algorithms applied to partly or fully dynamic scenarios.

A safety check. We include another simulation in Figure 5.5, with a uniform repartition of
static devices (i.e., ∀k, Sk = S/K), to check that learning approach (here, only UCB) also gives
interesting gain of performance, and achieve a close-to optimal successful transmission rate.
Except for the limit case of 100% of dynamic devices, which corresponds to Figures 5.3d and
5.5d, where the uniform access performs as well as the optimal oracle solution, the MAB-based
approach almost instantly outperforms the baseline.
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Figure 5.5 – Performance of the UCB bandit algorithm for the special case of uniform repartition of the
static devices, when the proportion of intelligent devices in the network increases, from 10% to 100%.

Reproducibility. The simulation code used for the experiments in Section 5.2.4 is for MAT-
LAB or GNU Octave, and it was written in collaboration with Rémi Bonnefoi, in May 2017.
Instructions to reproduce our experiments are given, and the code is open-sourced under the
MIT License, at Bitbucket.org/scee_ietr/rl_slotted_iot_networks.
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5.3 Test-bed implementation of our model for real-world validation

In this section, we present a demonstration showcased at the International Conference on
Telecommunication (ICT) in June 2018 [BBM18, BBM19], implementing a proof-of-concept
(PoC) of the model introduced in Section 5.2. As far as we know, this is the first demonstration
of running learning algorithms on the end-device side for Internet of Things networks, in real
radio conditions, as highlighted it in our paper [MB19].

This PoC implements an IoT network the following way: one gateway, one or several
intelligent (i.e., learning) devices, embedding the proposed solution, and a traffic generator
that emulates radio interference from many other devices. Intelligent devices communicate
with the gateway with a wireless ALOHA-based protocol with acknowledgements, which
does not require any specific overhead for the learning. Similarly to the previous section,
network access is modelled as a discrete sequential decision making problem, and using the
framework and algorithms from MAB learning, we show that intelligent devices can improve
their access rate to the network, by using low complexity and decentralized algorithms, such as
UCB and Thompson Sampling. This solution could be added in a straightforward and costless
manner in most IoT networks, such as LoRaWAN networks, just by adding this feature at the
higher level of the MAC layer, in all or only some of the devices, without any modification on
the network side, and no signalling overhead for the devices.

Related works. This work is new for the IoT context, but previous works have similarly
implemented proof-of-concepts to show that Reinforcement Learning (RL) algorithms can
be used within real-world wireless communications. Starting from 2010, the works of W.
Jouini and C. Moy [JEMP09, JEMP10, JMP12] were among the first ones to propose to use RL
for Cognitive Radio, especially MAB and the UCB algorithm, and proof-of-concepts were
developed with C. Robert from 2013 [RMZ14, Moy14]. Between 2015 and 2017, C. Moy, N.
Modi and S. Darak (of our team SCEE) continued to work on this direction [DNMP16, DMP16,
DMNM16, KDY+16]. Since 2017, S. Darak and his team at IIIT Delhi (India) have been very
active in the research on CR using MAB, and some of their recent works are illustrated with
real-world demo using USRP and the MATLAB/Simulink system [KYDH18, SKHD18, H. 18].

5.3.1 Context of this demonstration

We describe the way we implemented a demo where we evaluate MAB algorithms, used in
combination with a pure ALOHA-based protocol, such as the ones employed in LPWAN. This
demonstration is the first implementation which aims at assessing the potential gain of MAB
learning algorithms in IoT scenarios. We use a TestBed designed in 2017 by the SCEE team
at the Rennes campus of CentraleSupélec [Bod17, Appendix 3], containing different USRP
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boards [Ett], controlled by a single laptop running the GNU Radio software [GNUb], and
where the intelligence of each device corresponds to a learning algorithm, implemented as a
GNU Radio block [GNUa] and written in Python or C++.

In our demo, we consider a simple wireless network, that reproduces the model of Sec-
tion 5.2, consisting of one gateway (i.e., radio access point), and a certain interfering background
traffic, assumed to be stationary (i.i.d.), which is generated by end-devices communicating in
other networks. Some dynamic intelligent devices (end-user or autonomous devices) try to
communicate with the gateway, with a low-overhead protocol. This communication can be
done in different channels which are also shared by devices using other networks. Once the
gateway receives a packet transmitted by a dynamic device in one channel (i.e., if no collision
occurred), it transmits back to it an acknowledgement in the same channel, after a fixed-time
delay, as it is done in the LoRaWAN standard. This Ack allows the device to learn about the
channel quality (i.e., mean availability) and thus, to use learning algorithms for the purpose
of best channel selection.

We can generate scenarios with different parameters (number of channels, interfering traffic
load on each channel, etc) in order to evaluate the performance of learning in various settings.
Moreover, we compare the performance of learning strategies with that of the random uniform
access to channels, which is the current state-of-the-art of commercial LPWAN solutions
[RKS17]. This allows to check that in case of uniform traffic, when there is nothing to learn, the
intelligent devices at least do not reduce their successful communication rate in comparison
to the naive devices. This also shows that in case of non-uniform stationary traffic, MAB
learning algorithms indeed help to increase the global efficiency of the network by improving
the success rate of the intelligent devices. The benefits are twice and of primary importance
for IoT networks: the proposed approach can mitigate RF collisions, and enhance intelligent
device battery lifetime if they do retransmissions.

5.3.2 Physical model and user interface of our GNU Radio implementation

In this section, we present our implementation of MAB algorithms in the model of IoT networks
presented in Section 5.2.1. We first describe the simplified physical layer of this demo, then
we present our GNU Radio implementation.

Physical layer and protocol. We implement a simple PHY/MAC layers solution, in order
to demonstrate the possibility of improvement of the performance of IoT communications in
unlicensed bands. We could have used any physical layer and any ALOHA-based protocol.
We choose to implement our own physical layer and protocol, for both clarity and conciseness,
and because developing a complete IoT network protocol stack is no more my research work
and would have fall outside of the scope of this thesis.
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Regarding the physical layer, we consider a QPSK constellation (Quadrature Phase-Shift
Keying). Moreover, we use simplified packets composed of two parts. The first part is the
preamble which is used for the purpose of synchronization (phase correction). Then, we have
the index of the user, which is a sequence of QPSK symbols. For example, this index can be a
simple QPSK symbol (±1± 1j), or a sequence of QPSK symols if the PoC has to consider more
users. With ℓ QPSK symbols, we can indeed fit at most 4ℓ/2 = 22ℓ−1 devices, and not 4ℓ due
to the use of a conjugate index to send back acknowledgements from the gateway. Once the
gateway receives an uplink packet, it detects this index and transmits an acknowledgement
which has the same frame structure, but where the index is the conjugate of the index of
the uplink packet (z 7→ z, e.g., 1 + j 7→ 1 − j). Thanks to this index, we can have several
devices communicating with the same gateway. In turn, the end-device that receives the
acknowledgement demodulates it, and checks if the index is the conjugate of its own index. In
this case, the Ack was sent for him, and it knows that its packet has been received and decoded
correctly by the gateway.

Figure 5.6 – Schematic of our implementation that presents the role of each USRP platform.

122



5.3 Test-bed implementation of our model for real-world validation

Figure 5.7 – Two pictures showing the SCEE testbed [Bod17, Appendix 3], taken in 2018.

Equipment. We use USRP N210 boards [Ett], from Ettus Research (National Instrument),
with version 4 of their FPGA system and version 5.1 of the RBX system. As illustrated in
Figure 5.6, our implementation is composed of at least 3 USRP: the gateway, a traffic generator
which emulates the interfering traffic (made by surrounding static devices), and at least one
dynamic device. Each dynamic device has its own USRP and its own learning algorithm.

The boards have their own power supply, and are all connected to a local Ethernet switch,
itself connected to a single laptop, running GNU/Linux and Ubuntu. The pictures in Figure 5.7
show the testbed used for these experiments. To ease the synchronization in both time and
frequency between the boards representing the dynamic devices and the gateway, we use an
Octoclock [Oct], also a product of Ettus Research, and coaxial cables connecting every platform
to the Octoclock for time (PPS) and frequency synchronization, but this is not mandatory.
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Details about our implementation. We used the GNU Radio Companion software (GRC,
version 3.7 in 2017), and a laptop runs a GRC design to configure and control each USRP
platform. As such, one laptop can run in parallel the control program of any number of boards6.
The GNU Radio software provides the framework and tools to build and run software radio
or just general signal-processing applications. GNU Radio applications are flow-graphs: a
series of signal processing blocks connected together to describe a data flow. For maximum
efficiency, we wrote all of our blocks in C++. These flow-graphs can be written in either C++
or the Python programming language. The GNU Radio infrastructure is written entirely in
C++, and many of the user tools are written in Python. GNU Radio Companion is a graphical
user interface (UI) used to develop GNU Radio applications: GRC is effectively a Python
code-generation tool. When a flow-graph is compiled in GRC, a Python code is produced,
which can be executed to connect to the USRP, create the desired GUI windows and widgets,
and create and connect the blocks in the flow-graph.

Illustrations of the flow-graph for the three components of the presented demonstration
are included in Appendix 5.6.2, in Figures 5.15, 5.16 and 5.17.

User Interface. We have designed a user interface in order to visualize the results obtained
with our experimental demonstration. This user interface is shown in Figure 5.8. We can see
that it is made of three parts, one for each USRP, as highlighted in circled red numbers.

Figure 5.8 – User interface of our demonstration.

6 Even if in practice, maximum efficiency is kept as long as there is not more than one GRC design by CPU core.
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(1) The first part is the interface of the IoT traffic generator, where we see the traffic generated
by this USRP, presented in a waterfall view in the time vs frequency domain. Messages of
the random traffic, generated by surrounding static devices, are shorter in time by purpose
(they could be coming from other IoT standard), in order to distinguish them from an
intelligent device traffic on the “waterfall” visualizations of the traffic.

(2) The second part is the interface of the intelligent device which is made of four parts. At
the top left, we observe the constellation of the transmitted packet (a). At the bottom left,
we have a time/frequency view of the lasts packets transmitted by the device (b). We can
see, in this view that the device transmitted its last 9 packets in channels #3 and #4. Then,
at the top right of this interface (c), we can see the traffic observed by this device, where we
have the interfering traffic (green), the uplink packets transmitted by this device (red) and
the acknowledgements sent by the gateway (blue). Colors in the “waterfall” represent the
RF power level received at the device antenna. Hot colors are for closer elements, as for
instance the device Tx antenna (reception) is close to the device Rx antenna (transmission),
and consequently for the device waterfall these signals are colored in red (see graph (c) in
part (2)). Finally, at the bottom right (d), we have four histograms showing the performance
indicators of the chosen MAB algorithm (number of transmissions, number of successful
transmissions, UCB indexes and success rates, in each channel).

(3) The last part is the interface of the gateway, where we can see the traffic observed by the
gateway (a) and the channels in which the last acknowledgements have been sent (b). The
observed traffic is coherent with (c) of part (2), as the elements are very close the one
from the others on the testbed. Colors may change, as they depend on the exact distance
between the different transmitters and receivers.

5.3.3 Experimental results

We compare in this PoC the two algorithms described in Section 2.4 (UCB and Thompson
sampling) against a uniform access algorithm, that uniformly selects its channel at random.
Note that we could run more algorithms, but with no real added-valued in terms of validation
of the proposed learning-based approach, which is our goal. For one dynamic device, three
algorithms are compared by their mean successful communication rates, on a horizon of
T = 2000 communication slots, and were using three algorithms: uniform random access (in
cyan), Thompson Sampling (“TS”, in green) and UCB (in red).

In Figure 5.9 below, we show the results averaged on 10 repetitions using the same condi-
tions. Each experiment has been done on a duration of about half a day, due to the IoT sporadic
transmission mode that we want to respect (like in our model of Section 5.2). However, we
make devices generate one message every 5 seconds, in order to artificially speed up the
process and with no loss of generality (as we are using real hardware). Learning can be
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Figure 5.9 – Less than 400 communication slots (i.e., less than 100 trials in each channel) are sufficient
for the two learning devices to reach a successful communication rate close to 80%, which is twice
as much as the non-learning (uniform) device, which stays around 40% of success. Similar gains of
performance were obtained in many different scenarios.

useful only when there is a large enough difference between “good” and “bad” channels, Each
device was learning to access 4 different non-overlapping channels, that we chose to have
occupancy rates of (µk)k = [15%, 10%, 2%, 1%]. Note that a maximum occupancy rate of 15%
could seem not so high, but indeed it is, because for a pure ALOHA access mode, a naive
dynamic device only enjoys about 40% success rate, under such occupancy of the channels (see
the “uniform” plot in Figure 5.9). The occupancy rate of a channel, which denotes the mean
occupancy, is implemented using the traffic generator, to emulate the presence of Si static
devices with emission probability p (that is, µi = Si×p here). When facing the same stationary
background traffic, we see that the learning devices are both very quickly more efficient than
the naive uniform device. We obtain an improvement in terms of successful communication
rate from 40% to about 60% in only 100 communications (about 16 min), and up-to 80% in
only 400 communications. In stationary environments, both the TS and UCB algorithms are
very efficient and converge quickly, resulting in a very strong decrease in collisions and failed
communication slots. UCB is faster to learn but eventually TS gives a (slightly) better average
performance.

Similar results are obtained for overlapping channels, when dynamic devices are learning
in the presence of multiple devices, all using the same learning algorithm. However, our
experimental testbed can not run hundreds of intelligent devices. Empirical results confirm
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the simulations presented in Section 5.2 (see Figure 5.4). Such results are very encouraging,
and illustrate well the various strong possibilities of MAB learning applied to IoT networks.

Availability of data and materials. The source code of our demonstration is fully available
online, open-sourced under GPLv3 license, at bitbucket.org/scee_ietr/malin-multi-arm
-bandit-learning-for-iot-networks-with-grc/. It contains both the GNU Radio Compan-
ion flowcharts and blocks, with ready-to-use Makefiles to easily compile, install and launch
the demonstration. The demonstration only requires a laptop and open-source free softwares,
as the laptop should run a GNU/Linux distribution (like Ubuntu or Debian), in addition to
USRP platforms from Ettus Research.

Video. As depicted in Figure 5.10 below, we realized a 6-minute video to sum-up our
demonstration and advertise our work online, and it is available on the YouTube hosting
platform, at youtu.be/HospLNQhcMk. The video shows examples of 3 dynamic devices learning
simultaneously, confirming the results of Figure 5.9 for overlapping channels. It also shows
the connections between the USRP boards, the Octoclock, the master laptop etc, completing
the presentation of the SCEE testbed already shown in Figure 5.7.

Figure 5.10 – Screenshot of the video of our demonstration, youtu.be/HospLNQhcMk.
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5.4 Extending the model to account for retransmissions

In this section, we extend the previous model to take into account the possibility for retrans-
missions of a message after a collision. This is of major importance as most protocols for
real-world IoT networks can use retransmissions, it is for instance the case of the LoRaWAN
standard. As before, we propose and evaluate different learning strategies based on MAB
algorithms. However, the price to be paid is a shorter battery lifetime for IoT devices. So this
approach would be used only for devices with strong delivery constraints (e.g., for health-care
applications), or that can refuel their energy over time (e.g., for robotic applications).

The presented strategies allow IoT devices to improve their access to the network and
their autonomy, while taking into account the impact of encountered radio collisions. For that
end, several heuristics employing UCB algorithms are examined, to explore the information
provided by the number of retransmissions. In this section, our results show that approaches
based on UCB obtain a significant improvement in terms of successful transmission probabili-
ties, compared to a naive approach which does not learn. Furthermore, it also reveals that a
pure UCB channel access is as efficient as more sophisticated learning strategies.

We presented in Section 5.2 the impact of non-stationarity on the network performance
using MAB algorithms is studied. Low-cost algorithms following two well-known approaches,
such as the Upper-Confidence Bound (UCB), and the Thompson Sampling (TS) algorithms
have reported encouraging results. When considering the application of MAB algorithms for
slotted wireless protocols in a decentralized manner, other recent directions of research include
theoretical analysis, like what we present in the next Chapter 6, or realistic empirical PoC
like in [Moy14, RMZ14, DMNM16, DNMP16, KDY+16, KDY+17] or the previous Section 5.3,
and finally applications to multi-hoping networks [MTC+16, TCLM16] or other kinds of
networks [WCN+19, WBMB+19]. None of the mentioned works discuss in detail the impact
of retransmissions on the performance of MAB learning algorithms as we do now.

The aim of this section is to assess the performance of MAB algorithms for channel selection
in LPWA networks operating in unlicensed bands, while taking into account the impact
of retransmissions on the network performance. For this reason, several decision making
strategies are applied after a first retransmission (i.e., when a collision occurs). The proposed
approach employs contextual information provided by the number of retransmissions, and is
again implemented independently by each device, so that no coordination among them is
needed. Moreover, our UCB-based heuristics show low complexity making them suitable for
being embedded in LPWA devices.

The contributions of this section are summarized as follows. Firstly, we provide a close
form approximation of the radio collision probability after a first retransmission. By doing
this, we highlight the need to develop a learning approach for channel selection upon col-
lision. Secondly, different heuristics are proposed to cope with retransmissions. Lastly, we
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conduct simulations in order to compare the performance of the proposed heuristics with
a naive uniform random approach, and a UCB strategy (i.e., without any learning for the
retransmissions, that is, the same channel is used for retransmission).

5.4.1 Presentation of the model with retransmissions

LPWA network. Like before in this chapter, we consider an LPWA network composed of
a gateway and a large number of end-devices that regularly send short data packets, where
K channels (K > 1) are available for the transmission of their packets. We assume that this
network is constituted by two types of devices: On the one hand, we have static devices that
operate in one channel7 in order to communicate with the gateway. On the other hand, there
are IoT devices, that possess the additional advantage of being able to select any of the K

available channels to perform their transmissions.

Like in the previous model presented in Section 5.2, regardless the type of devices, each of
them follows a slotted ALOHA protocol [Rob75], and has a probability p > 0 to transmit a
packet in a time slot. We make the hypothesis that the transmission is successful if the channel
is available, otherwise it fails upon radio collision. The novelty compare to the previous model
is that in case of RF (uplink or downlink) collision that prevent the device to receive the Ack
from the gateway, these devices will attempt to retransmit their packet up-to MaxBackOff
times8, with MaxBackOff ∈ N∗. It is important to note that, every retransmission is carried
out after a random back-off time, uniformly distributed in {0, . . . , m− 1}, where m ∈ N∗ is
the length of the back-off interval (note the difference between m and MaxBackOff).

Model of IoT devices. The aforementioned contention process can be described by a Markov
chain model [Nor98] similar to the one presented in [YFE12], as it is depicted in Figure 5.11.
When a device has a packet to transmit, it goes from an idle state to a transmission state, while
considering retransmissions due to different collision probabilities, {pc, pc1, . . . , pMaxBackOff−2},
at each MaxBackOff back-off stage. At each time slot, a transition from an idle state to a
transmission state (denoted as Trans.) occurs if a packet transmission is required, while
waiting states (denoted as Wait), correspond to a m back-off interval.

A device aims to select a channel with the highest probability of successful transmissions,
for which it uses a reinforcement learning approach, again formulated as a MAB problem.
Contrarily to what may appear at first sight, the goal is not to minimize the number of retransmis-
sions, but to maximize the probability of successful transmission, considering both the first
transmission of a message and the retransmissions of the same message. Indeed, the objective
of each device is to maximize its battery life by minimizing its total number of transmissions. We

7 Note that, for unlicensed bands, this definition also encompasses any device following a different standard or
trying to establish communication with gateways of other networks.

8 We denote it MaxBackOff instead of M like we did in our paper [BBMVM19], as M is used in next Chapter 6.
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Figure 5.11 – The Markov model of the behavior of all devices paired to the considered IoT network
using the ALOHA protocol.

address the problem of channel selection taking into account the described Markov model for
the retransmissions of end-devices. It motivates our present work for which we consider the
number of retransmissions, carried out by each device.

5.4.2 Motivations for the proposed approach

We consider IoT devices with a constraint on their QoS, imposing the successful delivery of
their messages. When such an IoT device experiments a collision, it goes in a back-off state
to retransmit the same packet on the same or another channel. If all devices remain in the
same channel for retransmissions, it is a well-known result that it could result in a sequence of
successive collisions with the same packets’ devices that previously collided. Thus, it seems
interesting to consider in the decision making policy the possibility for a device to retransmit in
a different channel. One of our motivations to develop new MAB algorithms for our problem
is this option of using a different communication channel between the first transmission and
the next retransmissions.

By considering this possibility, the device will have to learn more, thus, we expect the
learning time to be longer, but it could be possible that the final performance gain increases
too, in terms of network performance. We present in Section 5.4.5 an analysis to check this
performance gain, for various heuristics based on the UCB algorithm. Here after, we start by
presenting a mathematical derivation that backups this idea. To do so, we study the collision
probabilities considering the Markov process depicted in Figure 5.11, and foresee the impact
of using bandit strategies, as well as setting guidelines for the design of heuristic approaches.
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Probability of collision at a second transmission slot. It is well known [Abr70, Rob75] that
having a collision during an access time can be overcome by a retransmission procedure
(this can take several retransmission attempts). Our goal here is to obtain a mathematical
approximation of the collision probability at the second transmission slot pc1, as a function of
the first collision probability pc. We make two approximationsH1 andH2 defined as (they are
hypotheses on which the rest of this section is built),

• H1: The probability pc1, is composed by the sum of two probabilities: i) the probability
of colliding consecutively twice, i.e., the devices that collide at a given time slot and
collide again when retransmitting their packets, and ii) the probability of collision among
devices that did not collide in the same previous collision. Moreover, we suppose that
the number of devices involved in a collision is small in comparison to the total number
of devices. This is very realistic as a very small proportion of devices transmit at the
same period, due to their low duty cycle.

• H2: The total number of back-off stages at time t is constant, and it is assumed to be large
enough to consider that no device will ever be in the last failure state (this case is the
one on the right side in Figure 5.11), after MaxBackOff successive failed retransmissions
(otherwise, its battery life can be threatened if it does not have re-fueling capabilities).

Considering one device and one channel, we denote xi
t the probability that it is transmitting

a packet for the (i + 1)-th time in a given time slot t (with i ∈ {0, . . . , MaxBackOff − 1}), and
we denote xt =

∑MaxBackOff−1
i=0 xi

t the probability that it transmits a packet (i.e., just the sum
on i of xi

t). We consider N > 0 active devices following the same policy.

We assume to be in the steady state [Nor98], in our Markov chain model depicted in
Figure 5.11, and thus the probabilities no longer depend on the slot number t (i.e., ∀t, xt = x).
Therefore, the probability that this device has a collision at the first transmission is pc, and has
the following expression

pc = 1− (1− x)N−1 ⇐⇒ x = 1− (1− pc)
1

N−1 . (5.6)

Moreover, from (5.6) we define the probability pcp(n) that involves the collision of n packets
sent by each IoT device (for any 1 ≤ n ≤ N − 1), during the first transmission slot, and is
defined by pcp(n) =

(N−1
n

)
xn (1− x)N−1−n. As explained above, if an IoT device experiences

a collision at the first transmission, it proceeds for the retransmission of its packet after a
random back-off interval. We denote pca the probability to have a collision with a packet
involved in the previous collision. Under theH1 assumption, the number of packets involved
in the same previous collision remains very small in comparison to the total number of devices
that may transmit during this time. In other words, this collision probability does not depend
on previous retransmissions and is equal to pc. So, the probability that the same device’s
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packet experiences again a collision at the second time slot is

pc1 = pca + (1− pca) pc. (5.7)

If the device has a collision at the first attempt, we consider pbp(n) the probability that it
has a collision with exactly n packets (for any 1 ≤ n ≤ N − 1), and that at least one of the n

devices involved in this first collision chooses the same back-off interval,

pbp(n) =
(

N − 1
n

)
xn (1− x)N−1−n

[
1−

(
1− 1

m

)n]
. (5.8)

Besides, pca is the conditional probability of collision with a packet sent by a device involved
in the previous collision given that the packet experienced collision at its first transmission.
Hence, under hypothesisH2, we can use Bayes theorem and the law of total probability to relate
pca with pbp(n), and the different probabilities that a device experienced a collision during
the first slot and has the same back-off interval for its retransmission is, pca = 1

pc

∑N−1
n=1 pbp(n).

Therefore, the expression of pca is

1
pc

N−1∑
n=1

(
N − 1

n

)
xn (1− x)N−1−n

[
1−

(
1− 1

m

)n]

= 1− 1
pc

N−1∑
n=1

(
N − 1

n

)
xn (1− x)N−1−n

(
1− 1

m

)n

. (5.9)

Once again underH1, assuming that the number of devices involved in the first collision
is small compared to N − 1, the first N0 ≪ N − 1 terms of the sum in (5.9) are predominant.
We derive pca ≃ 1− 1

pc

∑N0
n=1

(N−1
n

)
xn (1− x)N−1−n

(
1− 1

m

)n
. Moreover, for these terms, n is

small compared to N − 1, and so N − 1− n can be approximated to N − 1. Thus it gives,

pca ≃ 1− (1− x)N−1

pc

N0∑
n=1

(
N − 1

n

)
xn
(

1− 1
m

)n

. (5.10)

Assuming H1 amounts to consider that x ≪ 1. As a consequence, the sum in equation
(5.10) can be supplemented by negligible terms,

pca ≃ 1− (1− x)N−1

pc

N−1∑
n=1

(
N − 1

n

)
xn
(

1− 1
m

)n

. (5.11)

The binomial theorem expands the sum in (5.11), so we can rewrite the expression of pca

pca ≃ 1−
( 1

pc
− 1

)[
1 +

(
1− (1− pc)

1
N−1

)(
1− 1

m

)]N−1
. (5.12)
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Finally, our approximation of pc1 can be obtained by inserting (5.12) in (5.7).

pc1 = pca + (1− pca) pc = (1− pc)pca + pc

≃ (1− pc) (1−
( 1

pc
− 1

)[
1 +

(
1− (1− pc)

1
N−1

)(
1− 1

m

)]N−1
+ pc. (5.13)

Behavior analysis of pc and pc1 In order to assess the proposed approximation, we suppose
a unique channel where all the devices follow the same contention Markov process. We
simulate an ALOHA protocol with a maximum number of retransmissions MaxBackOff = 10,
a maximum back-off interval m = 10, and a transmission probability p = 10−3. In Figure 5.12,
we show the collision probabilities for different number of devices N (from N = 50 up-to
N = 400), for both pc and pc1. From this simulations, we can verify that our approximation is
very precise for lower values pc1 ≤ 30% (i.e., red and orange curves are quite close). Moreover,
a significant gap between pc1 and pc, of up-to 10%, can be observed, which suggests us to
resort to MAB algorithms for the channel selection for both the first transmission and next
retransmissions.
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Figure 5.12 – Proposed approximation for the probability of collision at the second transmission. It is
more precise for smaller values of N .

Learning is useful for non-congested networks. It is worth to highlight that, if we write (5.7)
as pc1 = pc +pca (1− pc), then it is obvious that pc1 is always larger than pc (as pca (1− pc) > 0).
But for large values of pc, pca (1− pc) ≃ 0 so the gap gets small, and for small values of pc

the gap is significant. Moreover, we can verify (e.g., numerically or by differentiating) that
the gap decreases when pc increases (for fixed N and m). This backups mathematically the
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observation we made from Figure 5.12: the smaller the pc, the larger is the gap between pc

and pc1. We interpret this fact in two different situations:

• On the one hand, in a congested network, when devices suffer from a large probability of
collision on their first transmission (i.e., pc is not so small), then pc1 ≃ pc and so devices
cannot really hope to reduce their collision probabilities even if the use a different
channel for retransmission.

• On the other hand, if pc is small enough, i.e., in a network not yet too congested, then
our derivation shows that pc1 > pc, meaning that the possible gain of retransmitting in a
different channel that the one used for the first transmission can be large, in terms of
collision probability (e.g., up-to 10% in this experimental setting). In other words, when
learning can be useful (small pc), learning to retransmit in a different channel can have a
large impact on the global collision rate, thus justifying our approach.

5.4.3 The first heuristic: UCB unaware of retransmissions

This first heuristic we propose is unaware of retransmission: the same channel is used for
retransmissions. The UCB algorithm is implemented independently by each device, we
denote it “first-stage” UCB, and we present it in Algorithm 5.1. It is the same algorithm
as the Algorithm 2.2 in Section 2.4.2 (using the same UCB indexes as we defined them in
equation (2.7)), but we write it again to make clear the difference with first transmission and
retransmission of messages. Note that a device using this first approach is only able to select a
channel for the first transmission (using UCB, line 3-5), and then it uses the same channel for
all the corresponding retransmissions of a packet (if retransmissions happen, line 7-8).

1 for t = 1, . . . , T do
2 if First packet transmission then
3 Compute ∀k, Uk(t) = µ̂k(t) +

√
α ln(t)/Nk(t);

4 Transmit in channel A(t) ∼ U(arg maxk Uk(t));
5 Reward r(t) = 1, if Ack is received, else 0;
6 else // Retransmit in same channel
7 j← last channel selected by first-stage UCB;
8 Transmit in channel A(t) = j;
9 end

Algorithm 5.1: First-stage UCB and retransmission in same channel (“Only UCB”).

More formally, for one device, let Nk(t) be the number of times the channel k (for k ∈ [K])
was selected up-to time t − 1, for t ≥ 1 for any t ∈ N, Nk(t) =

∑t−1
τ=1 1(A(τ) = k). The

empirical mean estimator µ̂k(t) of channel k is defined as µ̂k(t) = 1
Nk(t)

∑t−1
τ=1 r(τ)1(A(τ) = k),

where r(t) = Yk,t is the reward obtained after transmission in channel k at time t. The upper
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confidence bound in each channel k is defined as Uk(t) = µ̂k(t) +
√

α ln(t)/Nk(t). Finally, the
transmission channel at time step t is A(t) ∼ U(arg maxk Uk(t)).

Small warning about notations: local (device) time vs global (gateway) time: In all
the algorithms and notations presented in this Section, the time steps t do not refer to
the global time steps (as seen from the gateway), but rather the current number of uplink
transmissions (or retransmissions) that was carried out by the device. Each device wakes
up whenever it has to send some data, following its random emission process (here, we
propose a Bernoulli process of small probability, e.g., p = 10−3), and when it woke up, it
sends its packet, and will send again for at most MaxBackOff times (e.g., MaxBackOff = 10)
until it receives an Ack. In other words, the time steps t in the following algorithms denote
the number of time the device sent an uplink packet, and these uplink (re)transmissions
can happen at different (real-world) times, more or less spread out in time, it does not
matter to the learning part of this model and work.

5.4.4 Heuristics to (try to) learn how to retransmit efficiently

A device that implements the UCB algorithm is led to focus its transmissions and retrans-
missions in the channel which is currently identified as the best. As explained above in
Section 5.4.2, focusing in one channel could increase the collision probability in retransmis-
sions. We describe here the proposed heuristics for the channel selection in a retransmission.
It is carried out taking into account that a device can incorporate a different channel selection
strategy while being in a back-off state. Hence, a natural question is to evaluate whether using
this additional contextual information can improve the performance of a learning policy.

For that end, all of our heuristics comprise two stages: the first stage is a UCB algorithm
employed for the first attempt to transmit, and the second stage is another algorithm used
for channel selections for the next retransmissions. We present below four heuristics for this
second stage. Their short names (with their colors) are used in the legend on Figures 5.13,
5.14), and are given in “quotes” in the corresponding paragraphs.

Uniform random retransmission “(Random”). In this first proposal, the device uses a
random channel selection, following a uniform distribution (on [K]). It is described below
in Algorithm 5.2. More precisely, the first-stage UCB use rewards built from the acknowl-
edgments that the device received or not for its first-stage transmission, but do not use any
feedback about any of the retransmissions of any message.

UCB for retransmission (“UCB”). Instead of applying a random channel selection for
retransmission, another heuristic is to use a second UCB algorithm in the second stage. In
other words, we expect that this algorithm is able to learn the best channel to retransmit a
packet. It is described in Algorithm 5.3, and it is still a practical approach, since the storage
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1 for t = 1, . . . , T do
2 if First packet transmission then
3 Use first-stage UCB as in Algorithm 5.1;
4 else // Random retransmission
5 Transmit in channel A(t) ∼ U(1, . . . , K);
6 end

Algorithm 5.2: Heuristic: uniform random retransmission “(Random”).

requirements and time complexity remains linear w.r.t. the number of channels K (i.e., O(K)).
Note that, we use the subscript (r) to denote the variables µ̂r(t), Br

k(t) and U r
k (t), related to

the UCB algorithm employed for the retransmission.

1 for t = 1, . . . , T do
2 if First packet transmission then
3 Use first-stage UCB as in Algorithm 5.1;
4 else // Packet retransmission with UCBr

5 Compute ∀k, U r
k (t) = µ̂r

k(t) +
√

α ln(t)/N r
k (t);

6 Transmit in channel Cr(t) ∼ U(arg maxk U r
k (t));

7 Reward rr(t) = 1, if Ack is received, else 0;
8 end

Algorithm 5.3: Heuristic: UCB for retransmission (“UCB”).

K different UCBs for retransmission (“K UCB”) Another heuristic is to not use the same
algorithm no matter where the collision occurred, but to use K different second-stage UCB
algorithms. It means that after a failed first transmission in channel j, the device relies on
the j-th algorithm to decide its retransmission. The corresponding algorithm is depicted in
Algorithm 5.4. Each of these algorithms are denoted using the subscript (j), for j ∈ [K].

Although, this approach increases the complexity and storage requirements (now, of order
O(K2)). For our LPWA networks of interest, such as LoRaWAN, the cost of its implementation
is still affordable, since a small number of channels is used. For instance, for K = 4 channels,
the memory to store K + 1 = 5 algorithms is of the order of the requirements to store one.

Note that for other networks this heuristic could not be practical. The storage requirements
and time complexity is now quadratic in K, and as such we no longer consider this heuristic
to be a practical proposal in some LPWA networks, as for instance Sigfox networks consist in
a large number of very narrow-band channels (e.g., K = 128). But for LoRaWAN networks
with K = 4, storing K + 1 = 5 algorithms does not cost much more than storing 2.
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1 for t = 1, . . . , T do // At every time step
2 if First packet transmission then
3 Use first-stage UCB as in Algorithm 5.1;
4 else // Packet retransmission with UCBj

5 j← last channel selected by first-stage UCB;
6 Compute ∀k, U j

k(t) = µ̂k
j(t) +

√
α ln(t)/N j

k(t);
7 Transmit in channel Aj(t) ∼ U(arg maxk U j

k(t));
8 Reward rj

Aj(t)(t) = 1 if Ack is received, else 0;
9 end

Algorithm 5.4: Heuristic: K different UCBs for retransmission (“K UCB”).

Delayed UCB for retransmission (“Delayed UCB”). This last heuristic is a composite
of the random retransmission (Algorithm 5.2) and the UCB retransmission (Algorithm 5.3)
approaches. Instead of starting the second stage UCB directly from the first retransmission,
we introduce a fixed delay ∆ ∈ N, ∆ ≥ 1, and start to rely on the second stage UCB after ∆
transmissions. The selection for the first steps is handled with the random retransmission.

The idea behind this delay is to allow the first stage UCB to start learning the best channel,
before starting the second stage UCB (see details in Algorithm 5.5). The number of trans-
missions to wait before applying the second algorithm is denoted by ∆, it has to be fixed
before-hand9. Note that, we use the subscript (d) to denote the variables related to the delayed
second-stage UCB algorithm.

1 for t = 1, . . . , T do // At every time step
2 if First packet transmission then
3 Use first-stage UCB as in Algorithm 5.1;
4 else if t ≤ ∆ then // Random retransmission
5 Transmit randomly in a channel A(t) ∼ U(1, . . . , K).
6 else // Packet retransmission with delayed UCBd

7 Compute ∀k, Ud
k (t) = µ̂d

k(t) +
√

α ln(t)/Nd
k (t);

8 Transmit in channel Ad(t) ∼ U(arg maxk Ud
k (t));

9 Reward rd
Ad(t)(t) = 1 if Ack is received, else 0;

10 end
Algorithm 5.5: Heuristic: delayed UCB for retransmission (“Delayed UCB”).

9 Choosing the value of ∆ could be done by extensive benchmarks but such approach goes against the
reinforcement learning idea: an heuristic should work against any problem, without the need to simulate the
problem before-hand to find a good value of some internal parameter. As such, we only consider a delay of
∆ = 100 in our experiments, and we did not try to optimize it.
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Other ideas that we did not explore. Instead of considering a first-stage UCB followed
by a random channel retransmission, we could have considered a random first-stage chan-
nel retransmission followed by a second-stage UCB. This was not considered in our study
[BBMVM19], and we preferred to not add it to the experiments presented below, for three
reasons: to avoid clutter in the plots, to win some time as these experiments had to run for
quite a long time, but mainly because the first-stage channel selection is most important one
as we illustrate by the large difference in terms of performance between the uniform channel
selection and the “Only UCB” heuristic, below in Figures 5.13 and 5.14.

Using another bandit policy? We could have chose any bandit algorithm for the “first
stage” component used in this Section, and for simplicity and clarity we focused on a simple
but efficient one (UCB). We believe that the same empirical results, but more importantly,
the same conclusions, could be given if we used Bayes-UCB or other bandit algorithm for the
base building block in the different heuristics proposed in this section. Our goal here was not
to optimize on the bandit policy (as we presented in Section 3.3 some numerical simulations
doing precisely this), but rather to compare the different heuristics, for a fixed bandit policy
(for which we preferred to use UCB for simplicity).

5.4.5 Numerical results

We simulate our network considering N devices following the contention Markov process
described in Section 5.4.1, and a LoRaWAN standard with K = 4 channels, as in Section 5.2.
Each device is set to transmit with a fixed probability p = 10−3, i.e., a packet about every 20
minutes for time slots of 1 s. For the evaluation of the proposed heuristics, a total number
of T = 20× 104 time slots is considered, and the results are averaged over 1000 independent
random simulations.

In a first scenario, we consider a total number of N = 1000 IoT devices, with a non-uniform
repartition of static devices given by 10%, 30%, 30%, 30% for the four channels. In other words,
the channels are occupied10 respectively 10%, 30%, 30%, and 30% of time, and the contention
Markov process considered is given by MaxBackOff = 5, and m = 5. In Figure 5.13, we show
the successful transmission rate versus the number of slots, for all the proposed heuristics.

A first result is that all the heuristics clearly outperform the non-learning approach that
simply uses random channel selection for both transmissions and retransmissions (i.e., the
“no UCB” curve in black), which is (still) the current state-of-the-art in IoT networks. The
improvement of the heuristics over the non-learning approach is clear, and for every heuristic

10 Note that we consider higher occupancy rates that the ones considered previously in Section 5.3, because the
goal of this experimental section is to evaluate our approach that use learning to optimize the way each device
retransmits its packets. We need to have a large enough probability pc of retransmission if we want to see a
difference between the different learning heuristics, which is why we consider a network more densily occupied
than in Section 5.3.
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that uses a kind of learning mechanism it can be observed that the successful transmission
rate increases rapidly (or equivalently the PLR decreases). Moreover, all of these approaches
show a fast convergence making them suitable for the targeted application. It is also worth
mentioning that the employment of the same UCB algorithm for retransmissions, denoted
here as “Only UCB”, achieves a better performance, while a “Random” retransmission features
a slight degradation. This result can be explained as follows: the loss of performance related
to the separation of information for several algorithms is greater than the gain obtained by
considering the first transmissions and retransmissions separately.
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Figure 5.13 – Comparison between the exposed heuristics for the retransmission:“ Only UCB”, “Ran-
dom”, “UCB”, “K UCB”, and “Delayed UCB”. The usage of the same learning policy for transmissions
and retransmission is named “Only UCB”, whereas the usage of a random channel selection, for both
transmission and retransmission, is labeled as “no UCB”. First scenario: learning helps but learning
to retransmit smartly is not needed, as we observe that the random retransmission heuristic achieves
similar performance than the others. We considered N = 1000 static IoT devices, that occupy the 4
channels in a static way leading to mean occupancy rates of 10%, 30%, 30%, 30%.

We also consider in our experiment the case of an ALOHA protocol using MaxBackOff = 5,
and m = 10, a statistic distribution of the devices about 40%, 30%, 20%, 10% for the four
channels, and N = 2000 IoT devices. The corresponding results are depicted in Figure 5.14.
In this case the successful transmission rate is degraded compared with achieved results in
Figure 5.13. We can explain this by the fact that we are considering in our network more devices,
which increases the collision probability. It is important to highlight, that the “Random”
retransmission heuristic shows a poor performance in comparison to the other heuristics, and
it can be attributed to the fact that the number of retransmission is increased, and consequently
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a learning approach is able to take advantage of it. Furthermore, the “UCB”, “K UCB” and
“Delayed UCB” heuristics behave similarly to “Only UCB”, after a similar convergence time.
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Figure 5.14 – Second scenario: learning helps a lot (a gain of 30% in terms of collision probability), and
learning to retransmit smartly is needed. We observe that the random retransmission achieves poor
performance compared to the others. We considered N = 2000 static IoT devices, that occupy the 4
channels in a static way leading to mean occupancy rates of 10%, 30%, 30%, 30%.

The conclusions we can draw from these results are twofold. Firstly, MAB learning algo-
rithms are very useful to reduce the collision rate in LPWA networks, a gain of up-to 30% of
successful transmission rate is observed after convergence. Secondly, using learning mecha-
nisms for retransmissions can be a simple yet efficient and interesting way to reduce collisions
in IoT networks, even in networks with massive deployments of IoT as this can be checked in
Figure 5.14, where the random retransmission heuristic is greatly outperformed by the any of
the UCB-based approaches, that use learning for channel selection during the retransmission
procedure. With 10% to 30% occupancy rates the considered example of IoT network can
indeed be considered as an IoT network with a massive deployment of devices.

Reproducility of the experiments. The source code (MATLAB or Octave) used for the simu-
lations and the figures of this section is open-sourced under the MIT License, and published at
Bitbucket.org/scee_ietr/ucb_smart_retrans. It was written in collaboration with Rémi
Bonnefoi and Julio César Mango-Vasquez, in July and August 2018.
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5.5 Conclusion

To sum-up, we focused in this chapter on models of IoT networks, and we proposed to use
classical stationary multi-armed bandit learning algorithms implemented in a selfish and
decentralized manner by each of the dynamic devices of the IoT network. We presented two
models of wireless IoT network without sensing, inspired by the ALOHA protocol, and with or
without retransmission of uplink packages in case of collisions. In both cases, we try to model
the existing standards, like the LoRa standard, and we demonstrated the efficiency of the
proposed MAB-based approach in both numerical simulations and empirical measurements
on real wireless radio signals.

A satisfying message is that this learning-based approach seems to be very efficient,
as it allows the IoT devices to automatically and independently increase their successful
transmission rate. It is also quite surprising that stochastic MAB algorithms can be of any
use in such non-stationary applications. Sadly, analyzing our model with thousands of
independent devices communicating and learning in their own (random) time scales turned
out to be of extreme difficulty. We can also highlight that the two models we studied are
complementary: the first model (without retransmission of packets), is interesting for its
simplicity, and focused on improving the battery life of IoT devices, at the cost of a lower
Quality of Service (QoS), while the second model is more interesting if the main target is an
improvement of the QoS, rather than a longer battery life.

Multi-Players MAB. On the first hand, we are actually able to analyze a simpler model, if
we assume to have at most M ≤ K devices with a transmission probability of p = 1. Instead
of the experiment-driven direction pursued in this chapter, another possibility is to consider
a multi-players MAB model to describe our problem. The main difference between the two
models is the fact that in this chapter, devices do not transmit their messages at every time
step, but following a random activation process (with a fixed transmission probability p < 1).
If static and dynamic devices that have to transmit at a fixed time are denoted active devices,
then their random activation patter makes the number of active devices an (unpredictable)
random variable. Analyzing multi-players MAB models under this hypothesis is much harder,
and is left as a future work. We study this first direction in the next Chapter 6.

Non-stationary MAB. On the other hand, while it is hard to analyze the models of this
chapter due to their non-stationary behaviors, we are also able to analyze a simpler model, if
we focus on a single player accessing a network which is assumed to be piece-wise stationary
(MAB problems which are stationary on “long enough” intervals, of unknown locations and
lengths). We also study this second direction in Chapter 7.
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5.6 Appendix

5.6.1 Proof of Proposition 5.1

We include here the missing details of the proof of Proposition 5.1. First, we need to justify
that the objective function is quasi-convex, in each of its coordinates. Then, we develop
the computation of D∗

i (λ), as a closed form expression of the system parameters (K, p), the
repartition of static devices (S1, . . . , SK) and the Lagrange multiplier λ.

Quasi-convexity.

• For 0 < γ < 1, the function g(x) .= xγx is quasi-convex on [0,∞), i.e., g(ηx + (1− η)y) ≤
max(g(x), g(y)) for any x, y ∈ [0,∞) and η ∈ [0, 1] (definition from [Lue68]). Indeed,
g(ηx + (1 − η)y) = η [x(γx)η] γ((1−η)y) + (1 − η)

[
y(γy)1−η

]
γηx, and γ((1−η)y) ≤ 1 and

γηx ≤ 1. But also (γx)η ≤ γx as η ≤ 1, and the same holds for (γy)1−η ≤ γy. So
g(ηx + (1− η)y) ≤ η(xγx) + (1− η)(yγy) which is a convex combination of xγx and yγy,
so smaller than the larger of the two values, and so g(ηx + (1− η)y) ≤ max(xγx, yγy).

• The function f(D1, . . . , DK) .=
K∑

i=1
Di(1 − p)Si+Di−1 is quasi-convex in each of its co-

ordinates, on [0,∞)K , as a sum of component-wise quasi-convex functions (with γ =
(1− p) ∈ (0, 1), thanks to the first point). □

Derivation of the Lagrange multiplier solution. Let us now prove the expression for D∗
i

given above in (5.5).

• If D
.= (D1, . . . , DK), the Lagrangian is denoted L(D, λ) .= f(D) + λ(D −

K∑
i=1

Di), and

its derivative w.r.t. Di is ∂
∂Di
L(D, λ) = (1− p)Si+Di−1 + ln(1− p)Di(1− p)Si+Di−1 − λ.

• So the gradient is zero ∂
∂Di
L(D, λ)|Di=D∗

i
= 0 iff D∗

i satisfies (1−p)D∗
i (1+ln(1−p)D∗

i ) =
λ/(1− p)Si−1. Let x = ln(1− p)D∗

i this is equivalent to ex(1 + x) = λ/(1− p)Si−1 and
with y = 1 + x, we get eyy = λe/(1− p)Si−1.

• By using theW-Lambert functionW [CGH+96], reciprocal of y 7→ eyy, we get x = y−1 =
W(λe/(1−p)Si−1)−1. So the gradient of the Lagrangian is zero iff D∗

i = max(0, x/ ln(1−
p)) =

[
1

ln(1−p)W(λe/(1− p)Si−1)− 1
]+

, because D∗
i has to be non-negative. This gives

the i-th coordinate of the unique saddle point of f(D), and so the unique solution to
the maximization problem (5.4a), thanks to [Lue68, Theorem 1]. □
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5.6.2 Illustration of the GNU Radio Companion Flowcharts

For the curious reader, we wanted to include here an illustration and a description of the three
components of the demonstration we presented above in Section 5.3.

The code corresponding to the following components is written in C++ and Python for the
hand-written blocks, and using the GUI of the GNU Radio Companion software. The flow-
graphs are saved as XML files, and the complete code of our demo is fully available online, open-
sourced under GPLv3 license, at bitbucket.org/scee_ietr/malin-multi-arm-bandit
-learning-for-iot-networks-with-grc/.

Random traffic generator

Figure 5.15 shows the random traffic generator flow-graph. Generator is the only hand-
written block, which is configured with a list of active channels, a list of occupancy rate, and
constants about the PHY layer (preamble length and data length). It uses one USRP only for
emitting data (“Sink” mode).

Figure 5.15 – The random traffic generator flow-graph.

IoT gateway

The IoT gateway is presented in Figure 5.16 below. We wrote the following blocks:

• 1) the Demodulator block, which is configured with a list of detection threshold (on the
received power),

• 2) the Check_ack block, which is configured with a maximum block error and an accepted
error rates (to decide when a message is close enough to an acknowledgement),

• and finally 3) the send_ack block, which is configured with the list of active channels,
and knowledge about the PHY layer (delay before sending the Ack and its length).

All blocks need to know constants about the PHY layer (preamble length and data length).
The IoT gateway uses one USRP for both emitting and receiving data (“Sink” and “Source”
modes).
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Improving Spectrum Usage of IoT Networks with Selfish MAB Learning

Figure 5.16 – The IoT gateway flow-graph.

IoT dynamic device

Figure 5.17 below shows the IoT dynamic device flow-graph. The hand-written blocks are
the

• 1) the Renormalized_ack block, which is configured with the list of active channels and
extra knowledge about the PHY layer (preamble length, message length, and a threshold
to tune detection of the incoming Ack),

• 2) the Demodulator and 3) the Check_ack blocks, both shared with the IoT gateway,

• and finally 4) the generator_SU block, which embeds the UCB or Thompson Sampling
algorithm, and which is configured with the list of active channels.

Most blocks need to know constants about the PHY layer (preamble length and data length).
Any of the IoT dynamic devices use one USRP for both emitting and receiving data (“Sink”
and “Source” modes)

Figure 5.17 – The IoT dynamic device flow-graph.
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Chapter 6

Multi-Players Multi-Armed Bandits

In this chapter, we are interested in a more formal approach to the decentralized learning
problem presented in Chapter 5. We restrict to the easier case of at most M ≤ K devices in
a network with K channels, because it was found very hard to analyze the aforementioned
IoT network model. We discuss three feedback levels that give variants of the multi-players
MAB model previously studied in the literature. Using a decomposition of the centralized
system regret, we start by explaining the intuition about what an efficient decentralized algo-
rithm should do, and then we propose RandTopM and MCTopM, two new orthogonalization
schemes. Combining them with the kl-UCB index policy gives order-optimal algorithms, that
achieve state-of-the-art performance, as illustrated by numerical simulations. We conclude by
reviewing different extensions of the multi-players models.
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6.1 Motivations for multi-players MAB models

As we saw in Chapters 1 and 5, a crucial step for the development of Cognitive Radio is to
insert multiple smart devices in the same background traffic (at least M ≥ 2). In this Chapter 6,
we are interested in a more formal approach to the decentralized learning problem presented
in the previous Chapter 5. Such networks can be modelled using a decentralized multi-players
multi-armed bandit problem, where arms are channels and players are dynamic IoT devices.
The decentralized hypothesis means that the central base station does not given any direct
order to the devices, they are all in charge of deciding the channel they each want to use at
each time step. Moreover, the devices are independent and do not directly communicate with
each other either. We show that dynamic end-devices are able to use limited feedback sent by
the gateway to learn to find orthogonal affectations of the group of end-devices to the best
radio channels, automatically and without explicit communication with each other. In other
words, the end-devices are able to learn to cooperate efficiently, in a completely decentralized
and autonomous manner.

We consider M identical dynamic IoT devices, communicating with a unique gateway, in
K orthogonal channels and in a acknowledgment-based wireless protocol slotted in time. A
perfect time and frequency synchronization is assumed, and some i.i.d. background traffic is
assumed to be non-uniformly in the K channels. As before, if two or more devices decide to
use the same channel at the same time, a collision arises and none of sent uplink packet can be
received by the gateway. Unfortunately, it is very hard to formally analyze the IoT network
models we presented in Chapter 5, mainly because of the random activation process of all the
dynamic (i.e., learning) devices. Even if there are many identical bandit algorithms learning
independently and in a decentralized way, the difficulty mainly comes from the fact that all of
them are only communicating at some (random) time steps, and at each time step the number
of communicating devices is random and unpredictable.

Mainly for these two reasons, for this Chapter 6 we prefer to only consider at most M ≤ K

devices, communicating at each time step. Note that in the model of Chapter 5, this hypothesis
M ≤ K corresponds to choosing a probability of activation of p = 1, as we assumed that (in
average) no more than K devices should be active at the same step. We start by reviewing
previous works on multi-players MAB models, which all considered the easier case of sensing
feedback. But in our model in this chapter, each device also uses a Multi-Armed Bandit
algorithm, to maximize its number of successful communications, by using the received
acknowledgement Ack as a (random) binary reward after each uplink message (i.e., at each
time step). With the presence of a central controller that can assign the devices to separate
channels, this amounts to choosing at each time step several arms of a MAB in order to maximize
the global rewards, and can thus be viewed as an application of the multiple-play bandit,
introduced by [AVW87a] and recently studied by [KHN15]. They essentially proved that
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existing algorithms can be easily extended to the multiple-play case, with provable guarantees
on their regret. Due to the communication cost implied by a central controller, a more relevant
model is the decentralized multi-players multi-armed bandit model, introduced by [LZ10] and
further studied shortly after in [AMT10, AMTA11], in which players select arms individually
and collisions may occur, that yield a loss of reward. Further algorithms were proposed
in similar models by [TL12] and [KNJ12] (under the assumption that each arm is a Markov
chain), and by [AM15, AM16] and [RSS16] for i.i.d. arms. In the point of view of the wireless
protocol, each time frame is separated as before in a sensing phase (during which the device
senses for the background traffic), an uplink phase (during which the device sends a packet
to the gateway if it sensed the chosen channel to be free), and a downlink phase (during
which it waits for an Ack from the gateway). In this first model, the binary reward is 1 only
if the channel was sensed to be free of background traffic and if Ack was received, and the
device has access to both information. We present two algorithms, RandTopM and MCTopM,
based on the combination of an efficient MAB index policy (we chose kl-UCB) and a smart
orthogonalization procedure, based on a random hoping procedure called Musical Chair.
Like in previous works, we consider the centralized system regret (multi-players regret), or
simply referred to as regret. We start by showing an improved asymptotical regret lower-
bound for any algorithm of a certain class, including previous solutions such as RhoRand
and our two solutions. We then analyze our MCTopM algorithm and we show that its regret
upper-bound is logarithmic and order-optimal, improving over the previous state-of-the-art.
We also present extensive numerical simulations that show that our proposal outperforms all
previous solutions and is much more efficient in this easier model of sensing feedback with a
fixed and known number of players M accessing K ≥M channels.

The goal for every player is to select most of the time one of the M best arms, without
colliding too often with other players. A first difficulty relies in the well-known trade-off
between exploration and exploitation: players need to explore all the arms to estimate their means,
while trying to focus on the best arms to gain as much rewards as possible. The decentralized
setting considers wireless protocol with no direct or explicit exchange of information between
players, and assumes that the players only know K and M . To avoid collisions, players should
furthermore find orthogonal configurations, i.e., the M players use the M best arms without
any collision, without explicitly communicating1 with each other. Hence, in that case the
trade-off is to be found between exploration, exploitation and low collisions.

All these above-mentioned works are motivated by the OSA problem, in which it is
assumed that sensing occurs, that is, each smart device observes the availability of a channel
(i.e., a reward from the arm) before trying to transmit and possibly experiment a collision

1One must now be careful about this aspect when stating that “no explicit communications are allowed between
players” in the model, as [BP18] proved that even in the no sensing case, the “communication trick” can be used
to exchange information between players, by generating collisions at some pre-agreed times. We discuss this work
more in details at the end of this chapter, in Section 6.7.3.
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with other smart devices. However some real radio networks do not use sensing at all, e.g.,
emerging standards currently or recently developed for Internet of Things (IoT) networks, such
as LoRaWAN. Thus, to take into account these new applications, algorithms with additional
constraints on the available feedback have to be proposed within the multiple-player MAB
model. Especially, the typical approach that combines a (single-player) bandit algorithm based
on the sensing information –to learn the quality of the channels while targeting the best ones–
with a low-complexity decentralized collision avoidance protocol, is no longer possible. Our
article [BK18a] was the first to study this other model of multi-players bandits for the “no
sensing” case, for which we only proposed an heuristic, the naive Selfish strategy as it was
already used in Chapter 5. Even if empirical simulations showed that Selfish-kl-UCB performs
very well, it is a mistake to only consider mean regret, as we found on numerical simulations
as well as formal derivation on a simple example of K = M = 2 that the Selfish heuristic
can have a linear regret with a low probability (and so asymptotically it has linear expected
regret and fails to solve “no sensing” multi-players MAB problems). We do not propose any
other efficient algorithm, but our work presented in April 2018 has strongly inspired two
articles shortly after [LM18, BP18]. They confirmed our finding that Selfish can have a linear
regret, and they both proposed new algorithms. We include some numerical simulations to
compare some of them, and we present in details the current state-of-the-art of research on
multi-players MAB models without sensing.

Outline. The rest of this chapter is organized as follows. We introduce the multi-players
bandit model with three feedback levels in Section 6.2. We present a useful regret decomposi-
tion in Section 6.3, and illustrate it in the Appendix 6.9. The Selfish, RandTopM and MCTopM
algorithms are introduced in Section 6.4, for which we present our theoretical analysis in
Section 6.5. The result of our experimental study reported in Section 6.6. Finally, we present
in Section 6.7 a review of the recent literature which studies variants of the model presented
in this Chapter. For some extensions, we discuss how to adapt our proposals and illustrate
the empirical performances of such modification of MCTopM-kl-UCB, leaving theoretical
analyses as future works.

Publication. This chapter is mainly based on our article [BK18a].

6.2 Three feedback levels for the multi-players bandit model

Similarly to what is presented in Chapter 2, we consider a K-armed Bernoulli bandit model,
in which arm k is a Bernoulli distribution with mean µk ∈ [0, 1]. We denote (Yk,t)t∈N the i.i.d.
(binary) reward stream for arm k, that satisfies P(Yk,t = 1) = µk and that is independent from
the other rewards streams.
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Only Bernoulli. However we mention that our lower bound and all our algorithms (and
their analysis) can be easily extended to one-dimensional exponential families (just like for
the kl-UCB algorithm of [CGM+13]). For simplicity, we focus on the Bernoulli case, that is
also the most relevant for Cognitive Radio problems, based on channel availability.

In the multi-players MAB setting, there are M ∈ [K] players (or agents), that have to make
decisions at some pre-specified time instants. At time step t ∈ N, t ≥ 1, player j selects an arm
Aj(t), independently from the other players’ selections.

Definition 6.1. A collision occurs at time t if at least two players choose the same arm. We
introduce the two events, for j ∈ [M ] and k ∈ [K],

Cj(t) .= {∃j′ ̸= j : Aj′(t) = Aj(t)} and Ck(t) .=
{

#{j : Aj(t) = k} > 1
}

, (6.1)

that respectively indicate that a collision occurs at time t for player j and that a collision occurs at
time t on arm k.

Each player j then receives (and observes) the binary rewards rj(t) ∈ {0, 1},

rj(t) .= YAj(t),t 1(Cj(t)). (6.2)

In other words, she receives the reward of the selected arm if she is the only one to select this
arm, and a reward zero otherwise. This provides another reason to focus on the Bernoulli
model. It is the hardest model, in the sense that receiving a reward zero is not enough to detect
collisions. For other models, the data streams (Yk,s)s are usually continuously distributed,
with no probability mass at the value of zero (e.g., Gaussian). Hence receiving rj(t) = 0
directly gives 1(Cj(t)) = 1. Note that other models for rewards loss have also been proposed
in the literature, for instance the reward is randomly allocated to one of the players selecting
it. To stay consistent and for simplicity, with the model presented in the previous Chapter 5,
we preferred to focus on full reward occlusion in this chapter.

A multi-players MAB strategy is formally defined as a tuple A = (A1, . . . ,AM ) of arm
selection strategies for of each of the M players, and the goal is to propose a strategy that
maximizes the total reward of the system, under some constraints. First, each player j should
adopt a sequential strategy Aj , that decides which arm to select at time t based on previous
observations. Previous observations for player j at time t always include the previously chosen
arms Aj(s) and received rewards rj(s) for s < t, but may also include the sensing information
YAj(t),t or the collision information Cj(t). More precisely, depending on the application, one
may consider the following three observation models, (I), (II) and (III).

If the arms have continuous distributions (or are such that P(Yk,s = 0) = 0), the sensing
information YAj(t),t and collision information Cj(t) can always be extracted from the reward
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information. But for Bernoulli distributions, one may consider the following three observation
models, that are not equivalent:

(I) Simultaneous sensing and collision: player j observes YAj(t),t and Cj(t). We note that
this first model was never previously studied, but we do not focus on it because of its
unrealistic aspect, and its simplicity (it is easier than the following model, for which we
obtain good theoretical results).

(II) Sensing, then collision: player j observes YAj(t),t, then observes the reward, and thus
also Cj(t) only if YAj(t),t = 1. This common setup, studied for example by [AMTA11,
RSS16], is relevant to model the OSA problem: the device first checks for the presence of
primary users in the chosen channel, if this channel is free (YAj(t),t = 1), the transmission
is successful (rj(t) = 1) if no collision occurs with other smart devices (Cj(t)).

(III) No sensing: player j only observes the reward rj(t). For IoT networks, this reward can be
interpreted as an acknowledgement from a Base Station, received when a communication
was successful. A lack of acknowledgment may be due to a collision with a device from
the background traffic (YAj(t),t = 0), or to a collision with one of the others players
(Cj(t)). However, the sensing and collision information are censored. Recently, our
work presented in Chapter 5 [BBM+17] presented the first (bandit-based) algorithmic
solutions under this (harder) feedback model, in a slightly different setup, more suited
to large scale IoT applications, but as explained above we did not present theoretical
results for this third model (yet).

Under each of these three models, we define F j
t to be the filtration generated by the

observations gathered by player j up to time t (which contains different information under
models (I), (II) and (III)). While a centralized algorithm may select the vector of actions for all
players (A1(t), . . . , AM (t)) based on all the observations from

⋃
j F

j
t−1, under a decentralized

algorithm the arm selected at time t by player j only depends on the past observation of this
player. More formally, Aj(t) is assumed to be F j

t−1-measurable.

Definition 6.2. We denote by µ∗
1 the best mean, µ∗

2 the second best etc, and by M -best the (non-
sorted) set of the indices of the M arms with largest mean (best arms): if µ∗

1 = µk1 , . . . , µ∗
M = µkM

then M -best = {k1, . . . , kM}. Similarly, M -worst denotes the set of indices of the K −M arms
with smallest means (worst arms), [K] \M -best.

Note that they are both uniquely defined if µ∗
M > µ∗

M+1.

Following a natural approach in the bandit literature, we evaluate the performance of a
multi-players strategy using the expected regret (later simply referred to as regret), that measures
the performance gap with respect to the best possible strategy. The regret of the strategy A at
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horizon T is the difference between the cumulated reward of an oracle strategy, assigning in
this case the M players to M -best, and the cumulated reward of strategy A:

Definition 6.3. The excepted centralized multi-players regret is defined by

RT (µ, M,A) .=
(

M∑
k=1

µ∗
k

)
T − Eµ

 T∑
t=1

M∑
j=1

rj(t)

 . (6.3)

With this definition, maximizing the expected sum of global reward of the system is
indeed equivalent to minimizing the regret, and we investigate the best possible regret rate of
a decentralized multi-players algorithm in the next section.

6.3 Decomposing the regret to get an intuition for the design of ef-
ficient decentralized algorithms

In this section, we provide a useful decomposition of the regret (Lemma 6.5) that permits
to establish a new problem-dependent lower bound on the regret (Theorem 6.8), and also
provides key insights on the derivation of regret upper bounds (Lemma 6.9).

Warning. The regret lower bound that we gave in [BK18a] is not applicable to any
algorithm, as it was discovered by Boursier and Perchet, as they explain in Section 2.4 in
[BP18]. The proof we gave in the Appendix of our paper [BK18a] was wrong in just one step,
but the results stated in this section are now correct, thanks to the modifications proposed
by Kaufmann and Mehrabian in Appendix E of [KM19]. The cost for this modification is
to restrict the lower-bound to a smaller class of algorithms, which should contain RhoRand,
RandTopM and MCTopM, but not the two algorithms proposed SIC-MMAB from [BP18]
and Multiplayer Explore-then-Commit (M-ETC) from [KM19]. Proving that the proposed
algorithms are in this class is left as an open question.

6.3.1 A useful regret decomposition

We introduce additional notations in the following definition.

Definition 6.4. Let N j
k(T ) .=

∑T
t=1 1(Aj(t) = k), and denote Nk(T ) .=

∑M
j=1 N j

k(T ) the
number of selections of arm k ∈ [K] by any player j ∈ [M ], up to time T .
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Let Ck(T ) be the number of colliding players on arm k ∈ [K] up to horizon T :

Ck(T ) .=
T∑

t=1

M∑
j=1

1(Cj(t))1(Aj(t) = k). (6.4)

Note that when n players choose arm k at time t, this counts as n collisions, not just one.
So Ck(T ) counts the total number of colliding players rather than the number of collision events.
Hence there is small abuse of notation when calling it a number of collisions. By denoting
PM

.=
{

µ ∈ [0, 1]K : µ∗
M > µ∗

M+1

}
the set of bandit instances with a strict gap between the M

best arms and the other arms, we now provide a regret decomposition for any µ ∈ PM .

Lemma 6.5. For any bandit instance µ ∈ PM such that µ∗
M > µ∗

M+1, it holds that

RT (µ, M,A) =
∑

k∈M -worst
(µ∗

M − µk)Eµ[Nk(T )]︸ ︷︷ ︸
(a)

(6.5)

+
∑

k∈M -best
(µk − µ∗

M )(T − Eµ[Nk(T )])︸ ︷︷ ︸
(b)

+
K∑

k=1
µkEµ[Ck(T )]︸ ︷︷ ︸

(c)

.

In this decomposition, term (a) counts the lost rewards due to sub-optimal arms selections
(k ∈M -worst), term (b) counts the number of times the best arms were not selected (k ∈M -best),
and term (c) counts the weighted number of collisions, on all arms.

Proof. Using the definition of regret RT (µ, M,A) from (6.3), denoted here RT , and this colli-
sion indicator ηj(t) .= 1(Cj(t)),

RT =
(

M∑
k=1

µ∗
k

)
T − Eµ

 T∑
t=1

M∑
j=1

YAj(t),tη
j(t)

 =
(

M∑
k=1

µ∗
k

)
T − Eµ

 T∑
t=1

M∑
j=1

µAj(t)η
j(t)


The last equality comes from the linearity of expectations, and the fact that Eµ[Yk,t] = µk (for
all t, from the i.i.d. hypothesis), and the independence from Aj(t), ηj(t) and Yk,t (observed
after playing Aj(t)). So Eµ[YAj(t),tη

j(t)] =
∑

k Eµ[µk1(Aj(t), t)ηj(t)] = Eµ[µAj(t)η
j(t)]. And so

RT = Eµ

 T∑
t=1

∑
j∈M -best

µj −
T∑

t=1

M∑
j=1

µAj(t)η
j(t)
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=

 1
M

∑
j∈M -best

µj

− K∑
k=1

M∑
j=1

µkEµ

[
N j

k(T )
]

+
K∑

k=1
µkEµ [Ck(T )] .

For the first term, we have TM =
K∑

k=1

M∑
j=1

Eµ

[
N j

k(T )
]
, and if we denote µ∗ .= 1

M

∑
j∈M -best

µj the

average mean of the M -best arms, then,

=
K∑

k=1

M∑
j=1

(µ∗ − µk)Eµ

[
N j

k(T )
]

+
K∑

k=1
µkEµ [Ck(T )] .

Let ∆k
.= µ∗−µk be the gap between the mean of the arm k and the M -best average mean, and

if M∗ denotes the index of the worst of the M -best arms (i.e., M∗ = arg mink∈M -best(µk)), then
by splitting [K] into three disjoint sets M -best∪·M -worst = (M -best\{M∗})∪· {M∗}∪·M -worst,
we get

=
∑

k∈M -best\{M}
∆kEµ [Nk(T )] + ∆M∗Eµ [NM∗(T )]

+
∑

k∈M -worst
∆kEµ [Nk(T )] +

K∑
k=1

µkEµ [Ck(T )] .

But for k = M∗, NM∗(T ) = TM∗ −
∑

k∈M -best\{M}
Eµ [Nk(T )] −

∑
k∈M -worst

Eµ [Nk(T )], so by

recombining the terms, we obtain,

=
∑

k∈M -best\{M}
(∆k −∆M∗)Eµ [Nk(T )] + ∆M∗TM∗

+
∑

k∈M -worst
(∆k −∆M∗)Eµ [Nk(T )] +

K∑
k=1

µkEµ [Ck(T )] .

The term ∆k −∆M∗ simplifies to µM∗ − µk, and so ∆M∗ = 1
M

∑M
k=1 µk − µM∗ by definition of

µ∗. And for k = M∗, µM∗ − µk = 0, so the first sum can be written for k = 1, . . . , M only, soIt

RT =
∑

k∈M -best
(µM∗ − µk)Eµ [Nk(T )] +

∑
k∈M -best

(µk − µM∗)T

+
∑

k∈M -worst
(µM∗ − µk)Eµ [Nk(T )] +

K∑
k=1

µkEµ [Ck(T )]

And so we obtain the decomposition with three terms (a), (b) and (c).

RT =
∑

k∈M -best
(µk − µM∗) (T − Eµ [Nk(T )])

+
∑

k∈M -worst
(µM∗ − µk)Eµ [Nk(T )] +

K∑
k=1

µkEµ [Ck(T )] .
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Which is exactly the decomposition we wanted to prove.

The regret decomposition in Lemma 6.5 is valid for both centralized and decentralized
algorithms. For centralized algorithms, due to the absence of collisions, (c) is obviously zero,
and (b) is non-negative, as Nk(T ) ≤ T . For decentralized algorithms, (c) may be significantly
large, and term (b) may be negative, as many collisions on arm k may lead to Nk(T ) > T

(which is counter intuitive with such notations). However, a careful manipulation of this
decomposition shows that the regret is always lower bounded by term (a). The Figure 6.10 in
Appendix illustrate two cases of M < K and M = K and the different impact of the three
terms (a), (b) and (c) on the regret.

Lemma 6.6. For any strategy A and µ ∈ PM , the regret is lower-bounded by (a):

RT (µ, M,A) ≥
∑

k∈M -worst
(µ∗

M − µk)Eµ[Nk(T )].

Proof. Note that term (c) is clearly lower bounded by 0 but it is not obvious for (b) as there
is no reason for Nk(T ) to be upper bounded by T (it counts the selections of arm k by all the
players, and for instance if player 1 is fixed on arm 1 and player 2 plays it at least once, then
N1(T ) ≥ T + 1). Let N !

k(T ) .=
∑T

t=1 1(∃!j, Aj(t) = k), where the notation ∃! stands for “there
exists a unique”. Then Nk(T ) =

∑T
t=1

∑M
j=1 1(Aj(t) = k) can be decomposed as

Nk(T ) =
T∑

t=1
1(∃!j, Aj(t) = k) +

T∑
t=1

M∑
j=1

ck,t1(Aj(t) = k) = N !
k(T ) + Ck(T ).

We focus on the two terms (b) + (c) from the decomposition of RT (µ, M,A) from Lemma 6.5,

(b) + (c) =
∑

k∈M -best
(µk − µ∗

M )(T − Eµ[N !
k(T )]) +

∑
k∈M -best

µ∗
MEµ[Ck(T )]

+
M∑

k=1
µkEµ[Ck(T )]−

∑
k∈M -best

µkEµ[Ck(T )]

=
∑

k∈M -best
(µk − µ∗

M )(T − Eµ[N !
k(T )]) +

∑
k∈M -best

µ∗
MEµ[Ck(T )] +

∑
k∈M -worst

µkEµ[Ck(T )]

=
∑

k∈M -best
(µk − µ∗

M )(T − Eµ[N !
k(T )]) +

M∑
k=1

min(µ∗
M , µk)Eµ[Ck(T )].

And now both terms are non-negative, as N !
k(T ) ≤ T , min(µ∗

M , µk) ≥ 0, and Ck(T ) ≥ 0, so
(b) + (c) ≥ 0 which proves that RT (µ, M,A) = (a) + (b) + (c) ≥ (a), as wanted.
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6.3.2 An improved asymptotic lower bound on the regret

Similarly to what we present above in Section 2.3, we use the Kullback-Leibler divergence to
express our lower bound. We remind that kl(x, y) .= x ln(x/y) + (1− x) ln((1− x)/(1− y)) is
the KL divergence between the Bernoulli distributions of means x and y. We first introduce
the assumption under which we derive a regret lower bound, that generalizes the assumption
of uniform efficiency given in Definition 2.6, a classical assumption made by [LR85] in single-
player bandit models.

Definition 6.7. An algorithm A is strongly uniformly efficient if for all µ ∈ PM ,

∀a ∈ (0, 1)RT (µ, M,A) =
T →+∞

o(T α) (6.6)

and∀a ∈ (0, 1) ∀j ∈ [M ], k ∈M -best, T

M
− Eµ[N j

k(T )] =
T →+∞

o(T α). (6.7)

Having a small regret on every problem instance, i.e., being uniformly efficient, is a
natural assumption, that rules out algorithms tuned to perform well on specific instances
only (e.g., fixed-armed algorithms). From this assumption (RT (µ, M,A) = o(T α)) and the
decomposition of Lemma 6.5 one can see2 that for every k ∈M -best, T − Eµ[Nk(T )]=o(T α),
and so

M∑
j=1

(
T

M
− Eµ[N j

k(T )]
)

= o(T α). (6.8)

The additional assumption in (6.7) further implies some notion of fairness, as it suggests that
each of the M players spends on average the same amount of time on each of the M best arms.
Note that this assumption is satisfied by any strategy that is invariant under every permutation
of the players, i.e., for which the distribution of the observations underAσ = (Aσ(1), . . . ,Aσ(M))
is independent from the choice of permutation σ ∈ ΣM of the set {1, . . . , M}. In that case, it
holds that Eµ[N j

k(T )] = Eµ[N j′

k (T )] for every arm k and (j, j′) ∈ [M ], hence (6.7) and (6.8) are
equivalent, and strong uniform efficiency is equivalent to standard uniform efficiency. Note
that the algorithms studied in Section 6.4 are permutation invariant, and MCTopM-kl-UCB is
thus an example of strongly uniformly efficient algorithm, as we prove in Section 6.5 that its
regret is logarithmic on every instance µ ∈ PM .

In the proofs of the regret bounds for RhoRand in [AMTA11], the authors briefly mention
that their policy is invariant under permutation and that this yields a certain fairness guarantee,
but without formalizing it more. The notion of fairness defined above can be interpreted as a
“cooperative fairness”, opposed to the notion of “arm fairness” that has been studied in a few

2With some arguments used in the proof of Lemma 6.6 to circumvent the fact that (b) may be negative.
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papers on single-player stochastic MAB. For instance, [PGNN19] requires that each arm must
be sampled at least a given fraction of the total time steps, i.e., ∀k,E[Nk(T )] ≥ rkT , where the
constraint vector [r1, . . . , rK ] is given and known to the algorithm.

The following notations and the hypothesis on the collision information term (6.9) come
from Appendix E of [KM19]. Similarly to what we did in Section 2.1, consider the observations
Oj

t that she gathered after t rounds of its algorithm Aj for a fixed player j ∈ [M ], defined
as Oj

t
.=
(
U j(1), YAj(1),1, Cj(1), . . . , U j(t), YAj(t),t, Cj(t)

)
, where U j(t) denotes some external

source of randomness useful to select Aj(t + 1) (e.g., for an algorithm based on ranks and UCB
indexes, like RhoRand, when two arms have the same maximum index, the decision is an
arg max that is usually a uniform random selection among the arms with maximum index).

Fix a problem µ, then introduce an alternative model parametrized by λ, with a small
difference between µ. Fix a sub-optimal arm k and ε > 0, and λk = µ∗

M + ε and λℓ = µℓ for
any ℓ ̸= k. We denote POj

t
µ the distribution of the vector Ot under the model µ when using

algorithm Aj . Then we introduce the collision information term as:

Iµ,λ(Aj , T ) .=
T∑

t=1
KL(PCt|Ot−1

µ ,PCt|Oj
t−1

λ ). (6.9)

For a decentralized strategyA that has access to the sensing information (i.e., ruling out model
(III)), and satisfies Iµ,λ(Aj , T ) = o(ln(T )), we now state a problem-dependent asymptotic
lower bound on the number of sub-optimal arms selections. The additional hypothesis on
Iµ,λ(A, T ) essentially says that “the collisions do not bring too much information on the arm
means”, as stated in [KM19]. The theorem stated below is proven in the Appendix of [BK18a],
and it also yields an asymptotic logarithmic lower bound on the regret.

Theorem 6.8. Under observation models (I) and (II), consider a strongly uniformly efficient
decentralized policy A = (A1, . . . ,AM ) and a problem µ ∈ PM . Furthermore, if Aj satisfies
Iµ,λ(Aj , T ) = o(ln(T )), then

∀j ∈ [M ], ∀k ∈M -worst, lim inf
T →∞

Eµ[N j
k(T )]

ln(T ) ≥ 1
kl(µk, µ∗

M ) . (6.10)

And so if A1, . . . ,AM all satisfy this hypothesis, from Lemma 6.6, it follows that

lim inf
T →+∞

RT (µ, M,A)
ln(T ) ≥M ×

 ∑
k∈M -worst

(µ∗
M − µk)

kl(µk, µ∗
M )

 . (6.11)
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Observe that the regret lower bound (6.11) is tighter than the state-of-the-art lower bound
in this setup given by [LZ10], that states that

lim inf
T →+∞

RT (µ, M,A)
ln(T ) ≥

∑
k∈M -worst

 M∑
j=1

(µ∗
M − µk)

kl(µk, µ∗
j )

 , (6.12)

as for every k ∈M -worst and j ∈ [M ], kl(µk, µ∗
j ) ≥ kl(µk, µ∗

M ) (see Figure 6.9 in Appendix 6.9).
It is worth mentioning that [LZ10] considered the more general assumption for A that there
exists some numbers (aj

k) such that aj
kT − Eµ[N j

k(T )] = o(T α) whereas in Definition 6.7 we
make the choice aj

k = 1/M . Our result could be extended to this case, but we chose to keep
the notation simple and focus on fair allocation of the optimal arms between players.

Price of decentralized learning. Interestingly, our lower bound is exactly a multiplicative
constant factor M away from the lower bound given by [AVW87a] for centralized algorithms
(which is clearly a simpler setting). This intuitively suggests the number of players M as the
(multiplicative) “price of decentralized learning”. However, to establish our regret bound, we
lower bounded the number of collisions by zero, which may be too optimistic. Indeed, for an
algorithm to attain the lower bound (6.11), the number of selections of each sub-optimal arm
should match the lower bound (6.10) and term (b) and term (c) in the regret decomposition of
Lemma 6.5 should be negligible compared to ln(T ).

To the best of our knowledge, no algorithm has been shown to experience only o(ln(T ))
collisions so far, for every M ∈ {2, . . . , K} and µ ∈ PM . Since our article [BK18a], we kept as
a future work the following question. A lower bound on the minimal number of collisions
experienced by any strongly uniformly efficient decentralized algorithm would thus be a nice
complement to our Theorem 6.8.

6.3.3 Towards regret upper bounds

A natural approach to obtain an upper bound on the regret of an algorithm is to upper bound
separately each of the three terms defined in Lemma 6.5. The following result shows that term
(b) can be related to the number of sub-optimal selections and the number of collisions that
occurs on the M best arms.

Lemma 6.9. The term (b) in Lemma 6.5 is upper bounded as

(b) ≤ (µ∗
1 − µ∗

M )
( ∑

k∈M -worst
Eµ[Nk(T )] +

∑
k∈M -best

Eµ[Ck(T )]
)
. (6.13)
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Proof. Recall that we want to upper bound (b) :=
∑

k∈M -best(µk−µM∗) (T − Eµ[Nk(T )]). First,
we observe that, for all k ∈M -best,

T − Eµ[Nk(T )] ≤ T − Eµ

[∑T
t=1 1(∃j : Aj(t) = k)

]
= Eµ

[∑T
t=1 1(∀j, Aj(t) ̸= k)

]
= Eµ

[∑T
t=1 1(k /∈ Ŝt)

]
,

where we denote by Ŝt = {Aj(t), j ∈ [M ]} the set of selected arms at time t (with no repetition).
With this notation one can write

(b) ≤ (µ1 − µM∗)
∑

k∈M -best
(T − Eµ[Nk(T )]) ≤ (µ1 − µM∗)Eµ

 ∑
k∈M -best

T∑
t=1

1(k /∈ Ŝt)


= (µ1 − µM∗)Eµ

 T∑
t=1

∑
k∈M -best

1(k /∈ Ŝt)

 .

The quantity
∑

k∈M -best 1(k /∈ Ŝt) counts the number of optimal arms that have not been
selected at time t. For each mis-selection of an optimal arm, there either exists a sub-optimal
arm that has been selected, or an arm in M -best on which a collision occurs. Hence

∑
k∈M -best

1(k /∈ Ŝt) =
∑

k∈M -best
1(Ck(t)) +

∑
k∈M -worst

1(∃j : Aj(t) = k),

which yields

Eµ

 T∑
t=1

∑
k∈M -best

1(k /∈ Ŝt)

 ≤ ∑
k∈M -best

Eµ [Ck(T )] +
∑

k∈M -worst
Eµ [Nk(T )]

and Lemma 6.9 follows.

This result can also be used to recover Proposition 1 from [AMTA11], giving an up-
per bound on the regret that only depends on the expected number of sub-optimal selections
– Eµ[Nk(T )] for k ∈M -worst – and the expected number of colliding players on the optimal arms
– Eµ[Ck(T )] for k ∈ M -best. Note that, in term (c) the number of colliding players on the
sub-optimal arm k may be upper bounded as Eµ[Ck(T )] ≤MEµ[Nk(T )].

In the next section, we present an algorithm that has a logarithmic regret, while ensuring
that the number of sub-optimal selections is matching the lower bound of Theorem 6.8.
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6.4 New algorithms for multi-players bandits

Regardless of whether sensing is or not possible, we start by presenting formally in Section 6.4.1
the Selfish heuristic, as it was used by all the IoT devices in the first model presented in
Chapter 5. It does not use an orthogonalization strategy as the collisions are directly accounted
for in the UCB-like indices that are used by each device to select its channel. Selfish can also
be used under observation model (III) –without sensing–, and without the knowledge of M .
It was conjectured in [BK18a] that Selfish can suffer linear regret, and later confirmed in
[LM18, BP18]. When sensing is possible, that is under observation models (I) and (II), most
existing strategies build on a single-player bandit algorithm (usually an index policy) that relies
on the sensing information, together with an orthogonalization strategy to deal with collisions.
Following this approach, we introduce two new algorithms, RandTopM and MCTopM, in
Section 6.4.2.

Warning: We want to strengthen the fact that in all the proposed algorithms, the players
do not know their numbers j ∈ [M ], and they do not need to know it to achieve low regret.
We discuss the fact that this would be an unrealistic hypothesis in Section 6.7.1 below.

6.4.1 The Selfish heuristic, with or without “sensing”

Under observation model (III) no sensing information is available and the previous algorithms
cannot be used, as the sum of sensing information Sj

k(t) and thus the empirical mean µ̂j
k(t)

cannot be computed, hence neither the indices U j
k(t). However, one can still define a notion of

empirical reward received from arm k by player j, by introducing

S̃k
j(t) .=

T∑
t=1

rj(t)1(Aj(t) = k) and letting µ̃k
j(t) .= S̃k

j(t) / N j
k(t). (6.14)

Note that µ̃k
j(t) is no longer meant to be an unbiased estimate of µk as it also takes into

account the collision information, that is present in the reward. Based on this empirical reward,
one can similarly defined modified indices as

Ũk
j(t) .=

µ̃k
j(t) +

√
f(t)/(2N j

k(t)) for UCB,

sup
{

q ∈ [0, 1] : N j
k(t)× kl(µ̃k

j(t), q) ≤ f(t)
}

for kl-UCB.
(6.15)

Given any of these two index policies (UCB or kl-UCB), the Selfish algorithm is then playing
like a single-player index policy (see Algorithm 2.2) Aj(t) ∈ U(arg maxk∈[K] Ũk

j(t− 1)). The
name “selfish” comes from the fact that each player is targeting, in a “selfish” way, the arm
that has the highest index, instead of accepting to target only one of the M best. The reason
that this may work precisely comes from the fact that Ũk

j(t) is no longer an upper-confidence
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on µk, but some hybrid index that simultaneously increases when a transmission occurs and
decreases when a collision occurs. This behavior is easier to be understood for the case of
Selfish-UCB in which, letting N j,C

k (t) =
∑t

s=1 1(Cj(t)) be the number of collisions on arm k,
one can show that the hybrid Selfish index induces a penalty proportional to the fraction of
collision on this arm and the quality of the arm itself:

Ũk
j(t) = U j

k(t)−
(

N j,C
k (t)

N j
k(t)

)
︸ ︷︷ ︸

fraction of collisions

(
1

N j,C
k (t)

T∑
t=1

YAj(t),t1(Cj(t))1(Aj(t) = k)
)

︸ ︷︷ ︸
estimate of µk

. (6.16)

From a bandit perspective, it looks like each player is using a stochastic bandit algorithm
(UCB or kl-UCB) when interacting with K arms that give a feedback (the reward, and not the
sensing information) that is far from being i.i.d. from some distribution, due to the collisions.
As such, the algorithm does not appear to be well justified, and one may rather want to use
adversarial bandit algorithms like EXP3 [ACBFS02], that do not require a stochastic (i.i.d.)
assumption on arms. However, we found out empirically that Selfish is doing surprisingly
well when using UCB-like indexes, greatly outperforming Selfish based on EXP3, like what
we found in Chapter 5 in harder settings.

We illustrate in Section 6.5.3 that Selfish does have a (very) small probability to fail (badly),
for some problem with small K, which precludes the possibility of a logarithmic regret for
any problem. In most cases, it empirically performs similarly to all the algorithms described
before, and usually outperforms RhoRand, even if it neither exploits the sensing information,
nor the knowledge of the number of players M . Practitioners may still be interested by the
algorithm, especially for Cognitive Radio applications in which sensing is hard or cannot
be considered. In fact, we used the Selfish heuristic in Chapter 5, in the different models,
using UCB or Thompson sampling as the underlying policy. Thus we propose next our
main contribution, the MCTopM algorithm, proved to be asymptotically optimal for the
identification of suboptimal arms (when using kl-UCB), attaining order-optimal logarithmic
regret, and outperforming all the other algorithms for the “sensing case”.

6.4.2 Two new strategies based on indices and orthogonalization

The approache we now describe for multi-players bandits can be used in combination with
any index policy (see Algorithm 2.2), but we restrict our presentation to UCB algorithms,
for which strong theoretical guarantees can be obtained. In particular, we focus on two
types of indices: UCB1 [ACBF02] and kl-UCB [CGM+13]. For player j ∈ [M ] denote Sj

k(t) .=∑t
s=1 Yk,s1(Aj(t) = k) the current sum of rewards obtained for arm k, then µ̂j

k(t) .= Sj
k(t)/N j

k(t)
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(if N j
k(t) ̸= 0) is the empirical mean of arm k, and thus one can define the index

U j
k(t) .=

µ̂j
k(t) +

√
f(t)/(2N j

k(t)) for UCB,

sup
{

q ∈ [0, 1] : N j
k(t)× kl(µ̂j

k(t), q) ≤ f(t)
}

for kl-UCB,
(6.17)

where f(t) is some exploration function, usually taken to be ln(t) in practice, and slightly larger
in theory, which ensures that P(U j

k(t) ≥ µk) ≳ 1 − 1/t (see [CGM+13]). A classical (single-
player) UCB algorithm aims at the arm with largest index, as presented above in Section 2.4.2.
However, if each of the M players selects the arm with largest UCB, all the players will end up
colliding most of the time on the best arm. To circumvent this problem, several coordination
mechanisms have emerged, that rely on ordering the indices and targeting one of the M -best
indices.

Two ideas for orthogonalization. On the one hand, the TDFS algorithm [LZ10] relies on
the player agreeing in advance on the time steps at which they will target each of the M best
indices. Even though some alternative without pre-agreement are proposed, they are quite
complicated and we prefer to focus on other approaches. On the other hand, the RhoRand
algorithm [AMTA11] relies on randomly selected ranks. More formally, letting π(k, g) be the
index of the k-th largest entry in a vector g, in RhoRand each player maintains at time t an
internal rank Rj(t) ∈ [M ] and selects at time t, Aj(t) .= π

(
Rj(t), [U j

ℓ (t)]ℓ=1,...,K

)
. If a collision

occurs, a new rank is drawn uniformly at random, Rj(t + 1) ∼ U([M ]).

Our two proposals. We now propose two alternatives to this strategy, that do not rely on
ranks and rather randomly fix themselves on one arm in M̂ j(t), that is defined as the set of
arms that have the M largest indices (at the current time t and for player j),

M̂ j(t) .=
{

π
(
k, {U j

ℓ (t)}ℓ=1,...,K

)
, k = 1, . . . , M

}
. (6.18)

The RandTopM algorithm. We precisely state our first proposal below in Algorithm 6.1.

RandTopM is essentially a refinement over RhoRand, to not use the indirection of ranks,
and a simpler version of MCTopM. The difference with MCTopM is that the later introduces
a concept of a “Chair”, by considering a binary “being fixed” state sj(t), as presented in
Algorithm 6.2 below. In RandTopM, player j is always considered “not fixed”, and a collision
always forces a uniform sampling of the next arm from M̂ j(t).

The MCTopM algorithm. Our second proposal MCTopM is stated below as Algorithm 6.2,
it is a slightly more complex extension of the RandTopM algorithm. From there on, we focus
on MCTopM as it is easier to analyze and performs better. Both algorithms ensure that
player j always selects at time t + 1 an arm from M̂ j(t). When a collision occurs for a player
implementing the RandTopM algorithm, that player randomly switches arm within M̂ j , while
MCTopM uses a more sophisticated mechanism, that is reminiscent of “Musical Chair” (MC)
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1 Let Aj(0) ∼ U([K]) and Cj(0) = False
2 for t = 1, . . . , T do
3 if Aj(t− 1) /∈ M̂ j(t) then
4 if Cj(t− 1) then // collision at previous step
5 Aj(t) ∼ U

(
M̂ j(t)

)
// randomly switch

6 else // randomly switch on an arm that had smaller UCB
7 Aj(t) ∼ U

(
M̂ j(t) ∩

{
k : U j

k(t− 1) ≤ U j
Aj(t)(t− 1)

})
8 else
9 Aj(t) = Aj(t− 1) // stays on the same arm

10 Play arm Aj(t), get new observations (sensing and collision),
11 Compute the indices U j

k(t + 1) and set M̂ j(t + 1) for next step.
12 end
Algorithm 6.1: The RandTopM decentralized learning policy (for an index policy U j).

and inspired by the work of [RSS16]: players tend to fix themselves on arms (“chairs”) and
ignore future collision when this happens.

1 Let Aj(0) ∼ U([K]) and Cj(0) = False and sj(1) = False
2 for t = 1, . . . , T do
3 if Aj(t− 1) /∈ M̂ j(t) then // transition (3) or (5)
4 Aj(t) ∼ U

(
M̂ j(t) ∩

{
k : U j

k(t− 1) ≤ U j
Aj(t)(t− 1)

})
// not empty

5 sj(t) = False // aim at an arm with a smaller UCB at t− 1
6 else if Cj(t− 1) and sj(t− 1) then // collision and not fixed
7 Aj(t) ∼ U

(
M̂ j(t)

)
// transition (2)

8 sj(t) = False
9 else // transition (1) or (4)

10 Aj(t) = Aj(t− 1) // stay on the previous arm
11 sj(t) = True // become or stay fixed on a “chair”
12 Play arm Aj(t), get new observations (sensing and collision),
13 Compute the indices U j

k(t + 1) and set M̂ j(t + 1) for next step.
14 end
Algorithm 6.2: The MCTopM decentralized learning policy (for an index policy U j).

More precisely, under MCTopM, if player j did not encounter a collision when using arm k

at time t, then she marks her current arm as a “chair” (sj(t) = True), and will keep using it even
if collisions happen in the future (Lines 9-11). As soon as this “chair” k is no longer in M̂j(t),
a new arm is sampled uniformly from a subset of M̂ j(t), defined with the previous indices
U j(t) (Lines 3-5). The subset enforces a certain inequality on indices, U j

k′(t− 1) ≤ U j
k(t− 1)
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and U j
k′(t) ≥ U j

k(t), when switching from k = Aj(t − 1) to k′ = Aj(t). This helps to control
the number of such changes of arm, as shown in Lemma 6.13. The considered subset is never
empty as it contains at least the arm replacing the k ∈ M̂ j(t − 1) in M̂ j(t). Collisions are
dealt with only for non-fixed player j, and when the previous arm is still in M̂ j(t). In this
case, a new arm is sampled uniformly from M̂ j(t) (Lines 6-8). This stationary aspect helps to
minimize the number of collisions, as well as the number of switches of arm. The five different
transitions (1), (2), (3), (4), (5) refer to the notations used in the analysis of MCTopM, and
they are illustrated in Figure 6.1 below.

(0) Start t = 0

Not fixed, sj(t− 1)Fixed, sj(t− 1)

(1) Cj(t− 1), Aj(t− 1) ∈ M̂ j(t)

(2) Cj(t− 1),
Aj(t− 1) ∈ M̂ j(t)

(3) Aj(t− 1) /∈ M̂ j(t)

(4)
Aj(t− 1) ∈ M̂ j(t)

(5) Aj(t− 1) /∈ M̂ j(t)

Figure 6.1 – Player j using MCTopM, represented as “state machine” with 5 transitions. Taking one of
the five transitions means playing one round of the Algorithm 6.2, to decide Aj(t+1) using information
of previous steps.

6.5 Theoretical elements, and regret upper bound for MCTopM

We now focus on obtaining positive results for the algorithms we proposed in Section 6.4 above.
Section 6.5.1 gives an asymptotically optimal analysis of the expected number of sub-optimal
draws for our two proposals RandTopM and MCTopM as well as for RhoRand, when they
are combined with kl-UCB indices, and Section 6.5.2 proves that the number of collisions are
logarithmic, and hence the regret of MCTopM is also logarithmic. Finally, Section 6.5.3 shortly
discusses a disappointing result regarding Selfish.

6.5.1 Common analysis for RandTopM- and MCTopM

Lemma 6.10 gives a finite-time upper bound on the expected number of draws of a sub-optimal
arm k for any player j, that holds for both RandTopM-kl-UCB and MCTopM-kl-UCB. Our
improved analysis also applies to RhoRand. Explicit expressions for Cµ, Dµ can be found in
the proof given below.

Lemma 6.10. For any µ ∈ PM , let player j ∈ [M ] use the RandTopM-, MCTopM- or RhoRand-
kl-UCB decentralized policy with exploration function f(t) .= ln(t) + 3 ln(ln(t)). Then for any
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sub-optimal arm k ∈M -worst there exists problem-dependent constants Cµ, Dµ > 0 such that

Eµ[N j
k(T )] ≤ ln(T )

kl(µk, µ∗
M ) + Cµ

√
ln(T ) + Dµ ln(ln(T )) + 3M + 1︸ ︷︷ ︸

=o(ln(T ))

. (6.19)

It is important to notice that the leading constant in front of ln(T ) is the same as in the
constant featured in Equation (6.10) of Theorem 6.8. This result proves that the lower bound on
sub-optimal selections is asymptotically matched for the three considered algorithms. This is
a strong improvement in comparison to the previous state-of-the-art results [LZ10, AMTA11].

Proof. Fix k ∈ M -worst and a player j ∈ [M ]. The key observation is that for MCTopM,
RandTopM as well as the RhoRand algorithm, it holds that(

Aj(t) = k
)

=
(
Aj(t) = k, ∃m ∈M -best : U j

m(t) < U j
k(t)

)
. (6.20)

Indeed, for the three algorithms, an arm selected at time t + 1 belongs to the set M̂ j(t) of arms
with M largest indices. If the sub-optimal arm k is selected at time t, it implies that k ∈ M̂ j(t),
and, because there are M arms in both M -best and M̂ j(t), one of the arms in M -best must be
excluded from M̂ j(t). In particular, the index of arm k must be larger than the index of this
particular arm m.

Thanks to (6.20) and if Pµ denote here the probability under model µ, it is easy to decom-
pose the number of selections of arm k by user j up to round T as

Eµ[N j
k(T )] = Eµ

[
T∑

t=1
1

(
Aj(t) = k

)]
=

T∑
t=1

Pµ

(
Aj(t) = k

)
.

=
T∑

t=1
Pµ

(
Aj(t) = k, ∃m ∈ [M ] : U j

m∗(t) < U j
k(t)

)
.

Considering the relative position of the upper-confidence bound U j
m∗(t) and the corre-

sponding mean µ∗
m = µm∗ , one can write the decomposition

Eµ[N j
k(T )] ≤

T∑
t=1

Pµ

(
∃m1 ∈ [M ] : Um∗

1
(t) < µ∗

m

)
+

T∑
t=1

Pµ

(
Aj(t) = k, ∃m2 ∈ [M ] : Um∗

2
(t) ≤ Uk(t), ∀m3 ∈ [M ] : Um3∗(t) ≥ µ∗

m3

)
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Eµ[N j
k(T )] ≤

M∑
m1=1

T∑
t=1

Pµ

(
Um∗

1
(t) < µ∗

m1

)
+

T∑
t=1

Pµ

(
Aj(t) = k, ∃m2 ∈ [M ] : µ∗

m2 ≤ Uk(t)
)

≤
M∑

m1=1

T∑
t=1

Pµ

(
Um∗

1
(t) < µ∗

m1

)
+

T∑
t=1

Pµ

(
Aj(t) = k, µM∗ ≤ Uk(t)

)
(6.21)

where the last inequality (for the first term) comes from the fact that µM∗ is the smallest of the
µm∗ for m ∈ [M ].

Now each of the two terms in the right hand side of (6.21) can directly be upper bounded
using tools developed by [CGM+13] for the analysis of kl-UCB. The leftmost term in (6.21) can
be controlled using Lemma 6.11 below that relies on a self-normalized deviation inequality,
whose proof exactly follows from the proof of Fact 1 in Appendix A of [CGM+13].

Lemma 6.11. For any arm k, if U j
k(t) is the kl-UCB index with exploration function f(t) =

ln(t) + 3 ln(ln(t)), then
T∑

t=1
Pµ

(
U j

k(t) < µk

)
≤ 3 + 4e ln(ln(T )).

The rightmost term in (6.21) can be controlled using Lemma 6.12, that is a direct conse-
quence of the proof of Fact 2 in Appendix A of [CGM+13]. Denote kl′(x, y) the derivative of
the function x 7→ kl(x, y) (for any fixed y ̸= 0, 1).

Lemma 6.12. For any arms k and k′ such that µk′ > µk, if U j
k(t) is the kl-UCB index with

exploration function f(t),

T∑
t=1

Pµ

(
Aj(t) = k, µk′ ≤ U j

k(t)
)
≤ f(T )

kl(µk, µk′) +
√

2π

√
kl′(µk, µk′)2

kl(µk, µk′)3

√
f(T ) + 2

(
kl′(µk, µk′)
kl(µk, µk′)

)2

+ 1.

Putting things together, one obtains the non-asymptotic upper bound

Eµ

[
N j

k(T )
]
≤ ln(T ) + 3 ln(ln(T ))

kl(µk, µM∗) +
√

2π

√
kl′(µk, µM∗)2

kl(µk, µM∗)3

√
ln(T ) + 3 ln(ln(T ))

+ 2
(

kl′(µk, µM∗)
kl(µk, µM∗)

)2

+ 4Me ln(ln(T )) + 3M + 1, (6.22)

which yields Lemma 6.10, with explicit constants Cµ and Dµ.

As announced, Lemma 6.13 controls the number of switches of arm that are due to the
current arm leaving M̂ j(t), for both RandTopM and MCTopM. It essentially proves that
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Lines 3-5 in Algorithm 6.2 (when a new arm is sampled from the non-empty subset of M̂ j(t))
happen a logarithmic number of times. The proof of this result is given below.

Lemma 6.13. For any µ ∈ PM , any player j ∈ [M ] using RandTopM- or MCTopM-kl-UCB,
and any arm k, it holds that

T∑
t=1

P
(
Aj(t) = k, k /∈ M̂ j(t)

)
=

 ∑
k′,µk′ <µk

1
kl(µk, µk′) +

∑
k′,µk′ >µk

1
kl(µk′ , µk)

 ln(T )+o(ln(T )).

Proof. We analyze the case when the current arm leaves the set M̂ j (Line 4):

T∑
t=1

P
(
Aj(t) = k, k /∈ M̂ j(t)

)

≤
T∑

t=1
P
(
Aj(t) = k, k /∈ M̂ j(t), Aj(t + 1) ∈ M̂ j(t) ∩ {k′ : U j

k′(t− 1) ≤ U j
k(t− 1)}

)

≤
T∑

t=1

∑
k′ ̸=k

P
(
Aj(t) = k, Aj(t + 1) = k′, U j

k′(t) ≥ U j
k(t), U j

k′(t− 1) ≤ U j
k(t− 1)

)

=
∑
k′ ̸=k

T∑
t=1

P
(
Aj(t) = k, Aj(t + 1) = k′, U j

k′(t) ≥ U j
k(t), U j

k′(t− 1) ≤ U j
k(t− 1)

)
︸ ︷︷ ︸

.=Nk′

Now, to control Nk′ , we distinguish two cases. If µk < µk′ , one can write

Nk′ ≤
T∑

t=1
P
(
U j

k′(t) ≤ µk′

)
+

T∑
t=1

P
(
Aj(t) = k, U j

k(t− 1) ≥ µk′

)

The first sum is o(ln(T )) by Lemma 6.11. To control the second sum, we apply the same trick
that led to the proof of Lemma 6.12 in [CGM+13]. Letting kl+(x, y) .= kl(x, y)1(x ≥ y), and
µ̂j

k,s be the empirical mean of the s first observations from arm k by player j, one has

T∑
t=1

P
(
Aj(t) = k, U j

k(t− 1) ≥ µk′

)

= E
[

T∑
t=1

t−1∑
s=1

1

(
Aj(t) = k, N j

k(t− 1) = s
)
1

(
s× kl+

(
µ̂j

k,s, µk

)
≤ f(t)

)]

≤ E

 T∑
s=1

1

(
s× kl+

(
µ̂j

k,s, µk

)
≤ f(T )

) T∑
t=s−1

1

(
Aj(t) = k, N j

k(t− 1) = s
)
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≤
T∑

s=1
P
(
s× kl+

(
µ̂j

k,s, µk

)
≤ f(T )

)
, (6.23)

where the last inequality uses that for all s,

T∑
t=s−1

1

(
Aj(t) = k, N j

k(t− 1) = s
)

=
T∑

t=s−1
1

(
Aj(t) = k, N j

k(t) = s + 1
)
≤ 1.

From (6.23), the same upper bound as that of Lemma 6.12 can be obtained using the tools
from [CGM+13], which proves that for T →∞,

Nk′ = ln(T )
kl(µk, µk′) + o(ln(T )).

If µk > µk′ , we rather use that Nk′ ≤
T∑

t=1
P
(
U j

k(t) ≤ µk

)
+

T∑
t=1

P
(
Aj(t + 1) = k′, U j

k′(t) ≥ µk

)
,

and similarly Lemma 6.11 and a slight variant of Lemma 6.12 to deal with the modified time
indices yields Nk′ = ln(T )

kl(µk′ ,µk) + o(ln(T )). Summing over k′ yields the result.

6.5.2 Regret analysis of MCTopM with kl-UCB indexes

For our proposal MCTopM, we are furthermore able to obtain a logarithmic regret upper
bound, by proposing an original approach to control the number of collisions under this
algorithm. First, we can bound the number of collisions by the number of collisions for players
not yet “fixed on their arms” (sj(t)), that we can then bound by the number of changes of
arms.

Lemma 6.14. For any µ ∈ PM , if all players use the MCTopM-kl-UCB decentralized policy,
and M ≤ K, then the total average number of collisions (on all arms) is upper-bounded by

Eµ

[
K∑

k=1
Ck(T )

]
≤M2 (2M + 1)

 ∑
a,b=1,...,K

µa<µb

1
kl(µa, µb)

 ln(T ) + o(ln T ) . (6.24)

Note that this bound is in O
(
M3), which significantly improves the O

(
M
(2M−1

M

))
proven

by [AMTA11] for RhoRand. It is worse than the O
(
M2) proven by [RSS16] for Musical Chair.

However, unlike Musical Chair, our algorithm does not need any prior knowledge on the
problem complexity. It is indeed not very satisfying, from an applicative point of view, to
require a prior knowledge of µ∗

M − µ∗
M+1 if one wants to run the Musical Chair algorithm.
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Proof. A key feature of both the RandTopM and MCTopM algorithms is Lemma 6.13, that
states that the probability of switching from some arm because this arm leaves M̂ j(t) is small.

Figure 6.1 presented above provides a schematic representation of the execution of the
MCTopM algorithm, that has to be exploited in order to properly control the number of
collisions. The sketch of the proof is the following: by focusing only on collisions in the “not
fixed” state, bounding the number of transitions (2) and (3) is enough. Then, we show that
both the number of transitions (3) and (5) are small: as a consequence of Lemma 6.13, the
average number of these transitions is O(ln T ). Finally, we use that the length of a sequence of
consecutive transitions (2) is also small (on average smaller than M ), and except for possibly
the first one, starting a new sequence implies a previous transition (3) or (5) to arrive in the
state “not fixed”. This gives a logarithmic number of transitions (2) and (3), and so gives
Eµ[

∑
k Ck(T )] = O(ln T ), with explicit constants depending on µ and M .

As in Algorithm 6.2, sj(t− 1) is the event that player j decided to fix herself on an arm at
the end of round t− 1. Formally, sj(0) is false, and sj(t) is defined inductively from sj(t− 1)
as

sj(t) =
(
sj(t− 1) ∪

(
sj(t− 1) ∩ Cj(t− 1)

))
∩
(
Aj(t) ∈ M̂ j(t− 1)

)
. (6.25)

For the sake of clarity, we now explain Figure 6.1 in words. At step t, if player j is not fixed
(sj(t− 1)), she can have three behaviors when executing MCTopM. She keeps the same arm
and goes to the other state sj(t) with transition (1), or she stays in state sj(t), with two cases.
Either she sampled Aj(t) uniformly from M̂ j(t)∩ {m : U j

m(t− 1) ≤ U j
k(t− 1)}with transition

(3), in case of collision and if Aj(t− 1) ∈ M̂ j(t), or she sampled Aj(t) uniformly from M̂ j(t)
with transition (2), if Aj(t− 1) /∈ M̂ j(t). In particular, note that if Cj(t− 1), transition (3) is
executed and not (2). Transition (3) is a uniform sampling from M̂ j(t) (the “Musical Chair”
step).

For player j and round t, we now introduce a few events that are useful in the proof. First,
for every x = 1, 2, 3, 4, 5, we denote Ij

x(t) the event that a transition of type (x) occurs for player
j after the first t observations (i.e., in round t, to decide Aj(t)). Formally they are defined by

Ij
1(t) .=

(
sj(t− 1), Cj(t− 1), Aj(t− 1) ∈ M̂ j(t)

)
,

Ij
2(t) .=

(
sj(t− 1), Cj(t− 1), Aj(t− 1) ∈ M̂ j(t)

)
, and I3(t) .=

(
sj(t− 1), Aj(t− 1) /∈ M̂ j(t)

)
,

I3(t) .=
(
sj(t− 1), Aj(t− 1) ∈ M̂ j(t)

)
, and I5(t) .=

(
sj(t− 1), Aj(t− 1) /∈ M̂ j(t)

)
.

Then, we introduce C̃j(t) as the event that a collision occurs for player j at round t if she is
not yet fixed on her arm, that is C̃j(t) .=

(
Cj(t), sj(t)

)
.

A key observation is that Cj(t) implies
⋃M

j′=1 C̃j′(t), as a collision necessarily involves at
least one player j′ ∈ [K] not yet fixed on her arm (sj′(t−1)). Otherwise, if they are all fixed,
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i.e., for all j′, sj′(t− 1), then by definition of sj(t− 1), none of the player changed their arm
from t− 1 to t, and none experienced any collision at time t− 1 so by induction there is no
collision at time t. Thus,

∑M
j=1 P(Cj(t)) can be upper bounded by M

∑M
j=1 P(C̃j(t)) (union

bound), and it follows that if C(T ) .=
∑K

k=1 Ck(T ) then

Eµ[C(T )] ≤M
M∑

j=1

T∑
t=1

P(C̃j(t)).

We can further observe that C̃j(t) implies a transition (2) or (3), as a transition (1) cannot
happen in case of collision. Thus another union bound gives

T∑
t=1

P(C̃j(t)) ≤
T∑

t=1
P(Ij

2(t)) +
T∑

t=1
P(Ij

3(t)). (6.26)

In the rest of the proof we focus on bounding the number of transitions (2) and (3).

Let N j
x(T ) be the random variable denoting the number of transitions of type (x). Neglect-

ing the event sj(t− 1) for x = 3 and sj(t) for x = 5, one has

Eµ[N j
x(t)] =

T∑
t=1

P(Ij
x(t)) ≤

T∑
t=1

P
(
Aj(t− 1) /∈ M̂ j(t)

)
≤

T∑
t=1

K∑
k=1

P
(
Aj(t− 1) = k, k /∈ M̂ j(t)

)
,

(6.27)
which isO(ln T ) (with known constants) by Lemma 6.13. In particular, this controls the second
term in the right hand side of (6.26).

To control the first term
∑T

t=1 P(Ij
2(t)) we introduce three sequences of random variables,

the starting times (θi)i≥1 and the ending times (τi)i≥1 (possibly larger than T ), of sequences
during which I2(s) is true for all s = θi, . . . , τi − 1 but not before and after, that is ∀i ∈
{1, . . . , n(T )}, Ij

2(θi − 1) ∩
⋂τi−1

t=θi
Ij

2(t) ∩ Ij
2(τi) with n(T ) the number of such sequences, i.e.,

n(T ) .= inf{i ≥ 1 : min(θi, τi) ≥ T} (or 0 if θ1 does not exist). If θi = 1, the first sequence does
not have term Ij

2(θi − 1).

Now we can decompose the sum on t = 1, . . . , T with the use of consecutive sequences,

Eµ[N j
2 (t)] = Eµ

[
T∑

t=1
1

(
Ij

2(t)
)]

= Eµ

n(T )∑
i=1

τi−1∑
t=θi

1 +
θi+1−1∑

t=τi

0

 = Eµ

n(T )∑
i=1

(τi − θi)

 .

Both n(T ) and τi−θi ≥ 0 have finite averages for any i (as τi−θi ≤ T ), and n(T ) is a stopping time
with respect to the past events (that is, F j

T ), thus we can use Wald’s Lemma [Wal45], to obtain
a decomposition with two terms (α) and (β), Eµ[N j

2 (t)] ≤ Eµ [n(T )]×maxi∈N Eµ [τi − θi].

(α) To control Eµ[n(T )], we can observe that the number of sequences n(T ) is smaller than
1 plus the number of times when a sequence begins (1 plus because maybe the game starts in a
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sequence). And beginning a sequence at time θi implies Ij
2(θi − 1) ∩ Ij

2(θi), which implies a
transition of type (3) or (5) at time θi−1, as player j is in state “not fixed” at time θi (transitions
(1) and (4) are impossible). As stated above, Eµ[N j

x(T )] = O(ln T ) for both x = 3 and x = 5,
and so Eµ[n(T )] = O(ln T ) also.

(β) To control Eµ [τi − θi], a simple argument can be used. The union of events
⋃τi−1

t=θi
Ij

2(t)
implies Cj(t) for τi − θi consecutive times. The very structure of RandTopM gives that in
this sequence of transitions (2), the successive collisions (i.e., Cj(t− 1) ∩ Cj(t)) implies that
each new arm Aj(t) for t ∈ {θi, τi − 1} is selected uniformly from M̂ j(t), a set of size M

with at least one available arm. Indeed, as there is M − 1 other players, at time t at least one
arm in M̂ j(t) is not selected by any player k′ ̸= k, and so player j has at least a probability
1/M to select a free arm, which implies Cj(t), and so implies the end of the sequence. In
other words, the average length of sequences of transitions (2), Eµ [τi − θi], is bounded by the
expected number of failed trial of a repeated Bernoulli experiment, with probability of success
larger than 1/M (by the uniform choice of Aj(t) in a set of size M with at least one available
arm). We recognize the mean of a geometric random variable, of parameter λ ≥ 1/M , and so
Eµ [τi − θi] = 1

λ ≤
1

1/M = M .

This finishes the proof as Eµ[N j
2 (T )] =

∑T
t=1 P(Ij

2(t)) = O(ln T ) and so
∑T

t=1 P(C̃j(t) ∩
(Aj(t) = k)) = O(ln T ) and finally Eµ[C(T )] =

∑K
k=1 Eµ[Ck(T )] = O(ln T ) also.

We can be more precise about the constants, all the previous arguments can be used
successively:

Eµ[C(T )] ≤M
M∑

j=1

(
T∑

t=1
P(Ij

2(t)) +
T∑

t=1
P(Ij

3(t))
)

= M

 M∑
j=1

Eµ[N j
2 (T )] + Eµ[N j

3 (T )]

 (6.28)

≤M2 (Eµ[n(T )]Eµ[θi − τi]) + M2Eµ[N1
3 (T )]

≤M2(1 + Eµ[N1
3 (T )] + Eµ[N1

5 (T )])M + M2Eµ[N1
3 (T )]

≤ 2M3Eµ[N1
3 (T )] + o(ln T ) + M2

 ∑
a,b=1,...,K

µa<µb

1
kl(µa, µb)

 ln(T ) + o(ln T )

≤
(
2M3 + M2

) ∑
a,b=1,...,K

µa<µb

1
kl(µa, µb)

 ln(T ) + o(ln T ) . (6.29)

Thus we prove the desired inequality, with explicit constants depending only on µ and M .

K∑
k=1

Eµ[Ck(T )] = Eµ[C(T )]
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≤M2 (2M + 1)

 ∑
a,b=1,...,K

µa<µb

1
kl(µa, µb)

 ln(T ) + o(ln T ) . (6.30)

Logarithmic switching cost for MCTopM. While Lemma 6.14 bounds the number of colli-
sions, another consequence of our proof is that we have also bounded the (expected) number
of switches of arms, SCA(T ) =

∑T −1
t=1 P(Aj(t + 1) ̸= Aj(t)). We controlled the total number of

transitions (2), (3) and (5) (see Figure 6.1), which are the only transitions when a player can
switch from arm k to arm k′ ̸= k. Thus, the total number of arm switches is also proven to
be logarithmic, if all players uses the MCTopM-kl-UCB algorithm. This additional guaran-
tee was never clearly stated for previous state-of-the-art works, like RhoRand. Even though
minimizing the number of arms switching was not a goal, this guarantee is appealing, in
particular for Cognitive Radio applications, where switching arms means re-configuring a
radio hardware, an operation that costs energy. An algorithm guaranteeing a small number
of switches is thus interesting, and for instance [DMNM16] studied the empirical impact
of the number of hardware reconfigurations on the battery life of a dynamic end-devices.
This work highlighted a tradeoff between minimizing regret and minimizing the number of
switches of arms. On a more experimental note, it was shown in [DMNM16] that the previous
state-of-the-art policy for multi-players bandits, RhoRand, could be tuned to run in batches,
in order to reduce by a certain multiplicative factor its switching cost while only adding an
additive factor on its regret. While such ideas can interest a practitioner, they does not change
the asymptotic behavior of SCA1,...,AM (T ), which is Θ(ln(T )) for any efficient policy. We also
note that introducing explicit switching costs in the regret, like it was done in previous works
like [TRY17] for single-player bandits, could also be fruitful.

Logarithmic Regret for MCTopM. Now that the sub-optimal arms selections and the col-
lisions are both proven to be at most logarithmic in Lemmas 6.10 and 6.14, it follows from
our regret decomposition (Lemma 6.5) together with Lemma 6.9 that the regret of MCTopM-
kl-UCB is logarithmic. More precisely, one obtains a finite-time problem-depend upper bound
on the regret of this algorithm.

Theorem 6.15. If all M players use MCTopM-kl-UCB, and M ≤ K, then for any problem
µ ∈ PM , there exists a problem dependent constant GM,µ, such that the regret satisfies:

RT (µ, M,A) ≤ GM,µ ln(T ) + o(ln T ) . (6.31)

Moreover, the dependency of the constant regarding the number of players is GM,µ = O
(
M3).
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Strong uniform efficiency. As soon as RT = O(ln T ) for all problems, MCTopM is clearly
proven to be uniformly efficient, as ln T is o(T α) for any α ∈ (0, 1). And as justified after
Definition 6.7 (page 155), uniform efficiency and invariance under permutations of the users
implies strong uniform efficiency, and so MCTopM satisfies Definition 6.7. This is a sanity
check: the lower-bound of Theorem 6.8 indeed applies to our algorithm MCTopM, and finally
this highlights that it is order-optimal for the regret, in the sense that it matches the lower-
bound up-to a multiplicative constant, and optimal for the term (a).

6.5.3 Discussion on Selfish

The analysis of the Selfish algorithm is harder, but we obtained some understanding of the
behavior of this algorithm, that seems to be doing surprisingly well in many contexts, as in
our experiments with K = 9 arms and in extensive experiments not reported in this section.
However, a disappointing result is that we found simple problems, usually with small number
of arms, for which the algorithm may fail. For example with M = 2 or M = 3 players
competing for K = 3 arms, with means µ = [0.1, 0.5, 0.9], the histograms in Figure 6.2 suggest
that with a small probability, the regret RT of Selfish-kl-UCB can be very large.

In the Appendix E of our article [BK18a], we explained when such situations may happen,
and we included a conjectured (constant, but small) lower bound on the probability that
Selfish experience collision almost at every round. This result would then prevent Selfish from
having a logarithmic regret. However, it is to be noted that the lower bound of Theorem 6.8
does not apply to the censored observation model (III) under which Selfish operates. The Sic-
MMAB algorithm proposed in [BP18] answers the question we left open last year in [BK18a],
of whether logarithmic regret is at all possible for the “no sensing” case (model (III)). They
confirmed that Selfish-UCB can indeed suffer linear regret, and proposed an algorithm based
on a “communication trick” to achieve logarithmic regret for this harder model (III).

6.6 Numerical simulations in presence of sensing

In all the numerical simulations, we focus on the model with sensing, i.e., model (II) or (III).
We illustrate here the empirical performances of the algorithms presented in Section 6.4,
used in combination with the UCB or kl-UCB indices. The analysis given in Section 6.5 was
focussing on kl-UCB, because it is well known that it is more efficient both in practice and
in theory. To illustrate this, we first show below the result of some experiments comparing
different algorithms that use either the UCB or the kl-UCB indexes. Our proposed algorithms,
MCTopM, RandTopM and Selfish are benchmarked against the state-of-the-art RhoRand algo-
rithm. We also include a (unrealistic) centralized multiple-play kl-UCB algorithm, as defined
by [AVW87a], essentially to check that the “price of decentralized learning” is not too large.
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First experiment: UCB vs kl-UCB. The first experiment is considering K = 9 arms, with
means µ = [0.1, 0.2, . . . , 0.9], and M = 3 then 6 then 9 players. Note that here and as in all this
section we consider different algorithms that know the number of players M (see Section 6.7.1
below for a discussion on the case when M could be unknown). Performance is measured
with the expected regret up to horizon T = 10000, estimated based on 1000 repetitions on the
same bandit instance.

Algorithm Index policy M = 3 players M = 6 players M = 9 players

Centralized multiple-play UCB 321± 30 233± 25 0
kl-UCB 94± 17 68± 18 0

Selfish UCB 1263± 157 3694± 387 12420± 404
kl-UCB 243± 31 743± 113 3005± 492

RhoRand UCB 1455± 208 4775± 463 11794± 1083
kl-UCB 394± 96 2385± 412 7057± 1053

RandTopM UCB 1020± 92 2899± 418 470± 346
kl-UCB 258± 43 902± 234 551± 520

MCTopM UCB 980± 76 1466± 132 43± 13
kl-UCB 248± 40 410± 54 42± 10

Table 6.1 – No matter the orthogonalization policy and M the number of players, using kl-UCB is
much more efficient than using UCB, for multi-players bandit (here in a simple problem with K = 9
arms).

We report in Table 6.1 above the results in terms of mean regret, plus or minus one
standard deviation. The conclusions are three fold: first we observe for any of the compared
algorithms, using kl-UCB is always (much) better than using UCB. Second we observe that
our proposal MCTopM is outperforming the state-of-the-art RhoRand policy, and performs
closely to the centralized (unrealistic) approach. Third we observe in the last column, when
M = K = 9, that MCTopM is achieving constant regret, as we proved that the regret upper-
bound of Theorem 6.15 is indeed O(1) if there is no arms in M -worst, and it shows that the
orthogonalization scheme proposed for MCTopM is very efficient, especially in comparison
to previous state-of-the-art approaches using ranks. Additional experiments and illustrations
are given below. We illustrate below the (empirical mean) regret Rt as a function of time and
not only results in terms of empirical mean regret RT at the end of the bandit game.

The purpose of this work is not to optimize on the index policy, but rather propose new
ways of using indices in a decentralized setting, and as we observed in Table 6.1 that using
kl-UCB rather than UCB indices always yield better practical performance, from now on we
only report results for kl-UCB.

Other experiments. We now present more results for two bandit instances. The first
instance is a small problem with K = 3 arms and means µ = [0.1, 0.5, 0.9], for the case of
M = 2 players. It is used to illustrate that in some unlucky runs, Selfish can suffer a linear
regret, as illustrated in Figure 6.2. The second instance considers K = 9 arms with means
µ = [0.1, 0.2, . . . , 0.9], three cases are presented: M = 6 in Figure 6.3, and for the two limit
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3 arms: [B(0.1), B(0.5) ∗ , B(0.9) ∗ ]

Figure 6.2 – Regret for M = 2 players, K = 3 arms, horizon T = 5000, 1000 repetitions and µ =
[0.1, 0.5, 0.9]. Axis x is for regret (different scale for each part), and the green curve for Selfish shows a
small probability of having a linear regret (17 cases of RT ≥ T , out of 1000). The regret for the three
other algorithms is very small for this problem, always smaller than 100 here.

cases M = 2 and M = 9 = K in Figure 6.4. We also include histograms showing the distribution
of the final regret RT , as this allows to check if the regret is indeed small for each run of the
simulation. We also include our asymptotic lower bound from Theorem 6.8 on regret plots.

We also compared our algorithms to with MEGA [AM15] and Musical Chair [RSS16], in
the presence of sensing, i.e., observation model (II), for which they were developed. Yet these
two algorithms were found hard to use efficiently in practice and we show in Figure 6.5 that
they perform poorly in comparison to RhoRand, RandTopM and MCTopM. MEGA needs a
careful tuning of five parameters (c, d, p0, α and β) to attain reasonable performances. No
good guideline for tuning them is provided and using cross validation, as suggested by [AM15],
can be considered out of the scope of online sequential learning. Musical Chair consists of a
random exploration phase of length T0 after which the players quickly converge to orthogonal
strategies targeting the M best arms. With probability at least 1 − δ, its regret is proven to
be “constant” (of order ln(1/δ)). The theoretical minimal value for T0 depends on δ, on the
horizon T and on a lower bound ε on the gap ∆ = µ∗

M − µ∗
M+1, and the practical tuning is

hard too.

Uniformly sampled problems. Experiments with a different problem for each repetition,
that is uniformly sampled µ ∼ U([0, 1]K), are also considered, in Figure 6.6 and 6.7. This helps
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to check that no matter the complexity of the considered problem (one measure of complexity
being the constant in our lower bound), MCTopM performs similarly or better than all the
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Figure 6.3 – Regret (in log-log scale), for M = 6 players for K = 9 arms, horizon T = 5000, for 1000
repetitions on problem µ = [0.1, . . . , 0.9]. RandTopM (yellow curve) outperforms Selfish (green), both
clearly outperform RhoRand. The regret of MCTopM is logarithmic, empirically with the same slope
as the lower bound. The x axis on the regret histograms have different scale for each algorithm.
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Multi-players M= 9 : Cumulated centralized regret, averaged 200 times
9 arms: [B(0.1) ∗ , B(0.2) ∗ , B(0.3) ∗ , B(0.4) ∗ , B(0.5) ∗ , B(0.6) ∗ , B(0.7) ∗ , B(0.8) ∗ , B(0.9) ∗ ]

9×  RandTopM-KLUCB
9×  MCTopM-KLUCB
9×  Selfish-KLUCB
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Our lower-bound = 0 log(t)

Anandkumar et al.'s lower-bound = 0 log(t)
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Figure 6.4 – Regret (in log-log scale), for M = 2 and 9 players for K = 9 arms, horizon T = 5000, for
problem µ = [0.1, . . . , 0.9]] for problem µ = [0.1, . . . , 0.9]. In different settings, RandTopM (yellow
curve) and Selfish (green) can outperform each other, and always outperform RhoRand. MCTopM
is always among the best algorithms, and for M not too small, its regret seems logarithmic with a
constant matching the lower bound.
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Multi-players M= 3 : Cumulated centralized regret, averaged 100 times
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4), B(0.5), B(0.6), B(0.7) ∗ , B(0.8) ∗ , B(0.9) ∗ ]

3×  CentralizedMultiplePlay(KLUCB)
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3×  RhoRand-KLUCB
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Figure 6.5 – Regret for M = 3 players for K = 9 arms, horizon T = 123456, for 100 repetitions on
problem µ = [0.1, . . . , 0.9]. With a perfect knowledge on the horizon and the gap (∆ = 0.1 here) and
by using the parameters suggested from their respective articles, MEGA and Musical Chair perform
badly, even in this simple setting. The first two Musical Chair instances use the optimal T0 value from
[RSS16], with ε taken slightly smaller than the gap ∆ (ε = 0.99∆), and respectively with δ = 0.5 and
δ = 0.1, for which the regret can bounded with probability 0.5 and 0.9 respectively. The third instance
uses the optimal T0 corresponding to δ = 1/T , that is guaranteed to have an expected regret of order
ln(T ). The log-y scale is used to easily differentiate between the different algorithms, and highlight that
our proposal (in yellow∇) outperform both MEGA and Musical Chair by three orders of magnitudes!
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Multi-players M= 6 : Cumulated centralized regret, averaged 500 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]

6×  RandTopM-KLUCB
6×  MCTopM-KLUCB
6×  Selfish-KLUCB
6×  RhoRand-KLUCB

Figure 6.6 – Regret for M = 6 players, K = 9 arms, horizon T = 5000, against 500 problems µ
uniformly sampled in [0, 1]K . RhoRand (top blue curve) is outperformed by the other algorithms (and
the gain increases with M ). MCTopM (bottom yellow) outperforms all the other algorithms is most
cases.

other algorithms, and Selfish outperforms RhoRand in most cases. Figure 6.6 is a good example
of outstanding performances of MCTopM and Selfish in comparison to RhoRand. Empirically,
our proposals were found to always outperform RhoRand, and except for Selfish that can fail
badly on problems with small K, we verified that MCTopM outperforms the state-of-the-art
algorithms in many different problems, and is more and more efficient as M and K grows.

Note that more numerical experiments were conducted for the article [BK18a], and in
particular the last pages of the paper show more figures, in other settings.

6.7 Literature review of many extensions of the models

Before concluding this chapter, we review many extensions to the three models presented
above in Section 6.2 that were introduced in recent literature. We wanted to highlight that
the community has been quite active on research on multi-players bandits in the last 10 years,
but especially active since last spring 2018. For instance, our article [BK18a] was the first to
propose the “no sensing” case, and it was studied by (at least) two independent group of
researchers since its publication in April 2018 [BP18, LM18]. Another example is the model
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Figure 6.7 – Regret for M = 2 players, K = 9 arms, horizon T = 5000, against 500 problems µ
uniformly sampled in [0, 1]K . RhoRand (top blue) is outperformed by the other algorithms (and the
gain increases when M increases), which all perform similarly in such configurations. Note that the
(small) tail of the histograms come from complicated problems µ and not failure cases.

with different arm means among players, who was initially studied in [AMT10, KNJ12] and
then more recently in [BL18, KM19].
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Multi-players M= 9 : Cumulated centralized regret, averaged 500 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]

9×  RandTopM-KLUCB
9×  MCTopM-KLUCB
9×  Selfish-KLUCB
9×  RhoRand-KLUCB

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

1

9×  RandTopM-KLUCB

2000 4000 6000 8000 10000
0

10

20

30

40

50

60

2 2 1

9×  Selfish-KLUCB

20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

2 1 1
3

9×  MCTopM-KLUCB

4000 5000 6000 7000 8000 9000 10000 11000 12000
0

10

20

30

40

50

60

39

53

64

25

11

9×  RhoRand-KLUCB

0.0 0.2 0.4 0.6 0.8 1.0
Regret value RT at the end of simulation, for T= 5000

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f o
bs

er
va

tio
ns

, 5
00

 re
pe

tit
io

ns

Histogram of regrets for different multi-players bandit algorithms
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]

Figure 6.8 – Regret for M = K = 9, horizon T = 5000, against 500 problems µ uniformly sampled in
[0, 1]K . This extreme case M = K shows the drastic difference of behavior between RandTopM and
MCTopM, having constant regret, and RhoRand and Selfish, having large regret.

Many extensions of the simpler model of multi-players bandits have been considered. The
number of players M can be fixed but initially unknown to the players, the sensing information
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can be absent (like the model (III) presented above), there could be communications between
players (happening at each time step or only occasionally), or M could evolve over time to
model the possibility of arrivals or departures of players (i.e., connexions and disconnections
of devices in a wireless networks). Also inspired by real-world wireless networks, the arm
means may vary among players, for instance to model players located at different distance
of the gateway, and we can also consider networks with some “jammers” whose purpose is
not to communicate to the gateway in a collaborative way, like the M devices, but to interfere
with the communications of the M devices.

Finally, we can also be interested by models where M stays fixed, but the environment
evolves, for instance with abrupt changes in the means of arms. This last model makes a good
connexion between this chapter and the next one, and an exciting future work is to further
study this model in order to tackle this kind of problems by merging our contributions for
stationary multi-players bandits and for non-stationary single-player bandits.

6.7.1 Unknown (fixed) number of players

In the model we presented above, we assumed the number of players M to be fixed in time
during the learning process. Without removing this hypothesis (we study this case below in
Section 6.7.2), it is interesting to remark that we made no hypothesis on whether the players
can know this value M or not. Our proposals, RandTopM and MCTopM, both assume to
know M beforehand, like it was done for their main inspiration, RhoRand.

Performance of our proposals for a wrong value of M . We can start by asking whether
the most efficient algorithm, MCTopM-kl-UCB, is still efficient if it uses a value M ′ different
than the real number of players M . Even though we did not include numerical simulations
for this case in Section 6.6 above, we did some tests, which confirmed two disappointing
results that were also proven analytically. First, the three algorithms (RhoRand, RandTopM
and MCTopM) give linear regret if they are using a value M ′ strictly smaller than M (and
if µ∗

M−1 > µ∗
M ), as players will converge to play about T − O(ln(T )) times the M − 1 best

arms, leading to at least one collision most of the time, and thus a linear regret. Second, if
the M players falsely use a value M ′ > M , then there is also a certain (fixed) probability to
achieve a linear regret. Indeed, imagine one player (M = 1) running MCTopM with the false
knowledge of M ′ = 2, and if it learned to accurately identify the set of the 2 best arms, then
the MCTopM orthogonalization scheme can make it play the worst of the two arms, and as
M = 1 this player will never encounter any collision, thus playing this suboptimal arm for
about T −O(ln(T )) times, also leading to linear regret.
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Interpretation of the hypothesis of knowning M for real-world networks. One could crit-
icize our approach if we study a wireless networks with no central coordination from the
gateway, in particular where the devices cannot be assigned to a channel or be assigned a
unique ID by the gateway when they first log in the network. Then in such networks, if one
wants to apply an algorithm like MCTopM-kl-UCB, the M devices need to know their number
M , and have to receive it from the gateway, as it is the only part of this example of network
which knowns M . It seems unrealistic to ask the gateway to send the fixed value M to each
device, and not a unique ID to each device, for instance idj ∈ [K].

If the M players each have a unique ID, then a simple explore-then-commit algorithm
(see Section 2.4.1), running on top of a round-Robin phase can achieve order-optimal regret.
If the players know the time horizon T , then they can fix a confidence level δ. For the first
T0 time steps, the M players will use a simple round-Robin game, using their (unique) ID
to stay orthogonal: player j starts at arm j, then j + 1, then cycle in [K]. They encounter
no collision in these time steps, and then user j targets the j-th best arm among the set of
M -best arm. If T0 is large enough, all players have built the same estimate of the ranking of
the arms (and not only correctly identified the set of M -best arms), with high probability (at
least δ), and thus they will also encounter no collision and no regret from after time T0. The
mean regret of such approach is easily bounded by RT ≤MT0 + (1− δ)(T − T0), so by using
δ = 1− 1/T , RT = O(T0). By calibrating T0 based on δ (which needs prior knowledge of T ,
see the proof we gave in Section 16) and the minimal gap ∆ between M -best and M -worst,
one can show, using similar arguments as used by [RSS16] for the Musical Chair policy, that
with large probability a constant regret is obtained. A logarithmic regret can be obtained from
the same bound, proving the order-optimality of this simple approach, if we assume that user
j knows it is user number j. Without giving more details, we let the interested refer to what
is explained for the algorithms presented in [DH18, H. 18, KDH+19]. These works assume a
prior knowledge of ∆, or other measures of the difficulty of the problem, and as such we do
not find them comparable with the approach chosen here.

Two ideas to estimate M . Some works studied the same model as our model (II) “with
sensing”, under the hypothesis that players do not know in the value of M . As illustrated
above, if we consider algorithms building on the same ideas as RhoRand or MCTopM, it seems
mandatory to first build an estimate of the value of M then run the initial algorithm that
assumed a perfect knowledge of M . Two possible directions exist to estimate M on the fly.

The first idea comes from [AMTA11], and the intuition behind it is quite simple, even if
the mathematical derivations are not. All players will build an estimate M̂ j(t) of the number
of player, that start by M̂ j(0) = 1. As soon as one collision is observed, a player knows that
M ≥ 2, so M̂ j(t + 1) = 2. Then, based on probabilistic computations on the expected number
of collisions if there were m players, all following the same strategy (e.g., RhoRand in the case
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of ), and because the formula is simple to compute for different m, the authors proposed a
statistical test of the hypothesis M ≤ M̂ j(t) against M > M̂ j(t) which is expressed as a simple
comparison of the current number of collisions (since last update of M̂ j(t)) against a threshold.
If a player observed “too many” collisions (that are unlikely to be caused by only M̂ j(t)− 1
other players), then she increases her current estimate M̂ j(t + 1) = M̂ j(t) + 1.

The second idea comes from [RSS16], and suppose to know beforehand both the horizon
T and a certain measure of the difficulty of the problem (i.e., a lower bound on the minimal
gap between two means). If all the M players start to play for a long enough time T0 uniformly
at random among all the K arms, then the (expected) number of collisions observed E[Cj

T0
] by

any player j is a (relatively simple) function of M . By knowing K and T0 and if all players use
the same mechanism, then they can invert the formula to obtain the most likely estimate of M

which explained the observations of Cj
T0

collisions. This second approach works empirically
very fine, but it requires a fine tuning of the stopping time T0. Rosenski et al. studies the
performance of their algorithm with high-probability bounds [RSS16], and the tuning of T0

they propose depends on prior knowledge on the problem. For this reason, we are not fond
of this approach, as this hypothesis is quite unrealistic if one wants to apply this kind of
algorithms for real-world wireless networks. We note that all the following works assume
some sort of prior knowledge on the difficulty of the problem: [KDY+17, KYDH18, SKHD18,
H. 18, DH18, KDH+19, TPHD19].

Extension of our proposals to learn the value of M . Similarly to what was proposed for
the RhoEst algorithm in [AMTA11], we could have worked on proposing and analyzing
an extension of our proposals that could efficiently learn the value of M the number of
player. We implemented this RhoEst policy in our library SMPyBandits [Bes19], as well as
this mechanism for RandTopM and MCTopM. Building from the theoretical analysis given
for RhoEst in [AMTA11], and the analysis of MCTopM-kl-UCB, we believe it is possible to
show that the aforementioned extension also achieves sub-linear regret without requiring
players to know M in the beginning of the bandit game. More precisely, we believe that
MCTopM-kl-UCB can still give order-optimal logarithmic regret if M players use it, and this
extension of Theorem 6.15 is not included due to space constraints. Writing its proof and
performing more simulations are left as possible future work.

Simulations. We consider a bandit problem with K = 9 arms, of means 0.1, . . . , 0.9, and
three different cases of M = 3, 6, 9 players, for 100 independent repetitions and an horizon of
T = 10000. As before, we include the centralized multiple-play kl-UCB as an unachievably
efficient baseline, the Selfish-kl-UCB algorithm as an heuristic which does not require to know
M . Then we compare the RhoRand, RandTopM and MCTopM algorithms, using kl-UCB,
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which know M beforehand, with their extensions implementing the same algorithm as RhoEst,
to estimate M on the fly.

Algorithms Hyp. on M M = 3 players M = 6 players M = 9 players
Centralized multiple-play Known M 92± 20 70± 16 0

Selfish Don’t need M 250± 34 735± 85 3010± 472

RhoRand Known M 417± 103 2481± 449 6639± 1035
Estimate M 1422± 1051 9030± 1922 7264± 1009

RandTopM Known M 268± 45 941± 217 437± 367
Estimate M 688± 614 4256± 2701 1155± 544

MCTopM Known M 244± 39 401± 55 44± 13
Estimate M 563± 546 1560± 1293 618± 29

Table 6.2 – Mean regret ± 1 std-dev, for different algorithms on the same problem with M = 3, 6, 9,
comparing algorithms which knows M against algorithms which estimate M on the fly. All use kl-UCB.

One can observe in Table 6.2 the empirical performances of different algorithms in an
example problem, in each case of low, medium and maximum number of players (M = 3, 6, 9
for K = 9 arms). The three algorithms RhoRand, RandTopM and MCTopM all suffer from
similar increase on their regret when they have to estimate M on the fly (written “Estimate M”
in red, in Table 6.2). Our proposals are still much more efficient than RhoRand when using the
procedure to estimate M described from [AMTA11]. For the two non-extreme cases (M = 3, 6),
the performance drop when having to estimate M is quite large, and consistent on the different
algorithms. The extreme case of M = K players is of highest interest, as MCTopM achieves a
very small regret (proven to be O(1) as it is just the expected time of the orthogonalization
process), while the same algorithm with unknown M suffers from a much larger regret. In this
extreme case, RhoRand and its extension both perform very closely, as expected, and much
worse than MCTopM. Additional simulations, for increasing time horizons T , confirmed the
expected order-optimal regret of this extension of MCTopM-kl-UCB.

6.7.2 Arrival and departures of players: the “dynamic setting”

As reminded above, the model assumes that the number of players M remains fixed during
all the bandit game. However, in real-world wireless networks, when players model com-
municating devices connected to a single gateway, devices can arrive or leave the network
at any time. The existing previous work on multi-players bandit models are all motivated
by possible applications to wireless networks, but most of them assume M to be fixed. The
first work studying the relaxation of this hypothesis is [RSS16], where this case is called the
“dynamic setting”. If the arrival or departures of players is not random, but determined in
advance while still being unknown to any player, the natural notion of regret is the following,
where the expectation E[•] is capturing the randomness in the sensing information, as well as
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in the players’ decisions (i.e., collisions):

R
dyn
T

.=
T∑

t=1

M(t)∑
k=1

µ∗
k − E

 T∑
t=1

M(t)∑
j=1

rj(t)

 . (6.32)

In [RSS16], the authors explain that if the model allows arrival or departures of players at
any time step, then the game is much harder, and sub-linear regret is most likely un-achievable,
if we consider the natural extension of the definition of regret as in our model presented in
Section 6.2 above. But this negative results depends on how arrival of players are modeled: if
an arriving player has no prior memory of the previous observations, i.e., if it model a new
device, then if there is no restriction on the number or frequency of arrival or departures, we
can most likely prove that sub-linear regret is not achievable in general. A simple but extreme
example shows that regret has to be linear for any bandit strategy (in the observation model
with sensing). Consider K = 2 Bernoulli-distributed arms of means µ1 = µ2 = 1/2, and one
player is always active and play any bandit strategy (e.g., MCTopM-kl-UCB). Every time step,
another player is either arriving, without any knowledge of the problem (e.g., it is a fresh
and new IoT device). Then no matter the strategy of these new players, even if they all play
MCTopM-kl-UCB for instance, if they play a uniformly efficient strategy there is a non-zero
probability that player 1 suffers from a collision at each time step, thus resulting in linear
centralized system regret.

The authors of [RSS16] also assume that the players all know a lower-bound L on the
length of all the intervals during which arrival or departures of players are allowed. A naive
idea, if L is large enough, is simply to restart the underlying algorithm every L time steps,
in order to directly benefit from the theoretical guarantees of the “static setting” (where M

stays constant). Unfortunately this idea yields a large regret if the length of “static” intervals
L is too small. Applied to the Musical Chair algorithm, the authors in [RSS16] call this basic
extension Dynamic Musical ChairUnder the simple hypothesis that the overall number of
players entering and leaving the game is sub-linear in T (i.e., a o(T )), they analyze the regret
of Dynamic Musical Chair and prove it is also sub-linear (see Theorem 2 in Section 3.4). Under
the same hypothesis, and if the lower-bound L is known before-hand and is large enough, then
we could also apply the same idea as from [RSS16] to our approach. We believe that we could
easily prove a sub-linear regret bound, if all players run MCTopM-kl-UCB, and if currently
active players restart their memory of the past observations every L time steps. As the regret
guarantee is stronger (i.e., smaller regret upper-bound) for MCTopM than Musical Chair, we
also believe that in this “slowly varying” dynamic setting, applying the idea of Dynamic
Musical Chair from [RSS16] to MCTopM would also give a small regret upper-bound.

After being introduced in [RSS16], some more recent works studied the case of arrival
or departures of players, usually referred to as “dynamic setting” or “dynamic case”. For
instance, [BP18] studies in Section 4 the first algorithm proposed for the dynamic case under
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the no-sensing model. They study the same notion of regret as the one proposed in [RSS16]
and given above in (6.32), see Equation (10) in Section 4.2.1. With the assumption of a non-
decreasing number of players, i.e., if only arrivals of players are considered, they prove a
regret upper-bound of the Dyn-MMAB algorithm in Theorem 3 . If all arriving players are
using their Dyn-MMAB algorithm, the “dynamic” regret is bounded by O

(
M2K ln(T )/µ∗

M

)
,

if M = M(T ) is the total number of players involved in the problem.

6.7.3 Without sensing information

We presented in Section 6.2 the model (III), without sensing information. Players can only
observe Yk,t, the product of the i.i.d. random sensing information from arm k and of the
no-collision indicator. This model seems harder than the model with sensing information, and
even though the proposal Selfish works fine in simulations (in terms of average regret), we
proved that it can yield linear regret. In our paper [BK18a] as well as in the previous sections,
it was left as a future work to know if an algorithm can achieve sub-linear regret in this harder
model without sensing information.

Inspired by [BK18a], Boursier and Perchet studied this question in the summer 2018
following its publication [BP18]. Their answer is that the model without sensing information
is essentially not harder than the model with sensing information. Similarly, Lugosi and
Mehrabian studied the same problem [LM18]. In both works, the authors detail algorithms
that give a logarithmic regret if M ≤ K players all independently implement the proposed
algorithm.

The “communication trick”. The recent work [BP18] proposed an idea they called the “com-
munication trick”. It essentially allow any player to send one bit to all the others, at some
pre-agreed time steps, with no modification on the model. Thanks to this “communication
trick”, recent research efforts have been more focus on studying the basic model –without
explicit communications between players–, while proposing algorithms that can rely on some
communication between players. This trick essentially use the fact that the players share
a synchronized time, thus they can use a collision as a way to directly exchange one bit of
information between two players. This process is slow and not efficient, as all but two players
must do nothing when player i is sending a bit to player j, but it does build a communication
protocol in the model without explicit communication between players. This “communication
trick” is used for instance in [KM19]. We let the interested reader refer to these last two works
[BP18, KM19] as they are both solid, and well explained.

Estimating collisions through uniform exploration. [LM18] gives a first algorithm with
expected regret of O

(
MK ln(T )/∆2), if ∆ = µ∗

M − µ∗
M+1 ̸= 0, achieving a better dependency
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regarding M when compared to our result (our bound isO
(
M3)) but at the cost of (much) larger

constants hidden in the O notation, and a non-fully explicit algorithms which usually obtain
bad (or worse) empirical performance. Then they study an interesting extension that works also
if ∆ = 0 or if ∆ is so close than the bound in 1/∆2 becomes useless for “small horizons”. This
behavior is well known for classical bandits, where bounds of the form ln(T )/∆2 become worse
than a linear regret T if ∆ is very small (i.e., ∆≪

√
ln(T )/T ). For this extension, their proposed

algorithm is proven to achieve O
(
K2M(ln(T ))2/µ + KM min(

√
T ln(T ), ln(T )/∆′)

)
regret,

if µ is a lower-bound on µ∗
M and ∆′ = max(∆, min{|µ∗

M − µ∗
i | : µ∗

M > µ∗
i }) (that both have to

be known beforehand by the algorithm). The proposed algorithms in [LM18] are all based on
the Musical Chair algorithm from [RSS16], and the curious reader should read for instance
their Algorithm 2 (page 15) for more details.

The results presented in [LM18] are based on some hypotheses, for instance the tuning they
propose for the length g of the uniform exploration phase in the beginning of their “Musical
Chair”-like algorithm is based on a prior knowledge of the horizon T . In Section 4 they explain
how to relax the assumptions of their results. For the same example, the “doubling trick”
technique can be used to obtain a regret upper bound for an algorithm unaware of the value
of T , within a constant multiplicative factor of the upper bound given for the algorithm aware
of T (Section 4.1). Because the regret bound is of the form O

(√
T ln(T )

)
, a simple “doubling

trick” of increasing horizons of lengths Ti = 2i works well, as proposed in [CBL06] and as
studied in depth in our article [BK18b], and quickly presented in Appendix A. They also
study in Section 4.3 an extension of the model for the case with more players than arms, but
we do not give more details on this aspect. Their definition of a centralized regret for this
case is an interesting and natural generalization of the definition, and they also proposed
an algorithm achieving O

(
MK ln(T ) exp(4M/K)/∆2) regret in this case. Finally, they also

proposed in Section 4.4 an extension of their algorithm to estimate the number of players M ,
which is analyzed as for the Musical Chair algorithm in [RSS16], and also achieve logarithmic
regret. Note that it is significantly harder to estimate M without collision information, and
Algorithm 3 in page 24 is quite complex. We did not implement it, and it would be interesting
to run some numerical simulations in order to validate it empirically.

About Selfish-UCB inefficiency. It is also proven in Appendix A of [BP18] that Selfish-UCB
has a linear regret, in the theoretical case, with a very neat argument from number theory
(using Lindemann-Weierstrass theorem). As we conjectured, there is a gap between the
theoretical result and its practical consequence, as the Theorem 4 they gave is only valid for
real-valued number, and not for hardware-represented floating point number. Their proof is
supporting what we illustrated in Figure 4 in [BK18a]. Their argument is essentially to prove
that for Selfish-powered players using the simple UCB-indexes, with a probability p at time t

(both independent from T ), two players might have the same number of pulls and the same
observed rewards for each arm. In that case, the two players would pull the same arms and
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thus collide for a long time, until they reach a “tie breaking point” where they could choose
different arms thanks to a random tie breaking rule (e.g., if two values of their UCB indexes
are the same, the arg max is a uniform random choice among the two arms). They prove that
it is unlikely to encounter any of these “tie breaking points”, in theory if the UCB indexes are
real-valued number (that can be rational or irrational).

Additionnal numerical simulations. To illustrate the difficulty of the “no sensing” case, we
illustrate here the performances of different algorithms designed specifically for this setting.
As above, we consider a bandit problem with K = 9 arms, of means 0.1, . . . , 0.9, and three
different cases of M = 3, 6, 9 players, for N = 100 independent repetitions, and horizon
T = 10000. We include the Selfish-kl-UCB algorithm as an heuristic, as well as the Improved
Musical Chair algorithm from [LM18] and Sic-MMAB from [BP18]. It is also interesting to
add the centralized multiple-play kl-UCB is included as an unrealistic efficient baseline, as it
does not use the sensing information but only the joint information (the reward) rj(t), because
it directly affects the player in an orthogonal configuration and thus never encounters any
collision (thus rj(t) = Yt,Aj(t) for each j, t). For the two other algorithms, we use the advised
tuning of their parameters: for Sic-MMAB, we used T0 = ⌈K ln(T )⌉, for Improved-MC, we
used c = 1 which gives g = 235, whereas in the paper the authors use c = 128 for their
analysis. We found empirically no difference when using different values of the constant c or
g, and unfortunately the regret of Improved-MC was always found to be linear3.

We give in Table 6.3 the mean regret obtained for these different algorithms, and we
observe a drastic difference between the unrealistic centralized algorithm, which achieves a
very small regret, the heuristic Selfish-kl-UCB which achieve small mean regret (but is small
to fail in theory and in some instances), and the two other algorithms. We were unable to find
any bug in our implementation of Improved Musical Chair from [LM18] and all the different
tuning of c (or g) explored gave the same disappointing result (linear regret). The Sic-MMAB
algorithm performs better than the Selfish heuristic for the extreme case of M = K, but its
large regret in this case shows that the orthogonalization protocol developed by [BP18] is
not fast to converge (for illustration, for the same problem for M = K = 9 for the “sensing”
case, MCTopM-kl-UCB achieves a mean regret of about 40, two orders of magnitude smaller!).
Further empirical evaluation would be needed to fully understand the situation, and a first
future work would be to either fix our implementation of the algorithm proposed by [LM18]
or propose an efficient modification, and illustrate in some problems that it can indeed achieve
sub-linear regret (maybe it does but only for large horizons, even if we did try larger values of
T like up-to T = 200000).

3For instance Improved-MC obtained a mean regret 12150 for T = 10000, for M = 3, K = 9, but seeing one
value for one horizon does not mean anything, and we also experimented with larger values of T and found a
similar linear behavior.
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Algorithms \ Number of players M = 3 M = 6 M = 9
Centralized Multiple play kl-UCB 91± 21 70± 16 0± 0

Selfish-kl-UCB 249± 35 728± 94 2953± 501
Sic-MMAB 1705± 340 3915± 300 1713± 52

Improved Musical Chair 12149± 60 22341± 77 27462± 85

Table 6.3 – Comparison of the mean regret ± 1 std-dev, for different algorithms, on the same problem
with M = 3, 6, 9 players, for the “no sensing” case. More work is needed on our implementation on
Improved Musical Chair. The results on Sic-MMAB confirm the numerical experiments of [BP18].

6.7.4 With communication or coordination between players

In the models of IoT networks considered in this thesis, we assume that the different IoT
devices cannot communicate with each other, and can only communicate with their gateway. This
hypothesis is realistic, mostly for energy consumption and spectrum efficiency reasons. Of
course, we can relax this hypothesis, and in practice in some families of wireless networks,
communication between devices are possible. Note that this extension is not considering a
graph of distributed agents all playing cooperatively to solve a unique bandit game, like it is
studied in the “graph bandit” problem [Val16]. We are interested here by an extension of the
model where players can send some bits to one or all the other players, at some or every time
steps.

Clearly, the problem is easier by allowing communication, and it is quite immediate to see
that the communication capacity between players must be limited otherwise the problem is
already known and solved. Indeed, imagine that at each time step t, all the M players could
share an unbounded number of bits with the other players, at no cost (even if this hypothesis is
clearly unrealistic for wireless networks). Then they can share all their observations, and they
can all run the same multiple-plays MAB algorithm [AVW87a], like for instance the extension
of Thompson sampling for multiple-plays studied in [KHN15], or extensions of KL-UCB from
[LKC16]. In this setting, a logarithmic regret is easily obtained, and the regret upper-bound of
the two aforementioned algorithms asymptotically achieve the lower-bound from [AVW87a].

A more interesting extension is thus to limit the communication between players, either to
a small number of bits or just one bit, at every or only some time steps. We identified that the
state-of-the-art on this direction of research consists in the two very recent works [TZZ19] and
[WHCW19]. Distributed pure exploration is studied in [TZZ19], where the proposed new
lower bounds for the regret of any algorithm for the distributed best arm identification problem,
under the fixed time or fixed confidence settings. The also propose effective algorithms that
asymptotically match their lower-bounds (up-to logarithmic factors, in some cases). The second
work studies distributed learning for (not necessarily stochastic) multi-armed bandits as well as
linear bandits [TZZ19]. For a distributed K-armed bandit with M agents, they developed two
protocols achieving near-optimal regretO(

√
MKT ln(T )), and requiring little communication
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cost, one is independent of the time horizon T and use O(M ln(T )) communications, and the
other is independent of the number of arms K and useO(MK ln(M)) communications. Their
model and algorithms fit in the distributed, decentralized framework we advertise in all this
thesis, and this last work is very interesting.

Additionally, after the recent work [BP18] introduced the “communication trick”, some
recent research efforts have been more focus on studying the basic model –without explicit
communications between players–, while proposing algorithms that can rely on some com-
munication between players. This “communication trick” is used for instance in [KM19]. Due
to space constraint, we let the interested reader refer to these last two works [BP18, KM19] as
they are both solid, and well explained.

Another line of research is to consider models that are closer to realistic wireless com-
munication networks, as it is done in [AM16, AM18]. Explaining in details their model and
proposed solutions would be quite lengthy, and we rather prefer to let the interested reader
refer to the later work [AM18]. We sum-up its contributions quickly. They address several
aspects of the challenge of communication networks shared by many users simultaneously:
learning unknown stochastic network characteristics, sharing resources with other users
while keeping coordination overhead to a minimum. The solution they proposed combines
Multi-Armed Bandit learning with a lightweight signalling-based coordination scheme, and
ensures convergence to a stable allocation of resources. Their work considers single-user level
algorithms for two scenarios: an unknown fixed number of users, and a dynamic number of
users, both for different arms means for each user (players). Analytic performance guaran-
tees, proving convergence to stable marriage configurations, are presented for both setups.
The algorithms are based on a system-wide perspective, rather than focusing on single user
welfare.

6.7.5 With different arm utilities among players

In the multi-players model presented in this chapter, we assume that the arm distributions
are the same for all the players. For cognitive radio applications, where arms model channels
and players are radio devices, it can be unrealistic to consider that two players, maybe located
at different distances from the gateway or equipped with different hardwares, encounter the
same mean quality when accessing the same channel. Motivated by this weakness, some
researchers studied an interesting extension of the model of interest, considering multi-players
MAB models with different arms distributions among players. Starting in 2012 by [KNJ12]
where arms are Markov chain, this model was studied more actively recently, [DH18, BL18,
KM19, TPHD19].

In such models, instead of considering K arms characterized by a vector of distributions,
(νk)1≤k≤K , if there is M players we consider a matrix of distributions, (νj

k)1≤k≤K,1≤j≤M . Two
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users j and j′ can experience different utilities for the same arm k, i.e., νj
k ̸= νj′

k . The goal
stays the same, each player wants to maximize its cumulated reward, with or without explicit
communications between players, with or without sensing information, but always without
central supervision. Like before, maximizing the rewards of each player simultaneously is
maybe not possible. As soon as the matrix is not invariant under permutation of the users, the
problem nature changes fundamentally: instead of finding an optimal orthogonal assignment
of the M players to the M -best arms, the goal of the system is now to reach an equilibrium
position, also referred to as a stable marriage. Assignment are also called matching, and
total (mean) reward of an assignment is its utility. Such equilibrium position means that
the utility obtained by the M player cannot be increased by swapping two users. Indeed
imagine just M = 3 players and K = 3 arms, and Bernoulli distributions of means [0.1, 0.5, 0.5],
[0.1, 0.5, 0.5] and [0.9, 0.5, 0.1] for player 1, 2 and 3. Then two optimal affectations of players to
arms are [3, 2, 1] or [2, 3, 1], both giving the same utility of 1.9.

In this extension, performance is still evaluated by a system regret, now defined as the
difference between the sum of the cumulated rewards by the M players, and the utility of any
matching. The question is to know if it is possible to obtain a logarithmic –or even sub-linear–
regret in this problem is more difficult that for the model presented in Section 6.2. This
question was first answered in [BL18], and proposed an algorithm based on alternating three
phases, and increasing their lengths after the end of each epoch (2p for the p-th epoch). First,
players explore in order to estimate the expectations of the arm rewards ; then players use
their “Game of Thrones” dynamics (GoT, inspired by Musical Chair [RSS16]) and play the
optimal solution most of the time ; finally players play the action they played most of the time
in the recent GoT phases. They analyze their GoT algorithm and proven that it achieves a
regret of O((ln(T ))2+κ) for any positive constant κ, as small as possible, if κ is known by the
algorithm.

Until the very recent work of [KM19], it was unknown if a logarithmic regret was possible.
They proposed an algorithm that is based on two phases: first, players will learn M and learn
orthogonal ranks, using the “communication trick” of [BP18], and then one player is elected
as a leader and the others are followers. This second step, after initialization, is also using
epoch of increasing lengths 2p. Until the optimal solution, each epoch is alternating three
phases. Followers start by a Round-Robin uniform exploration with no collision, then they
use the “communication trick” to communicate their samples to the leader, and finally they
start an exploitation phase until the end of the game if the leader player tells them so. The
leader can thus collect enough samples from all arms and all players, and is able to solve
iteratively the stable marriage problem, and sends back the successive estimate of the solution
to the players. In the easier case when their is a unique optimal matching, their algorithm
Multiplayer Explore-Then-Commit (M-ETC) is the first one to achieve logarithmic regret,
in the form of RT = O(MK ln(KT ) + KM3 ln(MKT )/∆) + KM2(ln(M ln(KT )/∆))2, if ∆
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is defined as the gap between the utility of the best matching and the utility of that of the
matching with second best utility. In the generic case, their algorithm M-ETC with Elimination
achieves a regret of O((ln(T ))1+κ) for any positive constant κ.

Finally, we note that previous works all focused on the “sensing” case, but most likely
sub-linear regret can be achieve by decentralized algorithms that leverage the same techniques
as introduced by [BP18, LM18] for the “no sensing case”. We conclude by noting that this
model was recently studied by two very recent other works, [DH18, TPHD19], who obtained
results comparable to the results from the two works presented above. They both also study
the case of dynamic settings, with arrival or departures of players, as presented in Section 6.7.2.
Both articles [DH18, TPHD19] use the terminology of ad-hoc networks, and they compare
empirically their proposal with some previous works, while [KM19] do not include numerical
simulations, and while [BL18] illustrate the performance of their GoT algorithm on a simple
example, they do not compare with other algorithms. It would be interesting to compare
empirically all the different approaches. Another interesting directions are to study the
possible extension of this model with different arm utilities by players to the non-stationary
case, or real-world validation of such decentralized algorithms in real IoT networks.

6.7.6 Modeling more closely a real wireless network

We simply quote here three recent articles which proposed a similar approach of using
decentralized reinforcement learning algorithms on the device-side on wireless networks,
but proposed models closer to the reality of wireless networks. The first work is [NC17],
which proposes to use a decentralized learning based on deep learning, in the “no sensing”
case, but in a model where the users have to learn not only the channels to use for their
uplink messages (only from the feedback through the acknowledgements, like in Section 5.2),
but where they have to learn the whole “spectrum access actions”. The work of [AM18] is
discussed above for the case with communicating players, and their model is very interesting
from the point-of-view of real-world wireless communication protocols.

Finally, the very recent work of [ZBLN19] is the first one to present experiments of re-
inforcement learning done on simulated LTE and 5G channels. The mathematics behind
their model are actually quite close to the model, but they explain it in terms of OFDMA
and Quality-of-Service (QoS). Their algorithm is essentially based on a pre-agreement of the
M players, that will deterministically run an alternance of exploration phase, auction phase
and exploitation phase, of (exponentially) increasing durations. By diving into the details
of the modulation and giving explicitly the form of the uplink messages sent by the devices,
the authors are able to set-up two different uplink packets, to efficiently perform the auction
phase (see Figure 2). They prove a regret upper-bound of the order RT = O(ln(T )), with no
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special care regarding the constants, but we can also note that their algorithm require a prior
knowledge of ∆min a problem-dependent constant (Theorem 3).

6.7.7 Can MAB learning also be used to learn the rank for RhoRand ?

Similarly to our demonstration of MAB learning in an IoT network that we presented in the
previous Chapter 5 in Section 5.3, we list here some related works, dating back from 2016, who
proposed a similar approach for OSA. All the similar works that we are aware of also used
USRP boards, and implemented the demonstration using either the Simulink and MATLAB
softwares, or the GNU Radio software like we did [BBM18]. Indeed, the demonstrations and
the works presented below are coming from our team experiments, and have been extended
by the team of S. Darak at IIIT Delhi after his postdoctoral fellowship in our SCEE team. In
[DNMP16, DMP16], the authors study the same model and focused on the RhoRand policy,
which was the state-of-the-art back in 2016, combined with UCB or kl-UCB, as well as an
extension using Bayes-UCB from [KCG12].

Their idea is to use the same skeleton as RhoRand [DNMP16], that is to assign a rank to each
player, and make players change their rank after any collision. But instead of selecting a new
rank uniformly at random among [M ], they proposed to use a “second-stage” learning policy,
based on Bayes-UCB, to (try to) learn the best rank while still exploring each rank from time to
time. This is a very natural idea: use a bandit algorithm to balance the exploration/exploitation
aspect of rank selection, instead of a random hoping. This algorithm is named RhoLearn,
and it is implemented in SMPyBandits, where it can use Bayes-UCB, or any of the 65 or
more bandit algorithms available in the library. Even if no theoretical guarantee backs up
this idea of second-stage learning with Bayes-UCB, empirical simulations found that it can
be efficient. We illustrate this in Table 6.4 below, where we consider the same problem as
described above in Section 6.7.3 (Table 6.3). We include different RhoLearn algorithms, that
uses kl-UCB, Bayes-UCB or Exp3 for the second-stage learning, and we include both the
centralized multiple-play version of kl-UCB and MCTopM-kl-UCB for comparison.

Algorithm \ Number of players M = 3 M = 6 M = 9
Centralized multiple-play kl-UCB 92± 20 70± 16 0

RhoRand-kl-UCB 417± 103 2481± 449 6639± 1035
RhoLearn-kl-UCB + kl-UCB 546± 190 1172± 295 1416± 347

RhoLearn-kl-UCB + Bayes-UCB 561± 219 1204± 394 1363± 331
RhoLearn-kl-UCB + Exp3 529± 175 1659± 331 5134± 976

MCTopM-kl-UCB 244± 39 401± 55 44± 13

Table 6.4 – Comparing RhoRand and RhoLearn on a simple MP-MAB problem with K = 9 arms.
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6.7.8 With malicious jammers

In all this chapter and the previous research literature, another common hypothesis is that
all the M players are pursuing the same goal, and are all behaving nicely by following the
same algorithm. Distributed algorithms proposed in the literature aim to maximize the
network throughput by ensuring orthogonal channel allocation for the SUs. However, these
algorithms work under the assumption that all the SUs faithfully follow the algorithms
which may not always hold due to the decentralized nature of the network. In the paper
[SKHD18], the authors study for the first time distributed algorithms that are robust against
malicious behavior, also called jamming attack. They consider both the cases of jammers
launching coordinated and uncoordinated attacks, and consider a set of J jammers. In the
coordinated attack, the jammers select non-overlapping channels to attack in each time slot
and can significantly increase the number of collisions for SUs. They setup the problem in
each scenario as a multi-players bandit and develop algorithm, and their analysis shows that
when the SUs faithfully implement proposed algorithms, the regret is constant with high
probability. They validate their claims through exhaustive synthetic experiments and also
through a realistic USRP. Their synthetic experiments consider different cases, for different
values of K the number of channels, M the number of players and J the number of jammers.

6.7.9 Towards non-stationary multi-players MAB models

Since the beginning of this thesis, all the studied bandit problems were stationary: the rewards
coming from choosing arm k are i.i.d. and follow the same distribution νk. The next Chapter 7
is focused on the piece-wise stationary bandit model, a relaxation of this hypothesis.

When we were working on multi-players bandits in Autumn 2017 [BK18a], we left the
study of the piece-wise stationary case as a future work, and shortly after we were excited to
see that three independent works tackling this question were published, in December 2018
[WS18a] and in February 2019 [ALK19, BV19]. Without diving too much into the details, we
review here these three works. Without a more serious analysis, we conjecture that it should
not be difficult to merge the regret lower-bound for stationary multi-players MAB (Theorem 6.8)
and the lower-bound for piece-wise stationary single-player MAB from [GM11]. We conjecture
that any reasonable decentralized bandit algorithm must suffer a regret at least Ω(M

√
KΥT T )

for M ≤ K players, K arms, and ΥT stationary intervals.

On the one hand, piece-wise stationary multi-players MAB can be tackled by extending
algorithms developed for the single-player case. In [WS18a], the authors study exactly the
same multi-players bandit model as our model, and they propose two distributed algorithms
that can efficiently be used by M ≤ K players to achieve sub-linear regret for piece-wise
stationary problems, essentially by considering it as a harder case of a stationary problem.

The proposed the RR-SW-UCB# algorithm, which combines their SW-UCB# algorithm,
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previously proposed in [WS18b], and a Round-Robin hoping, under the assumption that each
user j ∈ [M ] knows its ID j (we criticize this unrealistic assumption in Section 6.7.1 above).
The SW-UCB# algorithm is discussed more in details in the literature review of Chapter 7
below. If ΥT is bounded by ΥT = O(T γ), for a known γ but an unknown ΥT , they prove for
instance in Theorem 2 [WS18a] that the expected cumulative regret of their RR-SW-UCB#
algorithm is bounded by RT = O

(
T

1+γ
2 ln(T )

)
(what we call the centralized system regret).

This bound is of the same order as the bound obtained by the same authors for the SW-UCB#
algorithm in [WS18b] for the single-player case. If ΥT = O(T γ), this bound is comparable
to the results obtained for most of the research literature on piece-wise stationary bandits
(earlier works like D-UCB in [GM11] have the ln(T ) outside the square root, while more recent
works all improved this aspect and have the ln(T ) in the square root, like for instance our
algorithm GLR-klUCB in [BK19b] and presented in Chapter 7). Even if their analysis is not
explicit regarding the constant, in the case where ΥT = O(T γ) for a known γ, their regret
upper-bound actually matches the conjectured lower-bound, up to a logarithmic factor ln(T ).

And finally, even though numerical simulations in their papers [WS18b, WS18a] are inter-
esting and confirm the regret upper-bounds, they do not compare with any other algorithm,
and it is left as an interesting future work to study this direction in more details. Sadly, a
major drawback of their work is that assume that player j ∈ [M ] knows its index j, and as
we explained above this small hypothesis is actually quite strong, as it allows players to be
already orthogonal, and it reduces greatly the difficulty of the decentralized bandit problem.

On the other hand, another possibility is to extend ideas developed for the adversarial
setting. In [ALK19], the authors essentially consider the piece-wise stationary as an easier case
of an adversarial problem. The recent work [BV19] also proposes a decentralized algorithm
that can achieve sub-linear regret (O(T 3/4)) under an adversarial multi-players bandit model.

In [ALK19], the authors build on the Musical Chair algorithm from [RSS16], to let the M

players converge to a ranking in an efficient and decentralized way (cf. Algorithm 1), and they
apparently discovered the “communication trick” independently from [BP18] to use (virtual)
communications between players to set up a “coordinator” player and M − 1 “followers”
(running respectively their Algorithms 2 and 3). Their key algorithmic technique is to imitate
the idealized case where there is full communication between the players. Then, to address the
no-communication constraint, we enforce the players to keep the same decisions (arms) within
long periods of time (blocks). This gives them the chance to coordinate between themselves via
a simple protocol that uses collisions as a primitive, yet effective manner of communication.

Their proposal is using the Exp3 algorithm from [ACBFS02] on a combinatorial prob-
lem: they consider “meta” arms that are affectations of the M players to M distinct arms
among the K arms. As soon as the “coordinator” can effectively use one algorithm to de-
cide the arms played by all the M players, they show that the regret will grow as RT =
O
(
M4/3K2/3(ln(K))1/3T 2/3

)
as shown in Theorem 4.1 (they used K for M the number of

players, and N for K the number of arms). This bound is much worse than the one obtained
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for the first article [WS18a], but is more general, and it is much worse than the bound of
O
(√

KT ln(K)
)

obtained for Exp3 for the single-player adversarial setting in [ACBFS02].
Note that this bound in T 2/3 is of the same order as the one given in [AM15], for the MEGA
algorithm. However, we note that the dependency in M is surprisingly better for their result
than for the regret upper-bound for MCTopM-kl-UCB (while scales in M3 in Theorem 6.15).

Moreover, at first sight, this idea of “meta” arms implies an exponential blow up in terms
of computational and storage cost, as there is

(M
K

)
such “meta arms”, but the authors provide

in Section 4.1 and Lemma 4.1 an interesting discussion regarding the time efficiency of their
proposed algorithm, and they show it can stay polynomial in M and K by leveraging tech-
niques from the Determinental Point Processes (DPP, see [GBV18] for a good review). In this
second work also, we can note the poor experimental section, as the proposed algorithm is only
compared against the Musical Chair algorithm, in “easy” problems (small number of break-
points ΥT ). Despite being more complicated than other approaches, their algorithm “C & P”
should not be too hard to implement by ourselves, and studying its empirical performance is
an interesting future work.

6.8 Conclusion

To sum up, we presented in this chapter three variants of Multi-Players Multi-Arm Bandits,
with different levels of feedback being available to the decentralized players, under which we
proposed efficient algorithms. The two easiest models are the ones with sensing information
(i.e., for OSA), for which our theoretical contribution improves both the state-of-the-art upper
and lower bounds on the regret. In the absence of sensing, we also provide some motivation
for the practical use of the interesting Selfish heuristic, a simple index policy based on hybrid
indices that are directly taking into account the collision information. We also reviewed
various variants of this model, and for some interesting variants we discussed the related
literature, which has proven to be very active in the last two years. For some models, we
explained why our approach does not work efficiently without modifications, but we detailed
and illustrated how to adapt MCTopM to other settings. For example, it assumes to know the
number of players M before-hand, but we illustrated that previously introduced technique to
estimate M can also be applied to our proposal and give satisfactory empirical performances.
Further works would be required to adapt the theoretical analysis to these various extensions.

This chapter suggests several interesting further research directions. First, one could want
to investigate the notion of optimal algorithms in the decentralized multi-players model with
sensing information. So far we provided the first matching upper and lower bound on the
expected number of sub-optimal arms selections, which suggests some form of (asymptotic)
optimality. However, sub-optimal draws turn out to not be the dominant term in the regret,
both in our upper bound and in practice, thus an interesting future work is to identify some
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notion of minimal number of collisions. Similarly to what was done very recently in [WHCW19],
for communications between players who collaborate with each other, it would be interesting
to characterize the (minimal) number of collisions needed to achieve logarithmic regret.

Additionally, we have implemented in SMPyBandits [Bes19] the following extensions:
evaluating M on the fly (Section 6.7.1), and piece-wise stationary multi-players bandits (Sec-
tion 6.7.9). We have not yet implemented the other extensions, but we are interested to do
it, and it is one of the major future works left on our library. For more details, see the issue
tickets at GitHub.com/SMPyBandits/SMPyBandits/issues/, for tickets number 120, 124, 185.

Reproducility of the experiments. The experiments in this chapter use our library SMPy-
Bandits, as presented in Chapter 3, and we refer to the following page for details on how to
reproduce them, SMPyBandits.GitHub.io/MultiPlayers.html
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6.9 Appendix

Illustrating the lower bound

We proved in Theorem 6.8 that the normalized regret, i.e., RT divided by ln T , is asymptotically
lower bounded by a constant Cµ,M depending on the problem µ and the number of players
M , for any A.

lim inf
T →+∞

RT (µ, M,A)
ln T

≥ Cµ,M . (6.33)

For an example problem with K = 9 arms, we display below on the x axis is the number of
player, from 1 player to 9 players, and on the y axis is the value of this constant Cµ,M , from the
initial theorem and from our theorem. We chose a simple problem, with Bernoulli distributed
arms, with µ = [0.1, 0.2, . . . , 0.9]. Figure 6.9 clearly shows that our improved lower bound is
indeed larger than the initial one by [LZ10], and both become uninformative when M = K

(i.e., it gives RT / ln(T ) ≥ 0 which is obvious anyway).

1 2 3 4 5 6 7 8 9
Number M of players in the multi-players game

0

10

20

30

40

50

Lo
we

rb
ou

nd
 o

n 
th

e 
ce

nt
ra

liz
ed

 c
um

ul
at

iv
e 

no
rm

al
ize

d 
re

gr
et

Comparison of our lowerbound and the one from [Anandkumar et al., 2010].
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4), B(0.5), B(0.6), B(0.7), B(0.8), B(0.9)]

Besson & Kaufmann lowerbound
Anandkumar et al. lowerbound

Figure 6.9 – Comparison of our lower bound against the one from [LZ10], on a simple problem with 9
Bernoulli arms, of means µ = [0.1, 0.2, . . . , 0.9], as a function of the number of players M .

Illustrating the regret decomposition

The Figure 6.10 below shows the regret RT (µ, M,A) on the same example problem µ, with
K = 9 arms and respectively M = 6, or 9 players, for Selfish-kl-UCB. It is just a simple
way to check that the two lower bounds on the regret indeed appear as valid lower bounds
empirically, and are moreover lower bounds on the count of selections ((a), displayed in cyan).
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The lower bounds (in black) are C(µ, M) ln t, the dashed line for the lower bound from [LZ10],
and the continuous line is our lower bound. These plot show the regret (in red), and the three
terms (a), (b), (c) in the decomposition of the regret. As explained in Lemma 6.5, term (b) is
not always non-negative. For M = 9 and Selfish, (c) is actually larger than the regret, and term
(a) is zero, as well as the lower bounds.
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Multi-players M= 9 : Cumulated centralized regret, averaged 1000 times
9 arms: [B(0.1) ∗ , B(0.2) ∗ , B(0.3) ∗ , B(0.4) ∗ , B(0.5) ∗ , B(0.6) ∗ , B(0.7) ∗ , B(0.8) ∗ , B(0.9) ∗ ]

Cumulated centralized regret
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Figure 6.10 – The three terms (a), (b), (c) of the multi-players regret, and lower bounds (6.11) and (6.12)
in black, for Selfish-kl-UCB: M = 6 and M = 9 players, K = 9 arms, horizon T = 10000 (for 1000
runs).
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Chapter 7

Piece-Wise Stationary Multi-Armed
Bandits

In this last chapter, we study a generalization of the stationary multi-armed bandit model, to
account for possible non-stationarity of the rewards. We review existing works on piece-wise
stationary MAB models. We study the Generalized Likelihood Ratio Test (GLRT) for bounded
or sub-Bernoulli distributions. Our test enjoys finite-time guarantees of its false alarm probability
and detection delay, and can be combined with an efficient bandit policy (kl-UCB), to propose
an efficient algorithm for piece-wise stationary problems, GLR-klUCB. We analyze its regret,
and show that it achieves state-of-the-art non-asymptotic regret bounds. Finally, we compare
our approach with other state-of-the-art solutions on large numerical experiments.

Contents
7.1 Motivations for non stationary MAB models . . . . . . . . . . . . . . . . . 202

7.2 The piece-wise stationary bandit model . . . . . . . . . . . . . . . . . . . . 203

7.3 Review of related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.4 The Bernoulli GLRT Change-Point Detector . . . . . . . . . . . . . . . . . . 212

7.5 The GLR-klUCB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.6 Finite-time upper-bounds on the regret of GLR-klUCB . . . . . . . . . . . 220

7.7 Proof of the regret upper-bounds . . . . . . . . . . . . . . . . . . . . . . . . 223

7.8 Experimental results for piece-wise stationary bandit problems . . . . . . 230

7.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

7.10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

201



Piece-Wise Stationary Multi-Armed Bandits

7.1 Motivations for non stationary MAB models

For cognitive radio applications, as well as other applications such as recommender systems,
the assumption that the arms distribution do not change over time may be a big limitation.
Indeed, in cognitive radio or IoT networks, new devices can enter or leave the network, which
impacts the availability of the radio channel they use to communicate, making it non stationary.
And for instance in online recommendation, the popularity of items is also subject to trends.
Hence, there has been some interest on how to take those non-stationary aspects into account
within a multi-armed bandit model.

A first possibility to cope with non-stationary is to model the decision making problem as
an adversarial bandit problem [ACBFS02]. Under this model, rewards are completely arbitrary
and are not assumed to follow any probability distribution. For adversarial environments,
the pseudo-regret, which compares the accumulated reward of a given strategy with that of
the best fixed-arm policy, is often studied. The pseudo regret of the EXP3 algorithm has been
shown to be O(

√
KT ), which matches the lower bound given by [ACBFS02]. However, this

model is a bit too general for the considered applications, where reward distributions do not
necessarily vary at every round. For these reasons, an intermediate model, called the piece-wise
stationary MAB, has been introduced in Section 8 of the seminal paper [ACBFS02]. They
propose a simple extension of the EXP3 policy, referred to as Exp3.S, that uses exponential
weights like EXP3 tweaked with an adaptive forced exploration probability to passively adapt
to changes. It was shown that Exp3.S attains a regret of O(

√
KTS ln(KT )), when comparing

with an arbitrary sequence of comparators that does not switch for more than S − 1 times.
Running their algorithm over the non-stationary problem, and picking their comparators
sequence as the best arm in each stationary interval, one can already get

√
ΥT T ln(T ) regret,

and the only prior knowledge needed to run the Exp3.S algorithm is T and ΥT . Moreover,
Exp3.S is efficient both in term of storage and computation time, and simple to implement.

It could seem that the problem is considered as solved by the Exp3.S algorithm, but it was
actively studied since the seminal paper [ACBFS02]. Two main reasons explain the dynamic
research on this problem: first, it is well known that despite their qualities, exponential-
weights algorithms like Exp3 can usually be greatly outperformed by UCB-based algorithms,
for stochastic problems, and so it is expected that Exp3.S can be outperformed by other
algorithms, thus any practical application might benefit from algorithms more efficient than
Exp3.S. The second reason is that passively adaptive algorithms function as black-box models:
they do not try to detect changes and do not explain why they changed from one arm to
another. A lot of the recent research has been focused on actively adaptive algorithms, precisely
because they allow to interpret their decisions, by detecting changes on arms with statistical
tests. The piece-wise stationary MAB model was then studied by [KS06] and [YM09]. This
model is sometimes referred to as the abruptly changing [WS18b], or switching environments
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[MS13]. In this model, described in full details in Section 7.2, the (random) reward of arm k at
round t has some mean µk(t), that is constant on intervals between two breakpoints, and the
regret is measured with respect to the current best arm k∗

t
.= arg maxi µk(t).

Outline. We introduce the model in Section 7.2, and review related works in Section 7.3.
In Section 7.4 we study the Generalized Likelihood Ratio test for sub-Bernoulli distributions
(B-GLRT) as a Change-Point Detector (CPD) algorithm. We introduce the two variants of
GLR-klUCB algorithm in Section 7.5, where we also present upper bounds on the regret
of both variants. The unified regret analysis is given in Section 7.6, we prove one result
in Section 7.7. We discuss numerical experiments in Section 7.8, with more details in the
Appendix 7.10.

Publications. This chapter is based on our articles [BK19b, BK19a].

7.2 The piece-wise stationary bandit model

A piece-wise stationary bandit model is characterized by a set of K arms. A (random) stream of
rewards (Yk,t)t∈N∗ is associated to each arm k ∈ [K]. We assume that the rewards are bounded,
and without loss of generality we assume that Yk,t ∈ [0, 1]. We denote by µk(t) .= E[Yk,t] the
mean reward of arm k at round t. At each round t, a decision maker has to select an arm
A(t) ∈ [K], based on past observation and receives the corresponding reward r(t) .= YA(t),t.
At time t, we denote by k∗

t an arm with maximal expected reward, i.e., µk∗
t
(t) .= maxk µk(t),

called an optimal arm (possibly not unique).

A policy A chooses the next arm to play based on the sequence of past plays and obtained
rewards. Like for stationary problems (see Definition 2.3 in Chapter 2), the performance of A
is measured by its (piece-wise stationary) regret, the difference between the expected reward
obtained by an oracle policy playing an optimal arm k∗

t at time t, and that of the policy A
We use the same notation as the regret for stationary problem without ambiguity, as in this
chapter we only consider the following definition,

RA
T

.= E
[

T∑
t=1

(
µk∗

t
(t)− µA(t)(t)

)]
. (7.1)

In the piece-wise i.i.d. model, we furthermore assume that there is a (relatively small)
number of breakpoints ΥT , defined by

ΥT
.=

T −1∑
t=1

1 (∃k ∈ [K] : µk(t) ̸= µk(t + 1)) . (7.2)
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If we denote τ (0) .= 0, we define the i-th breakpoint recursively by τ (i) .= inf{t > τ (i−1) : ∃k :
µk(t) ̸= µk(t + 1)}. Hence for t ∈ [τ (i) + 1, τ (i+1)], that is on any stationary segments, the
rewards (Yk,t) associated to each arm k are i.i.d. (hence the name piece-wise stationary).

Note than when a breakpoint occurs, we do not assume that all the arms means change,
but that there exists an arm whose mean has changed. Depending on the application, many
scenario can be meaningful: changes occurring on all arms simultaneously (due to some
exogenous event), or only one or a few arms change at each breakpoint. For instance, for a
cognitive radio application in a IoT-like network, we can imagine that all the objects of one
company (or network provider) use a fixed (or a subset of) channel(s), and on a particular day
in a city, if the company deploys a lot of new objects, then one (or some) channel(s) see their
mean occupancy rates abruptly change.

We define NCk the number of change-points on arm k by NCk
.=
∑T −1

t=1 1 (µk(t) ̸= µk(t + 1)),
for which it clearly holds that NCk ≤ ΥT , but there can be an arbitrary difference between
these two quantities for some arms. Letting CT

.=
∑K

k=1 NCk be the total number of change-
points on the arms, one can have CT ∈ {ΥT , . . . , KΥT }. We illustrate the two extreme cases
in problems 1 and 2 presented in Figures 7.1 and 7.2 below.

An interesting interpolation. The piece-wise stationary bandit model can be viewed as an
interpolation between stationary and adversarial models, as the stationary model corresponds
to ΥT = 0, while some adversarial models can be considered as a special (worst) case, with
ΥT = T − 1 (when considering an adaptive or an oblivious adversary). However, analyzing
an algorithm for the piece-wise stationary bandit model requires to assume a small number
of changes, typically ΥT = o(

√
T ). Note that the adversarial model of [ACBFS02] is quite

powerful, and the authors presented in Section 8 of their paper the EXP3.S algorithm for the
piece-wise stationary problem, as explained in Section 7.1 above.

Two example of problems. To illustrate the model, we give here two examples of piece-wise
stationary problems. used for the numerical experiments presented in Section 7.8.

Problem 1. We consider K = 3 arms changing ΥT = 4 times until T = 5000. The arm
means (µk(t))1≤i≤K,1≤t≤T are shown in Figure 7.1 below. Note that changes happen on only
one arm (i.e., CT = ΥT = 4), and the optimal arm changes once at τ

(1)
2 = 2000.

Problem 2. This problem is close to Problem 1, with a minimum optimality gap of 0.1 (at
any time, the smallest difference between two means is at least 0.1), and shown in Figure 7.2.
However, all arms change at every breakpoint (i.e., CT = KΥT = 12), with identical gaps of
0.1 for arms 0 and 1, and of 0.2 for arm 2 (between two breakpoints, the mean change of +0.1
for arm 0 and −0.1 for arm 1 and −0.2 for arm 2). The first optimal arm decreases at every
change (2 with ∇markers), and one arm stays the worst (1 with ⋄markers).
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Figure 7.1 – Problem 1: K = 3 arms with T = 5000, and Υ = 4 changes occur on only one arm at a
time (i.e., C = 4). The means are in [0, 1], and there are C + 1 = 5 stationary intervals of equal lengths.
Some changes do not modify the optimal arm (e.g., at T = 1000 and T = 4000) and others do.
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Figure 7.2 – Problem 2: K = 3 arms with T = 5000, and Υ = 4 changes occur on all arms (i.e., C = 12).
The means are again in [0, 1], and there are also C + 1 = 5 stationary intervals of equal lengths.
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7.3 Review of related works

We review previous works that studied the piece-wise stationary bandit model, or variants
of this model. To the best of our knowledge, all the previous works are based on the idea
of combining a classical bandit policy, such as Thompson sampling, UCB or EXP3, with a
strategy to account for changes in arms’ distributions. Following the vocabulary used in
previous works, we make the distinction between passively and actively adaptive strategies.
On the one hand, Actively adaptive strategies monitor the arms’ rewards, by using change
detection algorithms [BN93], and reset the history of pulls and rewards of one or all the arms
as soon as a change is detected. On the other hand, Passively adaptive strategies use a (fixed)
discount factor or a limited memory size, while most active strategies use a growing memory.

Passively adaptive algorithms. Their common idea is to adapt a classical policy into forget-
ting old rewards, . If the forgetting behavior is done efficiently, then the policy can efficiently
focus mostly on the most recent rewards, and passively adapt to changes when they happen.
The Discounted UCB (D-UCB) algorithm was first introduced in [KS06], and it is an adaptation
of the UCB algorithm, with a discount factor γ ∈ (0, 1). It works by decreasing all the past
rewards by a multiplicative factor, when receiving a new reward from an arm, so that the
recent rewards weight more in the (discounted) empirical mean used for the computation of
the UCB indexes. The regret of D-UCB was proven to be upper-bounded by O(

√
ΥT T ln(T ))

in [GM11], with a tuning γ = 1−
√

ΥT /T/4, dependent on ΥT . The Sliding-Window UCB
(SW-UCB) uses a sliding window of a fixed size τ , to store only the most τ recent rewards
for each arm, and it was proposed by [GM11]. They prove that tuning its window-size to
τ = 2

√
T ln(T )/ΥT , gives a bound on the regret of SW-UCB of the form O(

√
ΥT T ln(T )).

Both D-UCB and SW-UCB build on a stationary policy, but for example EXP3.S from
[ACBFS02] builds on the EXP3 policy, which is designed for the adversarial case. EXP3.S
actually achieves a good regret upper-bound, of the form O(

√
KΥT T ), with no additional

prior knowledge except that of T and ΥT . It constitues a good baseline for our numerical
experiments in Section 7.8, even if we did find that EXP3.S performs worse that the most of
the other approaches based on extensions of stationary bandit algorithms (e.g., SW-UCB).
Similarly, previous works showed that older algorithms have no or weaker regret guarantees,
and have been proven to be less efficient empirically, or are designed for more specific settings.

The idea of using a simple discount factor, as for D-UCB, was recently adapted to a Bayesian
policy, with the Discounted Thompson sampling (DTS) algorithm presented by [RK17]. Even if
no theoretical guarantee was given, it can be empirically very efficient, but we found that DTS
is not robust in the choice of if its discount factor γ ∈ (0, 1), contrarily to what was highlighted
in the paper. The DTS algorithm can perform well in practice, for instance with γ = 0.75
on Problems 1 and 2 (see Section 7.8). However, no theoretical guarantees are given for this
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strategy, and our experiments did not really confirm the robustness to γ. In general, we found
that passively adaptive approaches can be efficient when their parameters are well tuned, but
our experiments show that actively adaptive algorithms perform significantly better.

Actively adaptive algorithms. We distinguish two families, the first line of research uses
frequentist change-point detectors [BN93], combined with stationary policies, usually index
policies like UCB. When using an efficient Change-point Detector (CD) algorithm with an
efficient index policy, these approaches usually perform more efficiently than the passively
algorithms. The Adapt-EVE algorithm from [HGB+06] uses a Page-Hikley (PH) Test and the
UCB policy, but no theoretical guarantee was given. The Windowed-Mean Shift algorithm
from [YM09] is more generic and combines any efficient bandit policy with a CD test based
on a sliding window, but their approach is not applicable to the bandit setting of interest in
this chapter, as they consider side observations. The EXP3.R algorithm from [AF15, AFM17]
combines a CD algorithm with EXP3, and the history of all arms are reset as soon as a
suboptimal arm is detecting to become optimal. A regret bound of O(ΥT

√
T ln(T )) was

proven, even when ΥT is known.

Two recent and related works use the two-sided CUSUM CD algorithm for CUSUM-UCB
in [LLS18] or a specific and simpler CD algorithm for the Monitored UCB (M-UCB) algorithm
introduced in [CZKX19]. The CUSUM test is rather complicated and parametric: it uses the
first M samples (for a fixed M ) from one arm to compute an average û0, and then builds two
random walks, using the remaining observations for this arm. A change is detected when
either random walks cross a threshold h. It requires the tuning of three parameters, M and
h as well as a drift correction parameter ε ∈ (0, 1). The PH test, also studied in [LLS18], is
similarly complex, and we found that PHT-UCB perform very similarly to CUSUM-UCB
in our experiments. Even if it has the advantage of not requiring a parameter M , it has no
theoretical guarantee, so we do not include PHT-UCB in the experiments presented below.
In comparison, M-UCB uses a much simpler test, based on the w most recent observations
on one arm (for a fixed and even number w), and compares with a fixed threshold h the
difference of the sum of rewards for the first half and the second half. It is numerically much
simpler, and has the advantage of using only a bounded memory (of the order O(Kw) for K

arms). Both approaches also introduced a mechanism to force a uniform exploration of each
arm, parametrized by ω ∈ (0, 1) (it is called α in both papers, but to avoid clutter with the α

parameter in UCB1, see (2.7), we rename it ω in this chapter).

When all their parameters are tuned correctly, both approaches are proven to achieve
a good regret upper-bound, of order O(K

√
ΥT T ln(KT )). As both results are valid under

different assumptions, we consider the two results to be the current state-of-the-art. As
for previous works, tuning their parameters requires to know both the horizon T and the
number of breakpoints ΥT . But most importantly it requires a prior knowledge of the problem
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difficulty, by assuming to know a lower bound on both the length of stationary segments (e.g.,
L for M-UCB) and on the changes on the means of arms (e.g., ε for CUSUM). CUSUM-UCB
achieves a better regret upper bound, of the order ofO(

√
ΥT T ln(T/ΥT )), but only for Bernoulli

distributions, and when its 4 parameters (ω, ε, M, h) are tuned based on problem-dependent
knowledge. M-UCB achieves a regret bounded byO(

√
ΥT T ln(T )), for bounded distributions,

and when its 4 parameters (ω, w, b, γ) are also tuned based on a problem-dependent knowledge
of δ̃ and L (see Assumption 1 and Remark 1 in [CZKX19]).

On the one hand, CUSUM-UCB performs local restarts using this test, to reset the history
of one arm for which the test detects a change. On the other hand, M-UCB performs global
restarts using this test, to reset the history of all arms whenever the test detects a change on one
of the arms. Compared to CUSUM-UCB, note that M-UCB is numerically much simpler as it
only uses a bounded memory, of order O(Kw) for K arms.

Another interesting recent work is [AGO18], where the authors propose an efficient al-
gorithm, AdSwitch, for the two-armed case (K = 2). It proceeds in episodes, starting a new
episode when the algorithm detects a change in one of the arms. Each episode consists of
three phases, estimation, exploitation then exploration. First, an estimation phase where
both arms are played alternatingly until their means can be distinguished. Then follows an
exploitation phase, and finally with some low probability, an exploration phase is started
that checks whether a change has occurred. Similarly to what previous approaches did (e.g.,
CUSUM uses a threshold ε), this phase checks for changes of a certain minimum magnitude,
but the innovation in this work is that this algorithm does not need any prior knowledge of
the minimum magnitude. Instead, it uses geometrically decreasing magnitudes dk = 2−i,
meaning that even difficult changes should be detected, possibly in a later episode, as each
episode only considers a few different values of dk. They prove that their algorithm achieves a
regret bound ofO(ln(T )

√
ΥT T ), without a prior knowledge of ΥT . However, this work as two

drawbacks: first, the algorithm currently only applies to two arms, and the generalization does
not seem straightforward. Then, the theoretical result is valid for “sufficiently large constants
C1 and C2”, with a large constant C hiding in the O(•) notation. We did some experiments
with AdSwitch, even if it is not included in the benchmark presented below in Section 7.8. It
uses two parameters C1, C2 that are set at large values for the theoretical analysis, and while
we explored numerically different choices, it seemed that setting C1 = C2 = 1 gave the best
performance (which is outside of the comfort zone of the theoretical analysis). Even for this
tuning, and for problems with just K = 2 arms, empirically this policy is performing poorly
in comparison to other policies based on active CD detection and kl-UCB indexes.

Expert aggregation. Another of research on actively adaptive algorithms uses a Bayesian
point of view. A Bayesian CD algorithm is combined with Thompson Sampling in [MS13],
and more recently [AF17] introduced the Memory Bandit algorithm. It is presented as effi-
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cient empirically, but no theoretical guarantee are given for these two works, and due to its
complexity, we do not include it in our experiments. The idea behind Memory Bandit is to
use an expert aggregation algorithm, like Exp4 from [ACBF02] or our Aggregator algorithm
from Chapter 4 [BKM18], modified to efficiently aggregate a growing number of experts from
techniques presented in [MM17]. At each time step, a new expert is introduced, and experts
correspond to different Thompson sampling algorithms, each using a different history of pulls
and rewards. Intuitively, after a change-point the newest experts will soon become the most
efficient, as they are learning by using rewards drawn from the new distribution(s). Note that
the regret bound for these methods are still open-problems, and they are computationally
more costly, therefore we choose to not include them in our experiments.

Slowly-varying model. A different setting where the quantity of interest is not ΥT but the
total variational budget VT , was introduced by [BGZ14], for which they proposed the RExp3
algorithm. The total variation budget VT is defined as

∑T −1
t=1

∑K
k=1 D(νk(t), νk(t + 1)), for a

certain measure of difference D, which measures how much the two distributions of any arm
k have changed from time t to time t + 1. Two examples can be the total variation distance
∥ · ∥T V or the Kullback-Leibler divergence. The RExp3 algorithm can also be qualified as
passively adaptive: it is based on (non-adaptive) restarts of the EXP3 algorithm. Note that this
algorithm is introduced for a different setting, where the quantity of interest is not ΥT but a
quantity VT called the total variational budget (satisfying ∆changeΥT ≤ VT ≤ ΥT with ∆change

the minimum magnitude of a change-point). A regret bound of the order of O(V 1/3
T T 2/3) is

proven, which is weaker than existing results in our setting.

This setting is quite different from the setting we are considering in this chapter, and even
if the most recent works on slowly-varying MAB models are very interesting, we preferred to
focus on the piece-wise stationary (or abruptly changing) model, hence we do no include any
of these algorithms in the experiments presented in Section 7.8.

Another point-of-view on prior knowledge of ΥT . In this chapter, like in our two main
inspirational works [CZKX19, LLS18], we assume that the algorithm knows in advance the
number of break-points ΥT . Another interesting point-of-view is the one presented by [WS18b,
WS18a], where the authors assume that there exists a number ν ∈ (0, 1) for which ΥT = o(T ν),
and they also assume that any algorithm tackling such problems can know in advance the
value of ν (or an upper-bound on ν), and tweak its parameters from this value ν, but cannot
know the exact value of ΥT . This interpretation is interesting too, but empirically we found
that the SW-UCB# algorithm proposed in [WS18b] performs comparably to SW-UCB, and
thus we did not include it in the experiments presented below in Section 7.8.

209



Piece-Wise Stationary Multi-Armed Bandits

Adversarial or non-stationary contextual bandits. For contextual bandits, two very recent
works are [LWAL18] and [CLLW19]. While both works target a more general setting, their
algorithms are also applicable to non-contextual bandits, i.e., classical bandits like the model
in this chapter. From Table 1 in [LWAL18], one can see that their two algorithms Exp4.S
and Ada-ILTCB recover the same regret guarantees as we do, in the non-contextual case:
that is, a O(ΥT

√
T ) regret without knowing the number of changes and O(

√
ΥT T ) with this

knowledge. We discuss both these algorithms: first, Exp4.S actually reduces to Exp3.S in
the non-contextual case, and Exp3.S is discussed above. Then, the Ada-ILTCB algorithm is
however a less appealing candidate for our setting, for the following reason. This algorithm
requires as input a parameter L which needs to be an upper bound on the largest stationary
sequence in the problem, in order for its regret to scale as ΥT

√
L (neglecting K and ln factors).

It is claimed that the tuning L = T/ΥT yields the optimal bound
√

ΥT T . However, this tuning
is only possible in a “balanced” instance without stationary sequence longer than T/ΥT . In a
piece-wise stationary instance with a stationary sequence of length T/2, one cannot get better
than O(ΥT

√
T ) regret, by setting L = T/2 (see for instance the problem 4 in our benchmark

below in Section 7.8), and as such the regret bound of Ada-ILTCB appears much worse than
the announcedO(

√
ΥT T ) bound. Besides, no experiments are reported by [LWAL18], and the

Ada-ILTCB algorithm seems much more complicated to implement than other alternatives, so
we prefer to not include it in the experiments presented later.

Positionning of our results. CUSUM-UCB and M-UCB are both analyzed under some rea-
sonable assumptions on the problem parameters –the means (µk(t))– mostly saying that the
breakpoints are sufficiently far away from each other. However, the proposed guarantees only
hold for parameters tuned using some prior knowledge of the means. Indeed, while in both cases
the threshold h can be set as a function of the horizon T and the number of breakpoints ΥT

(also needed by previous approaches to obtain the best possible bounds), the parameter ε

for CUSUM and w for M-UCB require the knowledge of ∆change the smallest magnitude of a
change-point. In this chapter, we propose the first algorithm that does not require this knowledge,
and still attains a O(

√
ΥT T ln(T )) regret. Moreover we propose the first comparison of the

use of local and global restarts within an adaptive algorithm, by studying two variants of
our algorithm. In others words, if we want to apply our proposal to piece-wise stationary
problems such as problem 1 or 2 presented above (see Figures 7.1, 7.2), it only needs to know
before hand that T = 5000 and ΥT = 4 for these examples, but it does not need to know
the amplitude of changes maxk,t |µk(t)− µk(t + 1)| nor the optimality gap or a bound on the
optimality gap at any time step maxk,k′ |µk(t)− µk′(t)|.

Moreover, we can use the two problems 1 and 2 to illustrate the expected empirical behavior
of our proposal GLR-klUCB. Problem 1 has only local changes, meaning that at any change-
point, only one arm sees its distribution change, while problem 2 has only global changes,
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meaning that all arms see their distribution change at each change-point. They illustrate both
the extreme cases of having CT = ΥT (for problem 1) and CT = KΥT (for problem 2).

• On the one hand, we expect the local restart variant of GLR-klUCB to outperform the
global restart variant for problem 1, as the intuition suggests that it is sub-optimal to
reinitialize the memory of the observations of the K − 1 arms whose distributions did
not change after a change-point is detected (as the global restart variant does).

• On the other hand, we expect the global restart variant to outperform the local restart
variant for problem 2, as detecting a change on any arm is enough to know that all arms
changed and to reinitialize the memory of all arms, and thus the intuition suggests that
it is sub-optimal to reinitialize only the memory of the observation of the arm on which
the change-point was detected (as the local restart variant does).

Of course, on a given problem, without additional prior knowledge on the difficulty of the
problem at hand, the algorithm cannot know which situation is more likely to happen, only
local changes (CT = ΥT ) or only global changes (CT = KΥT ) or any intermediate setting
between the two extreme cases. Thus we do not believe to be able to design a policy that could
be uniformly better than the two variants of GLR-klUCB. Surprisingly, numerical experiments
show that the local variant of GLR-klUCB actually outperforms the global variant for both
problem 1 and 2, as shown below in Table 7.2, and in other problems as shown in Table 7.3.
Understanding this difference in terms of numerical performance of the two variants is left as
future work. Finally, on the practical side, while we can note that the proposed B-GLRT test
is more complex to implement than the test used by M-UCB, we propose two heuristics to
speed it up while not losing much in terms of regret, in Appendix 7.10.4.

About kl-UCB. Our proposal GLR-klUCB is inspired by both the M-UCB and CUSUM-UCB
algorithms. Previous works focused on using UCB [LLS18, CZKX19], but we propose to use
kl-UCB instead, as it is known to be more efficient for Bernoulli rewards as well as for a more
generic case of bounded or one-dimensional exponential families [CGM+13]. Theoretical
results for these works were only given for UCB, but they both suggest that extending the
results to kl-UCB (or other efficient stationary policies) should not be difficult. For a fair
comparison, we therefore chose to compare the different change-point detector algorithms
combined with kl-UCB. We also include in Table 7.1 a comparison of the performance of
different algorithms when using UCB or kl-UCB indexes, in order to illustrate that using a
more efficient index policy always improves performance, as predicted.
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7.4 The Bernoulli GLRT Change-Point Detector

Sequential change-point detection has been extensively studied in the statistical community.
We refer to the book [BN93] for a survey. In this section, we are interested in detecting changes
on the mean of a probability distribution with bounded support.

Assume that we collect independent samples X1, X2, . . . all from some distributions sup-
ported in [0, 1]. We want to discriminate between two possible scenarios: all the samples come
from distributions that have a common mean µ0, or there exists a change-point τ > 1 such that
X1, . . . , Xτ have some mean µ0 and Xτ+1, Xτ+2, . . . have a different mean µ1 ̸= µ0. A sequen-
tial change-point detector is a stopping time1 τ̂ with respect to the filtration Ft

.= σ(X1, . . . , Xt)
such that (τ̂ <∞) means that we reject the hypothesisH0 : (∃µ0 ∈ [0, 1] : ∀t ∈ N∗,E[Xt] = µ0).

Generalized Likelihood Ratio tests date back to the seminal work of [Wil38], and were for
instance studied for change-point detection by [Bar59, SV95]. Exploiting the fact that bounded
distribution are (1/4)-sub Gaussian (i.e., their moment generating function is dominated by
that of a Gaussian distribution with the same mean and a variance 1/4), the (Gaussian) GLRT,
recently studied in depth by [Mai19], can be used for this problem. We propose instead to
exploit the fact that bounded distributions are also dominated by Bernoulli distributions.

Definition 7.1 (Sub-Bernoulli distributions). We call a sub-Bernoulli distribution any distri-
bution ν that satisfies lnEX∼ν

[
eλX

]
≤ ϕµ(λ) with µ

.= EX∼ν [X] and ϕµ(λ) .= ln(1−µ + µeλ)
is the log moment generating function of a Bernoulli distribution with mean µ, for any µ ∈ [0, 1].

Lemma 1 of [CGM+13] establishes that any bounded distribution supported in [0, 1] is
a sub-Bernoulli distribution. As explained in Section 2.1.2, our work can be applied to any
bounded distribution without loss of generality, as a reward in r ∈ [a, b] can clearly be mapped
to [0, 1] simply by using r′ = (r − a)/(b − a) (we assume that the decision maker or the
algorithm knows beforehand the values of a and b).

7.4.1 Presentation of the test

If the samples (Xt) were all drawn from a Bernoulli distribution, this change-point detection
problem would reduce to a parametric sequential test ofH0 : (∃µ0 : ∀t ∈ N∗, Xt

i.i.d.∼ B(µ0)),
against the alternativeH1 : (∃µ0 ̸= µ1, τ ∈ N∗ : X1, . . . , Xτ

i.i.d.∼ B(µ0) and Xτ+1, Xτ+2, . . .
i.i.d.∼

B(µ1)). The Generalized Likelihood Ratio statistic for this test is defined by

GLR(n) .=
sup

µ0,µ1,τ<n
ℓ(X1, . . . , Xn; µ0, µ1, τ)

sup
µ0

ℓ(X1, . . . , Xn; µ0) , (7.3)

1 Stopping times are for instance presented formally in Chapter 3 of [LS19].
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where ℓ(X1, . . . , Xn; µ0) and ℓ(X1, . . . , Xn; µ0, µ1, τ) respectively denote the likelihoods of the
first n observations under a model inH0 andH1. High values of this statistic tend to indicate
rejection ofH0. By using the form of the likelihood for Bernoulli distributions, this statistic
can be written with the binary relative entropy kl, defined for x, y ∈ [0, 1] (with the usual
convention that t ln(t) .= 0 if t = 0), kl(x, y) .= x ln

(
x
y

)
+ (1 − x) ln

(
1−x
1−y

)
Indeed, we show

below that for Bernoulli distributions, we have

ln GLR(n) = sup
s∈[2,n−1]

[s× kl (µ̂1:s, µ̂1:n) + (n− s)× kl (µ̂s+1:n, µ̂1:n)] . (7.4)

where for k ≤ k′, µ̂k:k′
.= 1

k−k′+1
k′∑

t=k
Xt denotes the average of the observations Xt collected

between the instants k and k′. This result is proven in Appendix 7.10.2.

This motivates the following definition of the Bernoulli GLRT change point detector.

Definition 7.2. The Bernoulli GLRT (B-GLRT) change point detector with threshold function
β(n, δ) is the stopping time τ̂δ defined by

τ̂δ
.= inf

{
n ∈ N∗ : sup

s∈[2,n−1]
[s× kl (µ̂1:s, µ̂1:n) + (n− s)× kl (µ̂s+1:n, µ̂1:n)] ≥ β(n, δ)

}
. (7.5)

with the convention that we enforce [s× kl (µ̂1:s, µ̂1:n) + (n− s)× kl (µ̂s+1:n, µ̂1:n)] = 0 in
the case of µ̂1:s = µ̂s+1:n (in particular, if µ̂1:n ∈ {0, 1}, then µ̂1:s = µ̂s+1:n = 0 or µ̂1:n).

Asymptotic properties of the GLRT for change-point detection have been studied by [LX10]
for Bernoulli distributions and more generally for one-parameter exponential families, for
which the GLR test is defined as in (7.5), but with kl(x, y) replaced by the Kullback-Leibler
divergence d(x, y) between two elements in that exponential family that have mean x and y.
For example, the Gaussian GLR studied by [Mai19] corresponds to the stopping time (7.5)
with the choice d(x, y) = 2(x− y)2, when the variance is set to σ2 = 1/4, and non-asymptotic
properties of this test are given for any (1/4)-subGaussian samples. Note that Pinsker’s
inequality gives that kl(x, y) ≥ 2(x−y)2, hence the B-GLRT may stop earlier that the Gaussian
GLR, based on the quadratic divergence d(x, y) = 2(x− y)2. In the next section, we provide
new non-asymptotic results about the B-GLRT under the assumption that the samples (Xt)
come from a sub-Bernoulli distribution, which holds for any distribution supported in [0, 1].

7.4.2 Non-asymptotic properties of the B-GLRT

When used for a bandit problem, the two main properties of a sequential change-point
detection test are its false alarm probability and its detection delay. A small false alarm
probability ensures that no detection occurs before it should (i.e., no useless detection occur
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on stationary segments), and a small detection delay ensures that, if the stationary segments
are long enough, then every change-points on every arm will be detected after a short enough
amount of samples from that arm. We give below two lemmas, Lemma 7.3 which bounds the
false alarm probability for a choice of threshold function, and Lemma 7.5 which bounds the
detection delay if there are enough samples before a change.

False alarm probability. In Lemma 7.3 below, we propose a choice of the threshold function
β(n, δ) under which the probability that there exists a false alarm under i.i.d. data is small. To
define β, we need to introduce the function T , defined for x > 0 by

T (x) .= 2h̃

(
h−1(1 + x) + ln(2ζ(2))

2

)
, (7.6)

where for u ≥ 1 we define h(u) .= u − ln(u) and its inverse h−1(u), we define h̃(x) .=
e1/h−1(x)h−1(x) if x ≥ h−1(1/ ln(3/2)) and h̃(x) .= (3/2)(x − ln(ln(3/2))) otherwise, for any
x ≥ 0, and with the value ζ(2) = π2/6. Even if it does not have a closed form expres-
sion, the function T is easy to compute numerically. The inverse h−1 can be computed
using W , the Lambert W function [CGH+96], which is the inverse of x 7→ x exp(x), as
h−1(x) = −W(− exp(−x)).

The use of T for the construction of concentration inequalities that are uniform in time
is detailed in [KK18], where tight upper bound on this function T are also given: T (x) ≃
x + 4 ln

(
1 + x +

√
2x
)

for x ≥ 5 and T (x) ∼ x when x is large.

Lemma 7.3. Let be Pµ0 a probabilistic model under which Xt ∈ [0, 1], and Xt has an average of
µ0 for all t. Then the B-GLRT test given in Definition 7.2 satisfies Pµ0(τ̂δ < ∞) ≤ δ, with the
threshold function

β(n, δ) .= 2T
(

ln(3n
√

n/δ)
2

)
+ 6 ln(1 + ln(n)). (7.7)

Proof. Lemma 7.3 is presented for bounded distributions and is actually valid for any sub-
Bernoulli distribution. It could also be presented for more general distributions satisfying

E[eλX ] ≤ eϕµ(λ) with µ = E[X], (7.8)

where ϕµ(λ) is the log moment generating of some one-dimensional exponential family. The
Bernoulli divergence kl(x, y) would be replaced by the corresponding divergence in that
exponential family (which is the Kullback-Leibler divergence between two distributions of
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means x and y). Let us go back to the Bernoulli case with divergence kl(x, y). We first have

s×kl (µ̂1:s, µ̂1:n)+(n−s)×kl (µ̂s+1:n, µ̂1:n) = inf
λ∈[0,1]

[s× kl (µ̂1:s, λ) + (n− s)× kl (µ̂s+1:n, λ)] .

Hence the probability of a false alarm occurring is upper bounded as

Pµ0 (Tδ <∞) ≤ Pµ0 (∃s ∈ N∗, n ∈ N∗, s < n : s kl (µ̂1:s, µ̂1:n) + (n− s) kl (µ̂s+1:n, µ̂1:n) > β(n, δ))

≤ Pµ0 (∃s ∈ N∗, n ∈ N∗, s < n : s kl (µ̂1:s, µ0) + (n− s) kl (µ̂s+1:n, µ0) > β(n, δ))

≤
∞∑

s=1
Pµ0 (∃n > s : s kl (µ̂1:s, µ0) + (n− s) kl (µ̂s+1:n, µ0) > β(n, δ))

=
∞∑

s=1
Pµ0

(
∃r ∈ N∗ : s kl (µ̂s, µ0) + r kl

(
µ̂′

r, µ0
)

> β(s + r, δ)
)

,

where µ̂s and µ̂′
r are the empirical means of respectively s and r i.i.d. observations with mean

µ0 and distribution ν, that are independent from the previous ones. As ν is sub-Bernoulli, the
conclusion follows from Lemma 7.4 below and from the definition of β(n, δ), if we denote
F (x) = ln(1 + ln(x)),

Pµ0 (Tδ <∞)

≤
∞∑

s=1
Pµ0

(
∃r ∈ N∗ : s kl (µ̂s, µ0) + r kl

(
µ̂′

r, µ0
)

> 6F (s + r) + 2T
(

ln(3(s + r)3/2/δ)
2

))

≤
∞∑

s=1
Pµ0

(
∃r ∈ N∗ : s kl (µ̂s, µ0) + r kl

(
µ̂′

r, µ0
)

> 3F (s) + 3F (r) + 2T
(

ln(3s3/2/δ)
2

))

And so we have Pµ0 (Tδ <∞) ≤
∞∑

s=1
δ

3s3/2 ≤ δ.

Lemma 7.4. Consider a one-dimensional exponential family E , and let νµ be the unique distribution
in this family that has mean µ, with moment generating function ϕµ(λ) = EX∼νµ [eλX ]. Let
klE(µ, µ′) .= KL(νµ, νµ′) be the divergence function associated to E . Let (Xi)i∈N∗ and (Yk)i∈N∗

be two independent i.i.d. processes, with respective means µ and µ′, such that E[eλX1 ] ≤ eϕµ(λ)

and E[eλY1 ] ≤ eϕµ′ (λ). Denote µ̂s
.= 1

s

s∑
i=1

Xi and µ̂′
r

.= 1
r

r∑
i=1

Yk. Then for every s, r ∈ N∗ we

have,

P
(
∃r ∈ N∗ : s klE (µ̂s, µ) + r klE (µ̂′

r, µ′) > 3 ln(1 + ln(s)) + 3 ln(1 + ln(r)) + 2T
(x

2

))
≤ e−x,

(7.9)
where T is the function defined in (7.6).

Proof. This Lemma 7.4 is proven in Appendix 7.10.2.
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Detection delay. Another key feature of a change-point detector is its detection delay under
a model in which a change from µ0 to µ1 occurs at time τ . We already observed that from
Pinsker’s inequality, the B-GLRT stops earlier than a Gaussian GLR. Hence, one can leverage
some techniques from [Mai19] to upper bound the detection delay of the B-GLRT. Letting
∆ = |µ0 − µ1|, one can essentially establish that for τ larger than (1/∆2) ln(1/δ) (i.e., enough
samples before the change), the delay can be of the same magnitude (i.e., enough samples
after the change). In the bandit analysis to follow, the detection delay will be crucially used to
control the probability of the good event (in Lemma 7.13 and the corresponding Lemma not
included here, but given in Appendix of [BK19b]).

Lemma 7.5. Let be Pµ0,µ1,τ a probabilistic model under which Xt ∈ [0, 1], and Xt has an average
of µ0 for all t ≤ τ , and µ1 for all t > τ , with µ0 ̸= µ1, and let ∆ = |µ0 − µ1|.
Then the B-GLRT test given in Definition 7.2 satisfies

Pµ0,µ1,τ (τ̂δ ≥ τ + u) ≤ exp

− 2τu

τ + u

(
max

[
0, ∆−

√
τ + u

2τu
β(τ + u, δ)

])2
 . (7.10)

Proof. It is actually not used as such in the proofs of the regret upper bounds given below,
because a similar but more specific result is used and proven in the proofs. For instance, see
below in Section 7.7.2 (more specifically, in page 228).

For a threshold β chosen as in the Lemma 7.3, we can show that a consequence of the
Lemma 7.5 is that if the break-point τ takes place after about ∆−2 ln(1/δ) samples, the detection
time may be of the same magnitude (with high probability). In other words, if the B-GLRT test
observes enough samples before a change-point, its delay τ̂δ is in the order of O(∆−2 ln(1/δ)),
with high probability.

7.4.3 Practical considerations

Lemma 7.3 provides the first non-asymptotic control of false alarm for the B-GLRT employed
for bounded data. However, the threshold (7.7) is not fully explicit as the function T (x) can
only be computed numerically. Note that for sub-Gaussian distributions, results from [Mai19]
show that the smaller and more explicit threshold β(n, δ) =

(
1 + 1

n

)
ln
(

3n
√

n
δ

)
, can be used

to prove an upper bound of δ for the false alarm probability of the GLR, with quadratic
divergence kl(x, y) = 2(x − y)2. For the B-GLRT, numerical simulations suggest that the
threshold (7.7) is a bit conservative (see Appendix 7.10.7), and in practice we recommend to
keep only the leading term and use β(n, δ) = ln(3n3/2/δ) = ln(3) + 3/2 ln(n)− ln(δ).
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Also note that, as any test based on scan-statistics, the B-GLRT can be costly to implement as
at every time step, it considers all previous time steps as a possible position for a change-point.
Thus, down-sampling the possible time steps is an interesting adaptation in practice:

τ̃δ = inf
{

n ∈ N : sup
s∈Sn

[s× kl (µ̂1:s, µ̂1:n) + (n− s)× kl (µ̂s+1:n, µ̂1:n)] ≥ β(n, δ)
}

, (7.11)

for subsets N and Sn. Following the proof of Lemma 7.3, we can easily see that this variant
enjoys the same false-alarm control. However, the detection delay may be slightly increased.
In Appendix 7.10.4 we show that using these practical speedups has little impact on the regret
of the bandit strategy introduced below.

7.5 The GLR-klUCB algorithm

We start by giving the pseudo-code of our algorithm, by explaining every part, then we give
its finite-time regret upper bounds, for the two variants of using local or global restarts. The
analysis in both cases is using a unified proof technique, that we present before giving more
details about the proof of half of the results (the other proof can be found in [BK19b]).

We now present the GLR-klUCB algorithm, which combines a bandit algorithm with a
change-point detector running on each arm. It also needs a third ingredient, some forced
exploration parameterized by ω ∈ (0, 1) to ensure each arm is sampled enough and changes
can also be detected on arms currently under-sampled by the bandit algorithm. GLR-klUCB
combines the kl-UCB algorithm as it is given and analyzed by [CGM+13], known to be optimal
for Bernoulli bandits, with the B-GLRT change-point detector introduced in Section 7.4. This
algorithm, formally stated as Algorithm 7.1, can be used in any bandit model with bounded
rewards, and we expect it to be very efficient for Bernoulli distributions, which are relevant
for practical applications.

When does GLR-klUCB restart? The GLR-klUCB algorithm can be viewed as a kl-UCB
algorithm allowing for some restarts on the different arms. A restart happens when the B-
GLRT change-point detector detects a change on the arm that has been played (line 9). To be
fully specific, GLRδ(Z1, . . . , Zn) = True if and only if

sup
1<s<n

[
s× kl

(
1
s

s∑
i=1

Zk,
1
n

n∑
i=1

Zk

)
+ (n− s)× kl

(
1

n− s

t∑
i=s+1

Zk,
1
n

n∑
i=1

Zk

)]
≥ β(n, δ), (7.12)

with β(n, δ) defined in (7.7), or β(n, δ) = ln(3n3/2/δ), as recommended in practice, see
Section 7.4.3. We remind in this notation, if Ẑ1:s = Ẑs+1:n, i.e., if all observations Z1, . . . , Zn

are equal, we set the left-hand side of (7.12) to 0 and the B-GLRT cannot detect a change-point.
We define the (kl-UCB like) index used by our algorithm, by denoting τk(t) the last restart that
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1 Input: Parameters: exploration rate ω ∈ (0, 1), confidence level δ > 0
2 Input: Option: Local or Global restart
3 initialization: ∀k ∈ [K], τk = 0 and nk = 0;
4 for t = 1, 2, . . . , T do
5 if t mod

⌊
K
ω

⌋
∈ [K] then // forced exploration

6 A(t) = t mod
⌊

K
ω

⌋
;

7 else
8 A(t) ∈ U

(
arg maxk∈[K] UCBk(t)

)
, with UCBk(t) defined in (7.13);

9 Play arm A(t) : nA(t) = nA(t) + 1;
10 Observe the reward YA(t),t : ZA(t),nA(t) = YA(t),t;
11 if GLRδ(ZA(t),1, . . . , ZA(t),nA(t)) = True then // Change point is detected
12 if Global restart then
13 ∀k ∈ [K], τk = t and nk = 0; // restart all arms
14 else
15 τA(t) = t and nA(t) = 0; // restart only this arm
16 end

Algorithm 7.1: GLR-klUCB, with Local or Global restarts

happened for arm k before time t, nk(t) =
∑t

s=τk(t)+1 1(A(s) = k) the number of selections of
arm k, and µ̂k(t) = 1

nk(t)
∑t

s=τk(t)+1 Yk,s1(A(s) = i) their empirical mean (if nk(t) ̸= 0). With
the exploration function f(t) = ln(t) + 3 ln(ln(t)) if t > 1 and f(t) = 0 otherwise, the index is
defined using the binary relative entropy kl as

UCBk(t) .= max
{

q ∈ [0, 1] : nk(t)× kl (µ̂k(t), q) ≤ f(t− τk(t))
}

. (7.13)

Two options for restarts. For this algorithm, we simultaneously investigate two possible
behaviors: global restart (reset the history of all arms once a change was detected on one of
them, line 11), and local restart (reset only the history of the arm on which a change was
detected, line 13), which are the two different options in Algorithm 7.1. Under local restart, in
the general case the times τk(t) are not equal for all arms, hence the index policy associated
to (7.13) is not a standard UCB algorithm, as each index uses a different exploration rate. One
can highlight that in the CUSUM-UCB algorithm, which is the only existing algorithm based
on local restart, the UCB index are defined differently2: f(t− τk(t)) is replaced by f(nt) with
nt

.=
∑K

k=1 nk(t).

Threshold function β. We present in Appendix 7.10.7 numerical simulations that compare
different choices of threshold functions β. We compare the non-explicit function used in

2 This alternative is currently not correctly supported by theory, as we found mistakes in the analysis of
CUSUM-UCB: the main problem resides in the use of Hoeffding’s inequality with a random number of observations
and a random threshold to obtain Eq. (31)-(32) in the paper [LLS18].
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7.5 The GLR-klUCB algorithm

Lemma 7.3 (that makes use of a numerical approximation of the function T ), with the simpler
value β(n, δ) = ln(3n

√
n/δ), as well as two other choices. To sum-up these simulations, they

validate the use of a simpler and more explicit threshold, thus we recommend in practice to
use β1(n, δ) = ln(3n

√
n/δ).

Forced exploration. The forced exploration scheme used in GLR-klUCB (lines 3-5) general-
izes the deterministic exploration proposed for M-UCB by [CZKX19], whereas CUSUM-UCB
performs a uniform random exploration. Both approaches are parameterized by ω ∈ (0, 1).
More precisely, CUSUM-UCB samples arm k with probability ω/K at each time step, and
M-UCB uses a deterministic scheme, to force exploring the K arms: when the time since the
last restart, t − τ , is found to be in [K] modulo ⌈1/ω⌉. Both solutions ensure that all arms
are sampled enough on each stationary sequence, so that the CD algorithm has enough i.i.d.
samples to detect changes. A consequence of this forced exploration is given in Proposition 7.6
below.

Proposition 7.6. For every pair of instants s ≤ t ∈ N∗ between two restarts on arm k (i.e., for a
i ∈ [NCk], one has τ

(i)
k = τk(t) < s ≤ t < τ

(i+1)
k ) it holds that nk(t)− nk(s) ≥

⌊
ω
K (t− s)

⌋
.

Proof. We consider one arm k ∈ [K], and when the GLR-klUCB algorithm is running, we
consider two time steps s ≤ t ∈ N∗, chosen between two restart times for that arm k. Lines 3-4
state that A(u) = u mod ⌈K

ω ⌉ if u mod ⌈K
ω ⌉ ∈ [K], thus we directly find

nk(t)− nk(s) =
t∑

u=s+1
1(A(u) = k)

≥
t∑

u=s+1
1

(
A(u) = k, A(u) = u mod

⌈
K

ω

⌉)

≥
t∑

u=s+1
1

(
k = u mod

⌈
K

ω

⌉)

=
(
t− (s + 1) + 1

)
/

⌈
K

ω

⌉
≥
⌊

ω

K
(t− s)

⌋
.

Other forced exploration schemes? We present in Appendix 7.10.8 numerical simula-
tions that compare three different options of forced exploration schemes. We compare the
uniformly random exploration used by CUSUM-UCB, against the deterministic scheme used
in Algorithm 7.1, and against a more complicated scheme based on tracking. To sum-up these
simulations, the deterministic scheme gives an efficient change-point detection algorithm, and
an efficient GLR-klUCB policy. As it is the simplest one to handle in our proofs, this is the
one we chose for Algorithm 7.1.
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7.6 Finite-time upper-bounds on the regret of GLR-klUCB

This section gives the finite-time regret bounds for the two variants, and interpretations of
the different results. Although we only prove one bound, the other proof can be found in
[BK19b].

7.6.1 Results for GLR-klUCB using global restarts

Recall that τ (i) denotes the position of the i-th break-point and let µ
(i)
k be the mean of arm k on

the segment between the i- and (i + 1)-th breakpoint: ∀t ∈ {τ (i−1) + 1, . . . , τ (i)}, µk(t) = µ
(i)
k .

Let i∗ = arg maxk µ
(i)
k and the largest gap at break-point i as ∆(i) .= maxk∈[K] |µ

(i)
k −µ

(i−1)
k | > 0.

Assumption 7.7. Define d(i) .= d(i)(ω, δ) .=
⌈

4K

ω(∆(i))2 β(T, δ) + K
ω

⌉
. Then we assume that

there are enough samples between two global change-points. In other words, we assume for
all change i ∈ [ΥT ], τ (i) − τ (i−1) ≥ 2 max(d(i), d(i−1)).

Assumption 7.7 is easy to interpret and standard in non-stationary bandits. It requires that
the distance between two consecutive breakpoints is large enough: how large depends on the
magnitude of the largest change that happen at those two breakpoints. Under this assumption,
we provide in Theorem 7.8 a finite time problem-dependent regret upper bound. It features
the parameters ω and δ, the KL-divergence terms kl(µ(i)

k , µ
(i)
k∗ ) expressing the hardness of

the (stationary) MAB problem between two breakpoints, and the ∆(i) terms expressing the
hardness of the change-point detection problem.

Theorem 7.8. For ω and δ for which Assumption 7.7 is satisfied, the regret of GLR-klUCB with
parameters ω and δ based on Global Restart satisfies

RT ≤ 2
ΥT∑
k=1

4K

ω
(
∆(i))2 β(T, δ) + ωT + δ(K + 1)ΥT (7.14)

+
ΥT∑
k=1

∑
i=1,...,YT

µ
(i)
k

̸=µ
(i)
k∗

(
µ

(i)
k∗ − µ

(i)
k

)
kl
(
µ

(i)
k , µ

(i)
k∗

) ln(T ) +O
(√

ln(T )
)

.

Warning: We highlight that this result is finite-time and not asymptotic, even if it uses the
notation O

(√
ln(T )

)
. This last term does not mean the whole inequality is only valid for

T →∞, but it rather means that at finite time, the inequality is valid with the last term being
a function g(T ), which is upper-bounded by a constant times

√
ln(T ) from a certain time T0.
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Corollary 7.9. For “easy” problems satisfying the corresponding Assumption 7.7, let ∆opt denote the
smallest value of a sub-optimality gap on one of the stationary segments, and ∆change be the smallest
magnitude of any change point on any arm.

1. Choosing ω =
√

ln(T )/T , δ = 1/
√

T gives

RT = O
(

K(
∆change)2 ΥT

√
T ln(T ) + (K − 1)

∆opt ΥT ln(T )
)

, (7.15)

2. Choosing ω =
√

ΥT ln(T )/T , δ = 1/
√

ΥT T gives

RT = O
(

K(
∆change)2

√
ΥT T ln(T ) + (K − 1)

∆opt ΥT ln(T )
)

. (7.16)

7.6.2 Results for GLR-klUCB using Local Restarts

Some new notations are needed to state a regret bound for GLR-klUCB using local restarts, and
to distinguish notations between the results for the two variants (local and global restarts), we
denote ℓ instead of k for the indexes of change-points. We let τ

(ℓ)
k denote the position of the ℓ-th

change point for arm k: τ
(ℓ)
k = inf{t > τ

(ℓ−1)
k : µk(t) ̸= µk(t + 1)}, with the convention τ

(0)
k = 0,

and let µ
(ℓ)
k be the ℓ-th value for the mean of arm k, such that ∀t ∈ [τ (ℓ−1)

k +1, τ
(ℓ)
k ], µk(t) = µ

(ℓ)
k .

We also introduce the gap ∆(ℓ)
k = µℓ

k − µℓ−1
k > 0.

Assumption 7.10. Define d
(ℓ)
k

.= d
(ℓ)
k (ω, δ) .=

⌈
4K

ω

(
∆(ℓ)

k

)2 β(T, δ) + K
ω

⌉
. Then we assume that

there are enough samples between two local change-points. In other words, we assume that
for all arm k and all change-point of that arm ℓ ∈ [NCk], τ

(ℓ)
k − τ

(ℓ−1)
k ≥ 2 max(d(ℓ)

k , d
(ℓ−1)
k ).

Assumption 7.10 is again easy to interpret, like Assumption 7.7, but it is non standard
in non-stationary bandits, and to the best of or knowledge, our analysis is the first one to be
given for such assumption on the problem difficulty. It requires that any two consecutive
change-points on a given arm are sufficiently spaced (relatively to the magnitude of those two
change-points). Under that assumption, Theorem 7.11 provides a regret upper bound that
scales with similar quantities as that of Theorem 7.8, except that the number of breakpoints
ΥT is replaced with the total number of change points CT

.=
∑K

k=1 NCk ≤ KΥT .

Theorem 7.11. For ω and δ for which Assumption 7.10 is satisfied, the regret of GLR-klUCB
with parameters ω and δ based on Local Restart satisfies

RT ≤ 2
K∑

k=1

NCk∑
ℓ=1

4K

ω
(
∆(ℓ)

k

)2 β(T, δ)+ωT +2δCT +
K∑

k=1

NCk∑
ℓ=1

ln(T )
kl(µ(ℓ)

k , µ∗
i,ℓ)

+O
(√

ln(T )
)

, (7.17)
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where µ∗
i,ℓ

.= inf
{

µk∗
t
(t) : µk∗

t
(t) ̸= µ

(ℓ)
k , t ∈ [τ (ℓ)

k + 1, τ
(ℓ+1)
k ]

}
.

Like for the first Theorem 7.8, we highlight that this result is finite-time. The proof of
GLR-klUCB with local restarts is not included, but it can be found in the Appendix of [BK19b],
as it is quite similar to the proof for global restarts given above. The main difficulty relies in
defining the “good event” ET , and proving that it happens with high probability (by showing
that the complementary event Ec

T is highly unlikely). We can directly obtain different regret
upper-bounds for different choices of the two parameters ω and δ. We prefer to state the four
cases, to highlight the modularity of the result given by Theorem 7.11.

Corollary 7.12. For “easy” problems satisfying the corresponding Assumption 7.10, with ∆opt and
∆change defined as in Corollary 7.9, the following regret bounds hold.

1. Choosing ω =
√

ln(T )/T , δ = 1/
√

T (with no prior knowledge of ΥT or CT ) gives

RT = O
(

K(
∆change)2 CT

√
T ln(T ) + CT

(∆opt)2 ln(T )
)

, (7.18)

2. Choosing ω =
√

ΥT ln(T )/T , δ = 1/
√

ΥT T (with prior knowledge of ΥT and “optimist” guess
ΥT ≃ CT ≪ KΥT ) gives

RT = O
(

K2(
∆change)2

√
ΥT T ln(T ) + KΥT

(∆opt)2 ln(T )
)

, (7.19)

3. Choosing ω =
√

CT ln(T )/T , δ = 1/
√

CT T (with prior knowledge of CT ) gives

RT = O
(

K(
∆change)2

√
CT T ln(T ) + CT

(∆opt)2 ln(T )
)

, (7.20)

4. Choosing ω =
√

KΥT ln(T )/T , δ = 1/
√

KΥT T (with prior knowledge of ΥT and “pessimist”
guess CT ≃ KΥT ) gives

RT = O
(

K(
∆change)2

√
CT T ln(T ) + CT

(∆opt)2 ln(T )
)

. (7.21)

7.6.3 Interpretation and comparison of the results

The regret bounds we obtain for the two variants of our proposal GLR-klUCB, Theorems 7.8
and 7.11 respectively, both show that there exists a tuning of ω and δ as a function and T and the
number of changes such that the regret is of order Oh(K

√
ΥT T ln(T )) and Oh(K

√
CT T ln(T ))
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respectively, where the Oh notations ignore the gap terms. For very particular instances
such that ΥT = CT , i.e., at each break-point only one arm changes (e.g., problem 1 from
Figure 7.1), the theory advocates the use of local restarts. Indeed, while the regret guarantees
obtained are similar, those obtained for local restarts hold for a wider variety of problems
as Assumption 7.10 is less stringent than Assumption 7.7. Besides those specific instances,
our results are essentially worse for local than global restarts. However, we only obtain regret
upper bounds – thus providing a theoretical safety net for both variants of our algorithm, and
the practical story is different, as discussed in Section 7.8. We find that GLR-klUCB performs
better with local restarts, uniformly on all problems.

One can note that with the tuning of ω and δ prescribed by Corollaries 7.9 and 7.12, the
regret bounds of GLR-klUCB hold for problem instances for which two consecutive break-
points (or change-points on an arm) are separated by more than (about)

√
T ln(T )/(∆change)2

rounds. Hence those guarantees are valid on “easy” problems only, with few changes of
large magnitudes, in particular they do not hold for the harder problems 3 or 5 presented in
Section 7.8. However, this does not prevent our algorithms from performing well on more
realistic instances, as shown by the numerical experiments, for instance with problem 3 pre-
sented in the next Section 7.8). And M-UCB [CZKX19] is also analyzed for the same type of
unrealistic assumptions, while its practical performance is illustrated beyond those.

7.7 Proof of the regret upper-bounds

This Section starts by giving a unified analysis of regret of the two variants of our algorithm,
then we give the proof of the finite-time regret bound for the variant using global restarts. The
proof of the other variant using local restarts follows the skeleton of the unified analysis, and it
can be found in Appendix E of [BK19b].

7.7.1 Sketch of the unified regret analysis

In this section, we sketch a unified proof for the two Theorems 7.8 and 7.11 given above. We
emphasize that our approach is significantly different from those proposed by [CZKX19] for
M-UCB and by [LLS18] for CUSUM-UCB. Recall that in this Chapter, the regret is defined as
RT

.= E
[∑T

t=1(µk∗
t
(t)− µA(t)(t))

]
. First, we introduce D(T, ω) the (deterministic) set of time

steps at which the forced exploration is performed before time T (see lines 3-4 in Algorithm 7.1),
and as we observe that µk∗

t
− µA(t) ≤ 1 because rewards are assumed to be bounded in [0, 1],

we can write a first decomposition of the regret,

T∑
t=1

(µk∗
t
(t)− µA(t)(t))
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≤
T∑

t=1
1(t ∈ D(T, ω)) +

T∑
t=1

(µk∗
t
(t)− µA(t)(t))1

(
t /∈ D(T, ω), UCBA(t)(t) ≥ UCBk∗

t
(t)
)

≤ ωT +
T∑

t=1
1

(
UCBk∗

t
(t) ≤ µk∗

t
(t)
)

+
K∑

k=1

T∑
t=1

(µk∗
t
(t)− µk(t))1

(
A(t) = k, UCBk(t) ≥ µk∗

t
(t)
)

.

Introducing some good event ET , to be specified in each case, and its complementary Ec
T , one

can write the following decomposition, that highlights two important terms (A) and (B)

RT ≤ TP (Ec
T ) + ωT + E

[
1(ET )

T∑
t=1

1

(
UCBk∗

t
(t) ≤ µk∗

t
(t)
)]

︸ ︷︷ ︸
(A)

(7.22)

+ E
[
1(ET )

T∑
t=1

(µk∗
t
(t)− µA(t)(t))1

(
UCBA(t)(t) ≥ µk∗

t
(t)
)]

︸ ︷︷ ︸
(B)

.

Each analysis requires to define an appropriate good event, stating that some change-points are
detected within a reasonable delay. Each regret bound then follows from upper bounds on
term (A), term (B), and on the failure probability P(Ec

T ). To control (A) and (B), we split the
sum over consecutive segments [τ (i) + 1, τ (i+1)] for global restarts and [τ (i)

k + 1, τ
(i+1)
k ] for each

arm k for local restarts, and use elements from the analysis of kl-UCB of [CGM+13].

The tricky part of each proof, which crucially exploits Assumption 7.7 or 7.10, is actually
to obtain an upper bound on P(Ec

T ). For example for local restarts (Theorem 7.11), the good
event is defined as ET (ω, δ) .=

(
∀k ∈ [K],∀ℓ ∈ [NCk], τ̂

(ℓ)
k ∈

[
τ

(ℓ)
k + 1, τ

(ℓ)
k + d

(ℓ)
k

])
, where τ̂

(ℓ)
k

is defined as the ℓ-th change detected by the algorithm on arm k and d
(ℓ)
k = d

(ℓ)
k (ω, δ) is defined

in Assumption 7.10. Introducing the event C(ℓ)
k

.=
{
∀j ≤ ℓ, τ̂

(ℓ)
k ∈

[
τ

(j)
k + 1, τ

(j)
k + d

(j)
k

]}
, that

all the changes up to the ℓ-th have been detected, a union bound yields this decomposition

P(ET (ω, δ)c) ≤
K∑

k=1

NCk∑
ℓ=1

P
(
τ̂

(ℓ)
k ≤ τ

(ℓ)
k | C(ℓ−1)

k

)
︸ ︷︷ ︸

(a)

+
K∑

k=1

NCk∑
ℓ=1

P
(
τ̂

(ℓ)
k ≥ τ

(ℓ)
k + d

(ℓ)
k | C

(ℓ−1)
k

)
︸ ︷︷ ︸

(b)

. (7.23)

• Term (a) is related to the control of probability of false alarm, which is given by Lemma 7.3
for a change-point detector run in isolation. Observe that under the bandit algorithm,
the change point detector associated to arm k is based on (possibly much) less than
t− τk(t) samples from arm k, which makes false alarm even less likely to occur. Hence,
it is easy to show that (a) ≤ δ.

• Term (b) is related to the control of the detection delay, which is more tricky to obtain
under the GLR-klUCB adaptive sampling scheme, when compared to a result like Theo-
rem 6 in [Mai19] for the change-point detector run in isolation. More precisely, we need
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7.7 Proof of the regret upper-bounds

to leverage the forced exploration (Proposition 7.6) to be sure we have enough samples
for detection. This explains why delays defined in Assumption 7.10 are scaled by 1/ω.
Using some elementary calculus and a concentration inequality given in Lemma 7.14,
we can finally prove that (b) ≤ δ.

Finally, the “bad event” is unlikely, P(Ec
T ) ≤ 2CT δ. By putting together the three pieces,

that are a bound on (A), on (B) and on P(Ec
T ), we obtain the desired finite-time upper-bound

on the regret of our proposal GLR-klUCB.

7.7.2 Proof for GLR-klUCB with global restarts

The proof uses these notations: let τ̂ (i) be the k-th change detected by the algorithm, leading
to the k-th (full) restart and let τ̂(t) be the last time before t that the algorithm restarted. We
denote nk(t) .=

∑t
s=τ(t)+1 1(A(s) = i) the number of selections of arm k since the last (global)

restart, and µ̂k(t) .= 1
nk(t)

∑t
s=τ(t)+1 Yk,s1(A(s) = i) their empirical average (if nk(t) ̸= 0).

As explained before, our analysis relies on the general regret decomposition (7.22), with
the following appropriate good event. Let dk be defined as in Assumption 7.7, we define

ET (δ) .=
(
∀k ∈ [ΥT ], τ̂ (i) ∈

[
τ (i) + 1, τ (i) + d(i)

])
. (7.24)

Under the good event, all the change points are detected within a delay at most d(k). From
Assumption 7.7, as the period between two changes are long enough, if ET (δ) holds, then for
all change k, we have τ (i) ≤ τ̂ (i) ≤ τ (i+1). So we can prove the following.

Lemma 7.13. With ET (δ) defined as in (7.24), the “bad event” is unlikely P(Ec
T (δ)) ≤ δ(K +

1)ΥT .

We now turn our attention to upper bounding the two terms (A) and (B) in (7.22).

Upper bound on term (A).

(A) ≤ E
[
1(ET )

T∑
t=1

1

(
nk∗

t
(t) kl

(
µ̂k∗

t
(t), µk∗

t
(t)
)
≥ f(t− τ(t))

)]

≤
ΥT∑
k=1

E

1(ET )
τ (i+1)∑

t=τ (i)+1

1

(
nk∗(t) kl

(
µ̂k∗(t), µ

(i)
k∗

)
≥ f(t− τ̂(t))

)
≤

ΥT∑
k=1

E

d(i) + 1(ET )
τ (i+1)∑

t=τ̂ (i)+1

1

(
nk∗(t) kl

(
µ̂k∗(t), µ

(i)
k∗

)
≥ f(t− τ̂ (i))

)
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≤
ΥT∑
k=1

d(i) +
ΥT∑
k=1

E

1(C(i))
τ (i+1)∑
t=τ̂ (i)

1

(
nk∗(t) kl (µ̂k∗(t), µk∗) ≥ f(t− τ̂ (i))

) ,

where we introduce the event C(i) that all the changes up to the k-th have been detected:

C(i) =
{
∀j ≤ k, τ̂ (j) ∈ {τ (j) + 1, . . . , τ (j) + d(j)}

}
. (7.25)

Clearly, ET ⊆ C(i) and C(i) is Fτ̂ (i)-measurable. Observe that conditionally to Fτ̂ (i) , when C(i)

holds, µ̂k∗(t) is the average of samples that have all mean µ
(i)
k∗ . Thus, introducing µ̂s as a

sequence of i.i.d. random variables with mean µ
(i)
k∗ , one can write

E

1(C(i))
τ (i+1)∑
t=τ̂ (i)

1

(
nk∗(t) kl

(
µ̂k∗(t), µ

(i)
k∗

)
≥ f(t− τ̂ (i))

)∣∣∣∣∣∣Fτ̂ (i)


= 1(C(i))

τ (i+1)∑
t=τ̂ (i)

E
[
1

(
nk∗(t) kl

(
µ̂k∗(t), µ

(i)
k∗

)
≥ f(t− τ̂ (i))

)
| Fτ̂ (i)

]

≤ 1(C(i))
τ (i+1)−τ̂ (i)∑

t′=1
P
(
∃s ≤ t′ : s kl(µ̂s, µ

(i)
k∗ ) ≥ f(t′)

)

≤
T∑

t=1

1
t ln(t) ≤ ln(ln(T )),

where the last but one inequality relies on the concentration inequality given in Lemma 2 of
[CGM+13] and the choice f(t) = ln(t) + 3 ln(ln(t)). Finally, using the law of total expectation
yields

(A) ≤
ΥT∑
k=1

[
d(i) + ln(ln(T ))

]
. (7.26)

Upper bound on term (B). We let µ̃
(i)
k,s denote the empirical mean of the first s observations

of arm k made after time t = τ̂ (i) + 1. Rewriting the sum in t as the sum of consecutive
intervals [τ (i) + 1, τ (i+1)], we obtain

(B) ≤ E
[
1(ET )

ΥT∑
k=1

τ (i+1)∑
t=τ (i)

(
µ

(i)
k∗ − µ

(i)
A(t)

)
1

(
UCBA(t)(t) ≥ µ

(i)
k∗

) ]

≤
ΥT∑
k=1

E
[
1(ET )τ̂ (i) + 1(ET )

τ (i+1)∑
t=τ̂ (i)+1

(
µ

(i)
k∗ − µ

(i)
A(t)

)
1

(
UCBA(t)(t) ≥ µ

(i)
k∗

) ]

≤
ΥT∑
k=1

d
(i)
k +

K∑
k=1

E
[
1(ET )

τ (i+1)∑
t=τ̂ (i)+1

(
µ

(i)
k∗ − µ

(i)
k

)
1

(
A(t) = i, UCBk(t) ≥ µ

(i)
k∗

) ]
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≤
ΥT∑
k=1

d
(i)
k +

K∑
k=1

ΥT∑
k=1

(
µ

(i)
k∗ − µ

(i)
k

)
×

E
[
1(ET )

τ (i+1)∑
t=τ̂ (i)+1

t−τ̂ (i)∑
s=1

1 (A(t) = i, nk(t) = s)1
(
s kl(µ̃(i)

k,s, µ
(i)
k∗ ) ≤ f(τ (i+1) − τ̂ (i))

) ]

≤
ΥT∑
k=1

d
(i)
k +

K∑
k=1

ΥT∑
k=1

(
µ

(i)
k∗ − µ

(i)
k

)
E
[
1(ET )

nk(τ (i+1))∑
s=1

1

(
s kl(µ̃(i)

k,s, µ
(i)
k∗ ) ≤ f(τ (i+1) − τ (i))

) ]

≤
ΥT∑
k=1

d
(i)
k +

K∑
k=1

ΥT∑
k=1

(
µ

(i)
k∗ − µ

(i)
k

)
E
[
1(C(i))

nk(τ (i+1))∑
s=1

1

(
s kl(µ̃(i)

k,s, µ
(i)
k∗ ) ≤ f(τ (i+1) − τ (i))

) ]
.

Conditionally to Fτ̂ (i) , when C(i) holds, for s ∈ [nk(τ (i+1))], µ̃
(i)
k,s is the empirical mean

from i.i.d. observations of mean µ
(i)
k . Therefore, introducing µ̂s as a sequence of i.i.d. random

variables with mean µ
(i)
k , it follows from the law of total expectation that

(B) ≤
ΥT∑
k=1

d(i) +
K∑

k=1

ΥT∑
k=1

(
µ

(i)
k∗ − µ

(i)
k

) τ (i+1)−τ (i)∑
s=1

P
(
s× kl(µ̂s, µ

(i)
k∗ ) ≤ f(τ (i+1) − τ (i))

)
·

If µ
(i)
k∗ > µ

(i)
k by definition, we can use the analysis of kl-UCB from [CGM+13] to further upper

bound the right-most part, and we obtain

(B) ≤
ΥT∑
k=1

d(i) +
K∑

k=1

ΥT∑
k=1

1

(
µ

(i)
k ̸= µ

(i)
k∗

)
(
µ

(i)
k∗ − µ

(i)
k

)
kl(µ(i)

k , µ
(i)
k∗ )

ln(T ) +O
(√

ln(T )
) . (7.27)

Combining the regret decomposition (7.22) with Lemma 7.13 and the two upper bounds
of (A) in (7.26) and of (B) in (7.27),

RT ≤ 2
ΥT∑
k=1

4K

ω
(
∆(i))2 β(T, δ)+ωT+δ(K+1)ΥT +

ΥT∑
k=1

∑
i:µ(i)

k
̸=µ

(i)
k∗

(
µ

(i)
k∗ − µ

(i)
k

)
kl
(
µ

(i)
k , µ

(i)
k∗

) ln(T )+O
(√

ln(T )
)

,

which concludes the proof. □
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Controlling the probability of the good event: proof of Lemma 7.13

Recall that C(i) defined in (7.25) is the event that all the breakpoints up to the k-th have been
correctly detected. Using a union bound, one can write

P(Ec
T ) ≤

ΥT∑
k=1

P
(

τ̂ (i) /∈ {τ (i) + 1, . . . , τ (i) + d(i)}
∣∣∣ C(i−1)

)

And thus we have

P(Ec
T ) ≤

ΥT∑
k=1

P
(
τ̂ (i) ≤ τ (i) | C(i−1)

)
︸ ︷︷ ︸

(a)

+
ΥT∑
k=1

P
(
τ̂ (i) ≥ τ (i) + d(i) | C(i−1)

)
︸ ︷︷ ︸

(b)

.

The final result follows by proving that (a) ≤ Kδ and (b) ≤ δ, as detailed below.

Upper bound on (a): controlling the false alarm. We have τ̂ (i) ≤ τ (i) and it implies that
there exists an arm whose associated change point detector has experienced a false-alarm:

(a) ≤ P
(
∃i,∃s < t ≤ nk(τ (i)

k ) : s kl
(
µ̃

(i−1)
i,1:s , µ̃

(i−1)
i,1:t

)
+ (t− s) kl

(
µ̃

(i−1)
i,s+1:t, µ̃

(i−1)
i,1:t

)
> β(t, δ) | C(i−1)

)
≤

K∑
k=1

P
(
∃s < t : s kl(µ̂1:s, µ

(i−1)
k ) + (t− s) kl(µ̂s+1:t, µ

(i−1)
k ) > β(t, δ)

)
,

with µ̂s:s′ =
∑s′

r=s Zi,r where Zi,r is an i.i.d. sequence with mean µ
(i−1)
k . Indeed, conditionally

to C(i−1), the nk(τ (i)) successive observations of arm k arm starting from τ̂ (i) are i.i.d. with
mean µ

(i−1)
k . Using Lemma 7.4, term (a) is upper bounded by Kδ. □

Upper bound on term (b): controlling the delay. From the definition of ∆(i), there exists an
arm k such that ∆(i) .= |µ(i)

k − µ
(i−1)
k |. We shall prove that it is unlikely that the change-point

detector associated to i doesn’t trigger within the delay d(i).

First, it follows from Proposition 7.6 that there exists t ∈ {τ (i), . . . , τ (i) + d(i)} such that
nk(t)−nk(τ (i)) = r, where r

.= ⌊ ω
K d(i)⌋ (as the mapping t 7→ nk(t)−nk(τ (i)) is non-decreasing,

is 0 at t = τ (i) and its value at τ (i) + d(i) is larger than r). Using that
(
τ̂ (i) ≥ τ (i) + d(i)

)
⊆(

τ̂ (i) ≥ t
)

the event
(
τ̂ (i) ≥ τ (i) + d(i)

)
further implies that

nk(τ (i)) kl
(
µ̃k−1

i,nk(τ (i)), µ̃k−1
i,nk(t)

)
+ r kl

(
µ̃k−1

i,nk(τ (i)):nk(t), µ̃k−1
i,nk(t)

)
≤ β(nk(τ (i)) + r, δ),

where µ̃k−1
k,s denotes the empirical mean of the s first observation of arm k since the (k − 1)-th

restart τ̂ (i−1) and µ̃k−1
i,s:s′ the empirical mean that includes observation number s to number s′.
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Conditionally to C(i−1), µ̃k−1
i,nk(τ (i)) is the empirical mean of nk(τ (i)) i.i.d. replications of mean

µk−1, whereas µ̃k−1
i,nk(τ (i)):nk(t) is the empirical mean of r i.i.d. replications of mean µk

k.

Moreover, Proposition 7.6 shows that nk(τ (i)) is bounded in a certain interval, nk(τ (i)) ∈[⌊
ω
K

(
τ (i) − τ̂ (i−1)

)⌋
,
(
τ (i) − τ̂ (i−1)

)]
. Conditionally to C(i−1), by using Assumption 7.7, we

can prove that d(i−1) ≤ (τ (i) − τ (i−1))/2, and thus we obtain furthermore that

nk(τ (i)) ∈
{⌊

ω

2K
(τ (i) − τ (i−1))

⌋
, . . . , τ (i) − τ (i−1)

}
.= Ik.

Introducing µ̂a,s (resp. µ̂b,s) the empirical mean of s i.i.d. observations with mean µ̂
(i−1)
k (resp.

µ̂
(i)
k ), such that µ̂a,s and µ̂b,r are independent, it follows that

(b) ≤ P
(
∃s ∈ Ik : s kl

(
µ̂a,s,

sµ̂a,s + rµ̂b,r

s + r

)
+ r kl

(
µ̂b,r,

sµ̂a,s + rµ̂b,r

s + r

)
≤ β(s + r, δ)

)
,

where we have also used that µ̃k−1
i,nk(t) =

(
nk(τ (i))µ̃k−1

i,nk(τ (i)) + rµ̃k−1
i,nk(τ (i)):nk(t)

)
/(nk(τ (i)) + r).

Using Pinsker’s inequality, and introducing the gap ∆(i)
k

.= µ
(i−1)
k − µ

(i)
k (which is such

that ∆(i) = |∆k
k|), one can write

(b) ≤ P
(
∃s ∈ Ik : 2sr

s + r
(µ̂a,s − µ̂b,r)2 ≤ β(s + r, δ)

)
≤ P

(
∃s ∈ N : 2sr

s + r

(
µ̂a,s − µ̂b,s −∆(i)

k

)2
≥ β(s + r, δ)

)
+ P

(
∃s ∈ Ik : 2sr

s + r

(
µ̂a,s − µ̂b,r −∆(i)

k

)2
≤ β(s + r, δ), 2sr

s + r
(µ̂a,s − µ̂b,r)2 ≤ β(s + r, δ)

)
Using Lemma 7.14 stated in Appendix 7.10.2, and a union bound, the first term in the right
hand side is upper bounded by δ (as β(r + s, δ) ≥ β(r, δ) ≥ ln(3s

√
s/δ)). For the second term,

we use the observation

2sr

s + r

(
µ̂a,s − µ̂b,r −∆(i)

k

)2
≤ β(s + r, δ) ⇒ |µ̂a,s − µ̂b,r| ≥ |∆

(i)
k | −

√
s + r

2rs
β(s + r, δ)

and, using that ∆(i) = |∆k
k|, one obtains

(b) ≤ δ + P
(
∃s ∈ Ik : ∆(i) ≤ 2

√
s + r

2sr
β(s + r, δ)

)
. (7.28)

Define smin
.=
⌊

ω
K (τ (i) − τ (i−1))/2

⌋
. Using that the mappings s 7→ (s+r)/sr and s 7→ β(s+r, δ)

are respectively decreasing and increasing in s, one has, for all s ∈ Ik,

2s + r

sr
β (s + r, δ) ≤ 2smin + r

sminr
β (T, δ) ≤ 4β(T, δ)⌊

ω
K d(i)⌋ ,
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where the last inequality follows from the fact that r ≤ smin as d(i) ≤ (τ (i) − τ (i−1))/2 by
Assumption 7.7. Now the definition of d(i) readily implies that

⌊
ω
K d(i)

⌋
> 4β(T,δ)

(∆(i))2 , which yields

∀s ∈ Ik, 2s + r

sr
β (s + r, δ) ≤

(
∆(i)

)2
.

Hence, the probability in the right-hand side of (7.28) is zero, which yields (b) ≤ δ. □

7.8 Experimental results for piece-wise stationary bandit problems

In this section we report results of numerical simulations performed on synthetic data to
compare the performance of GLR-klUCB against other state-of-the-art approaches, on some
piece-wise stationary bandit problems. For simplicity, we restrict to rewards generated from
Bernoulli distributions, even if GLR-klUCB can be applied to any bounded distributions.

We report results obtained on five different piece-wise stationary bandit problems, illus-
trated in Figures 7.1 and 7.2 above, and Figures 7.5, 7.6 and 7.7 below. We present regret tables
and regret plots, for which the regret was estimated using 1000 independent runs.

Algorithms and parameters tuning. We include in this study two algorithms designed
for the classical MAB, kl-UCB [GC11], and Thompson sampling [AG12, KKM12], as well as
an “oracle” version of kl-UCB, that we call Oracle-Restart. This algorithm knows the exact
locations of the breakpoints, and restarts kl-UCB at those locations (without any delay).

Then, we compare our algorithms to several competitor designed for a piece-wise sta-
tionary model. For a fair comparison, all algorithms that use UCB as a sub-routine were
adapted to use kl-UCB instead, which yields better performance3. Moreover, all the algo-
rithms are tuned as described in the corresponding paper, using in particular the knowledge
of the number of breakpoints ΥT and the horizon T . We first include three passively adaptive
algorithms: Discounted kl-UCB (D-kl-UCB, [KS06]), with discount factor γ = 1−

√
ΥT /T/4;

Sliding-Window kl-UCB (SW-kl-UCB, [GM11]) using window-size τ = 2
√

T ln(T )/ΥT and
Discounted Thompson sampling (DTS, [RK17]) with discount factor γ = 0.95. For this last
algorithm, the discount factor γ = 0.75 suggested by the authors was performing significantly
worse on the problem instances we tried. More precisely, we found that γ ≤ 0.95 gives better
performances for short-term problems (pbs 1, 2, 4) and γ ≥ 0.95 is better suited for long
experiments (pbs 3, 5). Additionally, we include the Exp3.S algorithm from [ACBFS02], setting
its parameters as in Corollary 8.3 of the paper, based on a prior knowledge of T and ΥT , using
ω = 1/T and γ = min(1,

√
K(ΥT ln(KT ) + e)/((e− 1)T )).

3[LLS18, CZKX19] both mention that extending their analysis to the use of kl-UCB should not be too difficult.
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Our main goal is to compare against actively adaptive algorithms. We include CUSUM-klUCB,
tuned with M = 150 and ε = 0.1 for easy problems (1, 2, 4) and ε = 0.001 for hard problems
(3, 5), and with h = ln(T/ΥT ), ω =

√
ΥT ln(T/ΥT )/T , as suggested in the paper [LLS18].

Finally, we include M-klUCB, tuned with w = 150, based on a prior knowledge of the problems
as the formula using δmin given in [CZKX19] is too large for small horizons (on all our problem
instances), a threshold b =

√
w ln(2KT ) and γ =

√
ΥT K(2b + 3

√
w)/(2T ) as suggested by

Remark 4 in the paper [CZKX19].

For GLR-klUCB, we explore the two different options with Local and Global restarts, us-
ing respectively δ = 1/

√
ΥT , ω = ω0

√
ΥT ln(T )/T and δ = 1/

√
KΥT T , ω = ω0

√
KΥT ln(T )/T

from Corollaries 7.9 and 7.12. Both choices of ω appear to be too large empirically, as they
come from minimizing the regret upper-bound rather than the regret itself, thus the constant
is set to ω0 = 0.05. We show in Appendix 7.10.5 a certain robustness, with similar regret as
soon as ω ≤ 0.1. We do not use a constant δ0 to change the confidence level to δ = δ0δT , as we
show in Appendix 7.10.6 that δ0 = 1 is uniformly better for different problems. To speed up
the simulations, two optimizations are used, with ∆n = ∆s = 10, and CUSUM also uses the
first trick with ∆n = 10 (see Appendix 7.10.4 for more details).

Examples of detection delays on one run for two simple problems. Before giving larger
results that compare our approach against other algorithms, we consider the two problems
1 and 2 presented above in Figures 7.1 and 7.2 (for T = 5000). For one (random) simulation,
we give below examples of the efficiency of the change-point detection algorithm used by
GLR-klUCB as well as CUSUM-klUCB and M-klUCB, by showing the times at which they
detect a change and reinitialize their memory of observations of one or all the arms. We also
display the number of observations (since the last restart) of the arm on which the change was
detected. As shown below, in the experiments summary, the three change-point detection
algorithm give similar performances in terms of regret, but they have different behaviors. The
test in M-UCB usually detects less changes, while the test in CUSUM-UCB usually detects
more changes and even unnecessary changes. On the examples presented below as well as
large scale examples, all the tests appear to have no false alarm, and always a small detection
delay for changes that are “easy enough” to be efficiently detected. The four algorithms are
presented in the order of decreasing performance (i.e., the first one is empirically the most
efficient, that is, it obtains a smaller regret in average).

Problem 1 has only local changes, and important changes, that denote here changes on
the current optimal arm, happen only at t = 2000 when arm 2 becomes sub-optimal (µ2 goes
from 0.9 to 0.1) and arm 0 becomes optimal, and at t = 3000 when arm 0 stays optimal but
sees its mean change from 0.3 to 0.7. Other changes concern arm 1 at t = 1000 and t = 4000.

Figure 7.3 above displays the locations of the successively detected change-points by four
algorithms, 1) M-klUCB, 2) CUSUM-klUCB, 3) GLR-klUCB with local restart, 4) GLR-klUCB
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Figure 7.3 – Locations of the detected change-points for four algorithms on Problem 1.

with global restart. In this “easy” problem, all algorithms correctly detect the important changes,
except CUSUM which detected a change on arm 1 (in red) twice after the change-point located
at t = 3000. The three other algorithms have a very small delay, for instance only 9 samples
from arm 0 (in blue) after its change at time t = 2000 are enough for the GLR test to detect
a change. Very small delays are possible only after having collected a lot of samples of the
arm which changed, and for instance the same algorithm obtains a delay of 32 samples from
arm 1 for the next change at t = 3000, because this arm was sampled less. On this problem,
while M-klUCB detects the same changes as GLR-klUCB, with larger but comparable delays,
it is seen to obtain a larger regret than the two GLR variants, because the tuning of its forced
exploration probability makes it explore suboptimal arms more often.

Problem 2 has only global changes, and important changes happen only at t = 1000 when
arm 2 sees its mean change from 0.9 to 0.7, then at t = 2000 when it becomes sub-optimal (µ2

goes from 0.7 to 0.5) and arm 0 becomes optimal, and at t = 3000 and t = 4000 when arm 0
stays optimal but sees its mean change from 0.6 to 0.7 and then from 0.7 to 0.8.

Like for the first problem, we illustrate the behavior of the same four algorithms in Fig-
ure 7.4 above. In this other problem, the difference between M-klUCB and CUSUM-klUCB is
clear: the first algorithm fails to detect any change, leading to a large regret, while the second
one detects the changes that happen on the currently optimal arm and some other changes.
Drawing conclusions on their behavior from a single simulation is tricky, as this example of
behavior is counter intuitive: On the one hand, CUSUM uses local restarts, and it should be
less efficient than global restarts for this problem, as changes are all global. On the other hand,
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Figure 7.4 – Locations of the detected change-points for four algorithms on Problem 2.

M-klUCB uses global restarts, but here it fails to detect any changes. The two GLR-klUCB
variants correctly detect the important changes, and we observe that their delays to detect
a change can vary, mainly due to the randomness (we remind that we illustrate only one
repetition of the simulation here). For instance, after the change on arm 1 (in red), the local
restart detects it at time t = 2376 and the global restart detects it at time t = 2701.

In these two examples, we compare the two variants of our proposal with the two state-of-
the-art policies CUSUM-klUCB and M-klUCB, that are all based on combining kl-UCB with
a change-point detection algorithm. The results given above should be taken carefully, they
only have the purpose of being an illustration of the possible behaviors of these algorithms, as
they are the results of only one (random) simulation! But it is still interesting to compare the final
regret in one run, as given above, with the mean regret for 1000 independent runs, as given
below in Table 7.2. The values are not the same, but the ranking is: our proposal outperforms
both CUSUM-klUCB and M-klUCB, and the test based on CUSUM seems more efficient than
the test based of M-klUCB in the problems at hand.

Illustrations of the rest of the benchmark. We continue here the presentation of the other
problems of our benchmark, see Figures 7.1 and 7.2 above for the two problems 1 and 2.

Problem 3. (see Figure 7.5) This problem is harder, with K = 6, ΥT = 8 and T = 20000.
At every break-points, almost all arms change, and means are bounded in [0.01, 0.07]. The
gaps ∆ are much smaller than for the first problems, with amplitudes ranging from 0.02 to
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0.001. Note that the assumptions of the regret upper bounds for GLR-klUCB are violated,
as well as the assumptions for the analysis of M-UCB and CUSUM-UCB. It is interesting to
say that this problem is inspired from Figure 3 of [CZKX19], where the synthetic data was
obtained from manipulations on a real-world database of clicks from Yahoo!.
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Figure 7.5 – Problem 3: K = 6, T = 20000, C = 19 changes occur on most arms at Υ = 8 break-points.

Problem 4. Like problem 1, it uses K = 3 arms, Υ = 4 change-points and T = 5000, but
the stationary sequences between successive change-points no longer have the same length, as
illustrated in Figure 7.6. Classical (stationary) algorithms such as kl-UCB can be “tricked” by
large enough stationary sequences, as they learn with a large confidence the optimal arm, and
then fail to adapt to a new optimal arm after a change-point. We observe below in Table 7.3
that they can suffer higher regret when the change-points are more spaced out, as this problem
starts with a longer stationary sequence of length T/2.

Problem 5. Like problem 3, this harder problem is also inspired from synthetic data
obtained from a real-world database of clicks from Yahoo!, but from another competitor paper,
see Figure 3 from [LLS18]. It is much harder, with Υ = 81 change-points on K = 5 arms for
a longer horizon of T = 100000. Some arms change at almost every time steps, for a total
number of breakpoints C = 179, but the optimal arm is almost always the same one (arm 0,
with •). It is a good benchmark to see if the actively adaptive policies do not detect too many
changes, as the Oracle-Restart policy suffers higher regret in comparison to kl-UCB. Means
are also bounded in [0.01, 0.07], with small gaps of amplitude in [0.001, 0.02], as shown in
Figure 7.7.
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Figure 7.6 – Problem 4: K = 3, T = 5000, C = 12 changes occur on all arms at Υ = 4 break-points.
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Figure 7.7 – Pb 5: K = 5, T = 100000, C = 179 changes occur on some arms at Υ = 81 break-points.

First experiment: UCB vs kl-UCB. Similarly to what is presented in Chapter 6 in Table 6.1,
we start by some experiments that justify the focus on the kl-UCB index policy. The purpose of
this work is not to optimize on the index policy, but rather propose new ways of using indices
for piece-wise stationary problems. Consider two experiments on problems 1 and 2, with a
horizon of T = 20000 and 1000 independent repetitions, for which we compare CUSUM-UCB
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against CUSUM-klUCB, M-UCB against M-klUCB, and the oracle policy using UCB against
kl-UCB. We report in Table 7.1 below the results (in terms of mean regret), and we observe
that using kl-UCB rather than UCB indices always yields better practical performance. Thus
it is fair to compare our proposal against the modified versions of the two algorithms CUSUM
and M- that use the kl-UCB index policy instead of UCB, as they perform uniformly better
with kl-UCB than with UCB (the same tendency was observed on all other problems). We
also note that, without surprise, the oracle policy also performs (much) better with kl-UCB
than with UCB. Consequently, from now on we only report results for kl-UCB.

Algorithm Index policy Problem 1 Problem 2

Oracle-Restart UCB 216 219
kl-UCB 54 67

M- UCB 878 2040
kl-UCB 817 1485

CUSUM UCB 439 381
kl-UCB 304 316

GLR (Local) UCB 191 232
kl-UCB 132 186

Table 7.1 – Mean regret ± 1 std-dev, on problems 1 and 2 with T = 5000. We conclude that using
kl-UCB is much more efficient than using UCB, for non-stationary bandit.

Results. The two Tables 7.2 and 7.3 show the final regret RT obtained for each algorithm.
Results highlighted in bold show the best non-oracle algorithm for each experiment, with
our proposal being the best non-oracle strategy for problems 1 and 2. Thompson sampling
and kl-UCB are efficient, and better than Discounted-kl-UCB which is inefficient. DTS and
SW-kl-UCB can sometimes be more efficient than their stationary counterparts, but perform
worse than the Oracle and most actively adaptive algorithms. For kl-UCB indexes, M- and
CUSUM- outperform the previous algorithms, but GLR- is often better. On these problems,
GLR-klUCB with Local restarts is always more efficient than with Global restarts. Note
that on problem 2, all means change at every breakpoint, hence one could expect the Global
variant to be more efficient, yet the experiments show the superiority of Location variant on
every instance. The Exp3.S algorithm was found to outperform other algorithms based on
Exp3, including recent variants like Exp3++ [SL17] or Exp3.R from [AFM17]. Exp3.S usually
performs similarly to M-klUCB, but it is greatly outperformed by the oracle algorithm, by
GLR-klUCB and by CUSUM-klUCB.

We highlight that the best non-oracle strategies are actively adaptive, thus the experiments
confirm that an efficient bandit algorithm (e.g., kl-UCB) combined with an efficient change
point detector (e.g., GLR) provides efficient strategies for the piece-wise stationary model.
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Algorithms \ Problems Pb 1 Pb 2 (T = 5000) Pb 3 (T = 20000)
Oracle-Restart kl-UCB 37± 37 45± 34 257± 86

Exp3.S 352± 51 310± 62 665± 93
kl-UCB 270± 76 162± 59 529± 148

Discounted-kl-UCB 1456± 214 1442± 440 1376± 37
SW-kl-UCB 177± 34 182± 34 1794± 71

Thompson sampling 493± 175 388± 147 1019± 245
DTS 209± 38 249± 39 2492± 52

M-klUCB 290± 29 534± 93 645± 141
CUSUM-klUCB 148± 32 152± 42 490± 133

GLR-klUCB(Local) 74± 31 113± 34 513± 97
GLR-klUCB(Global) 97± 32 134± 33 621± 103

Table 7.2 – Mean regret ± 1 std-dev, on problems 1, 2 (with T = 5000) and 3 (T = 20000).

Algorithms \ Problems Pb 4 (T = 5000) Pb 4 (T = 10000) Pb 5
Oracle-Restart kl-UCB 68± 40 86± 50 126± 54

Exp3.S 551± 63 860± 109 723± 121
kl-UCB 615± 74 1218± 123 106± 36

SW-kl-UCB 202± 33 322± 47 228± 27
Discounted-kl-UCB 911± 210 1741± 200 2085± 910
Thompson sampling 756± 65 1476± 137 88± 39

DTS 250± 39 481± 58 238± 24
M-klUCB 337± 46 544± 47 116± 36

CUSUM-klUCB 267± 69 343± 94 117± 34
GLR-klUCB(Local) 99± 32 128± 42 149± 34
GLR-klUCB(Global) 128± 32 185± 47 152± 32

Table 7.3 – Mean regret ± 1 std-dev. Problem 4 use K = 3 arms, and a first long stationary sequence.
Problem 5 use K = 5, T = 100000 and is much harder with Υ = 82 breakpoints and C = 179 changes.

Regret plots. We show below on Figure 7.8 and additional in Appendix 7.10.1 the simulation
results for the five problems. The results in terms of mean regret RT are given above in
Tables 7.2 and 7.3, but it is also interesting to observe two plots for each experiment. First,
we show the mean regret as a function of time (i.e., Rt for 1 ≤ t ≤ T ), for 9 of the considered
algorithms (as they are outperformed by the others, Exp3.S and Discounted-kl-UCB are not
included to avoid clutter). Efficient stationary algorithms, like TS and kl-UCB, typically suffer
a linear regret after a change on the optimal arm changes if they had “too” many samples
before the change-points (e.g., on Figure 7.8 and even more on Figures 7.11 and 7.13). This
illustrates the conjecture that classical algorithms can suffer linear regret even on simple
piece-wise stationary problems.

On simple problems, like problem 1, all the algorithms being designed for piece-wise
stationary environments perform similarly, but as soon as the gaps are smaller or there are
more changes, we clearly observe that our approach GLR-klUCB can outperform the two other
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Figure 7.8 – Mean regret as a function of time, Rt (1 ≤ t ≤ T = 5000) for problem 1.

actively adaptive algorithms CUSUM-klUCB and M-klUCB (e.g., on Figure 7.10), and performs
much better than passively adaptive algorithms DTS and SW-kl-UCB (e.g., on Figure 7.12).
Our approach is the algorithm which performs the closer to the oracle for problem 4.

Finally, in the case of hard problems, like problems 3 and 5, that have a lot of changes
but where the optimal arm barely changes, we verify in Figure 7.13 that kl-UCB and TS can
outperform the oracle policy. Indeed the oracle policy is suboptimal as it restarts as soon as
one arm change but is unaware of the meaningful changes, and stationary policies which
quickly identify the best arm will play it most of the times, achieving a smaller regret. We
note that, sadly, all actively adaptive policies fail to outperform stationary policies on such
hard problems, because they do not observe enough rewards from each arm between two
restarts (i.e., the Assumptions 7.7 and 7.10 for the two Theorems 7.8 and 7.11 are not satisfied).
We can also verify that the two options, Local and Global restart, for GLR-klUCB, give close
results, and that the Local option is always better.

We also show the empirical distribution of the regret RT , on Figure 7.9. It shows that all
algorithms have a rather small variance on their regret, except Thompson Sampling which
has a large tail due to its large mean regret on this (easy) non-stationary problems.
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Figure 7.9 – Histograms of the distributions of regret RT (T = 5000) for problem 1.

7.9 Conclusion

In this chapter, we studied and presented the piece-wise stationary bandit model, and reviewed
existing work. We proposed a new algorithm for this problem, GLR-klUCB, which combines
the kl-UCB algorithm with the Bernoulli GLR change-point detector. This actively adaptive
method attains state-of-the-art regret upper-bounds when tuned with a prior knowledge
of the number of changes ΥT , but without any other prior knowledge on the problem, unlike
CUSUM-UCB and M-UCB that require to know a lower bound on the smallest magnitude of
a change. We also gave numerical evidence of the efficiency of our proposal.

We believe that our new proof technique could be used to analyze GLR-klUCB under less
stringent assumptions than the one made in this chapter (and in previous work), that would
require only a few “meaningful” changes to be detected. This interesting research direction is
left for future work, but the hope is that the regret would be expressed in term of this number
of meaningful changes instead of ΥT . We shall also investigate whether actively adaptive
approaches can attain a O(

√
ΥT T ) regret upper-bound without the knowledge of ΥT . We

also believe that combining change-point localization with an efficient change-point detection
algorithm, such as GLR-klUCB, could lead to an interesting class of algorithms, as suggested
by [Mai19]. Finally, we would like to study in the future possible extension of our approach to
the slowly varying model, as studied in [BGZ14, WS18b].
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As mentioned at the end of Chapter 6, another interesting direction of future work is
to study non-stationary distributed multi-players bandits. A natural extension of the non-
stationary model presented in this Chapter is to consider non-communicating players coop-
erating in a decentralized way to play the same bandit game, as it was proposed recently in
[WS18a]. The authors build on their recent work [WS18b] and show that a regret bounded
by O(

√
T

1+ν
2 ln(T )) can still be achieved by M players, in the number of breaking points

is ΥT = O(T ν). Their algorithm assume that player j knows its ID j ∈ [M ] as well as ν,
and removing these hypotheses is an interesting direction of future work. Furthermore, a
promising direction is to directly try to join our contributions from Chapters 6 and 7, and
propose an efficient algorithm using three parts: kl-UCB indexes for arm selection, MCTopM
for orthogonalization (i.e., dealing with collisions), and GLR-klUCB for non-stationarity (i.e.,
dealing with abrupt changes).

Reproducility of the experiments. The experiments in this chapter use our library SMPy-
Bandits, as presented in Chapter 3, and we refer to the following page for details on how to
reproduce them, SMPyBandits.GitHub.io/NonStationaryBandits.html
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7.10 Appendix

7.10 Appendix

We start by including figures as complementary illustrations to the numerical results presented
in Section 7.8 above. We then give some additional useful results, along with their proofs,
and then we give complementary numerical experiments to justify some choices made in the
presentation of our proposal GLR-klUCB.

7.10.1 Additional figures

We give here plots showing the mean regret Rt as a function of time, and histograms of the
distributions of the final regret RT , for the different problems of our benchmark. Figures 7.8
and 7.9 above show that our two proposals are efficient against problem 1. Then we show
similar results for problem 2 in Figure 7.10 and for problem 4 in Figure 7.11.
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Figure 7.10 – Mean regret as a function of time, Rt (1 ≤ t ≤ T = 5000) for problem 2.

For harder problems, like problems 3 and 5, the stationary policy kl-UCB can outperform
actively adaptive strategies, if the stationary intervals are too short or if the gap between arms
are too small. In other words, we illustrate in Figures 7.12 and 7.13 that while the actively
adaptive strategies can be very efficient when applied to problems that are not too difficult to
track, they can become sub-optimal for difficult problems.
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Figure 7.11 – Mean regret as a function of time, Rt (1 ≤ t ≤ T = 5000) for problem 4. We see that after
a “long enough” stationary interval, the algorithms designed for stationary problems lose track of the
best arm, and suffer from linear regret for a long period (e.g., Thompson sampling in orange ⋄).
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Figure 7.12 – Mean regret as a function of time, Rt (1 ≤ t ≤ T = 20000) for problem 3.
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Figure 7.13 – Mean regret as a function of time, Rt (1 ≤ t ≤ T = 100000) for problem 5.

7.10.2 Omitted proofs

This Appendix gives some proofs omitted in the main text of this chapter. Missing proofs can
be found in the article [BK19b].

Simplified expression for the GLR statistic

First, we consider the denominator in the expression of GLR(n) (7.3), that is the sup on
µ0. We have ℓ(X1, . . . , Xn; µ0) =

n∏
i=1

ℓ(Xi; µ0) by independence of the observations Xi, and

ℓ(Xi; µ0) = µXi
0 (1− µ0)1−Xi for Bernoulli distributions. Therefore, taking the logarithm gives

ln [ℓ(X1, . . . , Xn; µ0)] =
n∑

i=1
Xi ln(µ0) + (1−Xi) ln(1− µ0)

= ln(µ0)×
(

n∑
i=1

Xi

)
+ ln(1− µ0)×

(
n−

n∑
i=1

Xi

)
= n (µ̂1:n ln(µ0) + (1− µ̂1:n) ln(1− µ0)) .

For a constant a ∈ [0, 1], let h(x) .= a ln(x) + (1 − a) ln(1 − x) on (0, 1), and we are trying to
solve supx∈[0,1] h(x). If a = 0 or a = 1, h is maximum at x = a. Now if a ̸= 0, As h is of class
C1, we can just differentiate and find the root of its derivative, h′(x) = a/x− (1−a)/(1−x), so
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h′(x) = 0 if and only if x = a. Thus in all cases, supx∈[0,1] h(x) = h(a). Here, we have a = µ̂1:n,
and thus we solve the supµ0 optimization problem found in the denominator of the GLR(n)
expression. By replacing µ0 = µ̂1:n, we obtained the following (unique) solution,

sup
µ0

ln [ℓ(X1, . . . , Xn; µ0)] = n (µ̂1:n ln(µ̂1:n) + (1− µ̂1:n) ln(1− µ̂1:n)) . (7.29)

Now let us consider the nominator of the GLR(n) expression. We can again work with
log-likelihoods, and so we have

ln [ℓ(X1, . . . , Xn; µ0, µ1, τ)]

=
τ∑

i=1
Xi ln(µ0) + (1−Xi) ln(1− µ0) +

n∑
i=τ+1

Xi ln(µ1) + (1−Xi) ln(1− µ1)

= s
(
µ̂1:s ln(µ0) + (1− µ̂1:s) ln(1− µ0)

)
+ (n− s)

(
µ̂s+1:n ln(µ1) + (1− µ̂s+1:n) ln(1− µ1)

)
.

Because we solved in (7.29) the sup for the denominator, we have

GLR(n) =
sup

µ0,µ1,τ<n
ℓ(X1, . . . , Xn; µ0, µ1, τ)

exp [n (µ̂1:n ln(µ0) + (1− µ̂1:n) ln(1− µ0))] ,

= sup
µ0,µ1,τ<n

ℓ(X1, . . . , Xn; µ0, µ1, τ)
exp [n (µ̂1:n ln(µ̂1:n) + (1− µ̂1:n) ln(1− µ̂1:n))] ,

= exp
[

sup
µ0,µ1,τ<n

[
ln
[ ℓ(X1, . . . , Xn; µ0, µ1, τ)
exp [n (µ̂1:n ln(µ̂1:n) + (1− µ̂1:n) ln(1− µ̂1:n))]

]]]
,

When the last equation comes from the fact that exp is increasing. Thus by taking the logarithm
of both sides, we obtain

ln GLR(n) = sup
µ0,µ1,τ<n

[
ln
[ ℓ(X1, . . . , Xn; µ0, µ1, τ)
exp [n (µ̂1:n ln(µ̂1:n) + (1− µ̂1:n) ln(1− µ̂1:n))]

]]
,

= sup
µ0,µ1,1<s<n

[
s
(
µ̂1:s ln(µ0) + (1− µ̂1:s) ln(1− µ0)

)
+ (n− s)

(
µ̂s+1:n ln(µ1) + (1− µ̂s+1:n) ln(1− µ1)

)
− n

(
µ̂1:n ln(µ̂1:n) + (1− µ̂1:n) ln(1− µ̂1:n)

)]
.

By linearity and independence, we can separate the joint optimization problem on µ0, µ1, s in
two optimizations problems for µ0, s and µ1, s, that can first be solved explicitly for µ0 (resp.
µ1) and then left to be solved for s. By definition, n µ̂1:n =

∑n
i=1 Xi = s µ̂1:s + (n− s) µ̂s+1:n,

so the right hand side (negative) part involving µ̂1:n can be distributed in the two left hand
side (positive) terms, which are both handled similarly. For instance for µ0, we use the same
computation as above with the function h to find the optimum: µ̂1:s ln(µ0)+(1−µ̂1:s) ln(1−µ0)
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is optimum for µ0 = µ̂1:s. Similarly, the term for µ1 gives that supµ1 µ̂s+1:n ln(µ1) + (1 −
µ̂s+1:n) ln(1− µ1) is attained for µ1 = µ̂s+1:n. Finally, by replacing the two expressions of the
solutions for µ0 and µ1, we obtain

ln GLR(n) = sup
1<s<n

[
s×

(
µ̂1:s ln(µ̂1:s) + (1− µ̂1:s) ln(1− µ̂1:s)

− µ̂1:s ln(µ̂1:n) + (1− µ̂1:s) ln(1− µ̂1:n)
)

+(n− s)×
(
µ̂s+1:n ln(µ̂s+1:n) + (1− µ̂s+1:n) ln(1− µ̂s+1:n)

− µ̂s+1:n ln(µ̂1:n) + (1− µ̂s+1:n) ln(1− µ̂1:n)
)]

.

We conclude by recognizing the expressions of s× kl(µ̂1:s, µ̂1:n) and (n− s)× kl(µ̂s+1:n, µ̂1:n).

Proof of Lemma 7.4.

Using the same construction as in the proof of Theorem 14 in [KK18], one can prove that
for every λ ∈ I (for an interval I), there exists a non-negative super-martingale Mλ(s) with
respect to the filtration Ft

.= σ(X1, . . . , Xt) that satisfies E[Mλ(s)] ≤ 1 and

∀s ∈ N∗, Mλ(s) ≥ eλ[s kl(µ̂s,µ)−3 ln(1+ln(s))]−g(λ)

for some function g : I → R. This super-martingale is of the form Mλ(s) .=
∫

eη
∑s

i=1 Xi−ϕµ(λ)sdπ(η),
for a well-chosen probability distribution π, and the function g can be chosen to be any

gξ : [0; 1/(1 + ξ)] −→ R

λ 7→ λ(1 + ξ) ln
(

π2

3(ln(1 + ξ))2

)
− ln(1− λ(1 + ξ))

for a parameter ξ ∈ [0, 1/2].

Similarly, if we denote F ′
r the filtration σ(Y1, . . . , Yr), there exists an independent super-

martingale W λ(r) w.r.t. the filtration F ′
r, such that

∀r ∈ N∗, W λ(r) ≥ eλ[rkl(µ̂′
r,µ)−3 ln(1+ln(r))]−g(λ),

for the same function g(λ). In the terminology of [KK18], the two following processes are g-
DCC (for Doob-Cramér-Chernoff), X(s) .= s kl(µ̂s, µ)−3 ln(1+ln(s)) and Y (s) .= r kl(µ̂r, µ)−
3 ln(1 + ln(r)), as for both processes the Doob’s inequality can be applied in combination with
the Cramér-Chernoff method to obtain deviation inequalities that are uniform in time.

Here we have to modify the technique used in the Lemma 4 of [KK18] in order to take
into account the two stochastic processes, and the presence of super-martingales instead of
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martingales (for which Doob inequality still works). One can write

P
(
∃r ∈ N∗ : s kl (µ̂s, µ) + r kl

(
µ̂′

r, µ′) > 3 ln(1 + ln(s)) + 3 ln(1 + ln(r)) + u
)

≤ P
(
∃r ∈ N∗ : Mλ(s)W λ(r) > eλu−2g(λ)

)
= lim

n→∞
P
(
∃r ∈ [n] : Mλ(s)W λ(r) > eλu−2g(λ)

)
= lim

n→∞
P
(

sup
r∈[n]

Mλ(s)W λ(r) > eλu−2g(λ)
)

.

Using that M̃(r) .= Mλ(s)W λ(r) is a super-martingale with respect to the filtration F̃r
.=

σ(X1, . . . , Xs, Y1, . . . , Yr), one can apply Doob’s maximal inequality to obtain

P
(

sup
r∈[n]

Mλ(s)W λ(r) > eλu−2g(λ)
)
≤ e−(λu−2g(λ))E[M̃(1))]

= e−(λu−2g(λ))E[Mλ(s)W λ(1)]

≤ e−(λu−2g(λ)),

using that Mλ(s) and W λ(1) are independent and have an expectation smaller than 1.

Putting things together yields

P
(
∃r ∈ N∗ : s kl (µ̂s, µ) + r kl

(
µ̂′

r, µ′) > 3 ln(1 + ln(s)) + 3 ln(1 + ln(r)) + u
)
≤ e−(λu−2gξ(λ)),

for any function gξ defined above. The conclusion follows by optimizing for both λ and ξ,
using Lemma 18 in [KK18].

A Concentration Result Involving Two Arms

The following result is useful to control the probability of the good event in our two regret
analyzes. Its proof follows from a straightforward application of the Cramér-Chernoff method
[BLM13], and is given below.

Lemma 7.14. Let µ̂i,s be the empirical mean of s ∈ N∗ i.i.d. observations with mean µi, for
i ∈ {a, b}, that are σ2-sub-Gaussian. Define ∆ .= µa − µb. Then for any s, r > 0, we have

P
(

s r

s + r

(
µ̂a,s − µ̂b,r −∆

)2
≥ u

)
≤ 2 exp

(
− u

2σ2

)
. (7.30)
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Proof of Lemma 7.14. We first note that

P
(

s r

s + r

(
µ̂a,s − µ̂b,r −∆

)2
≥ u

)
≤ P

(
µ̂a,s − µ̂b,r ≥ ∆ +

√
s + r

sr
u

)
+ P

(
µ̂b,r − µ̂a,s ≥ −∆ +

√
s + r

sr
u

)
, (7.31)

and those two quantities can be upper-bounded similarly using the Cramér-Chernoff method.

Let (Xi) and (Yi) be two i.i.d. sequences that are σ2 sub-Gaussian with mean µ1 and µ2

respectively. Let n1 and n2 be two integers and µ̂1,n1 and µ̂2,n2 denote the two empirical means
based on n1 observations from Xi, and n2 observations from Yi respectively. Then for every
λ > 0, we have

P (µ̂1,n1 − µ̂2,n2 ≥ µ1 − µ2 + x) ≤ P
(

1
n1

n1∑
i=1

(Xi − µ1)− 1
n2

n2∑
i=1

(Yi − µ2) ≥ x

)

≤ P

e
λ

(
1

n1

n1∑
i=1

(Xi−µ1)− 1
n2

n2∑
i=1

(Yi−µ2)
)
≥ eλx


And so thanks to Markov’s inequality, we obtain

P (µ̂1,n1 − µ̂2,n2 ≥ µ1 − µ2 + x) ≤ e−λxE

e
λ 1

n1

n1∑
i=1

(Xi−µ1)
E

e
−λ 1

n2

n2∑
i=1

(Yi−µ2)


= exp
(
−λx + n1ϕX1−µ1

(
λ

n1

)
+ n2ϕY1−µ2

(
− λ

n2

))
≤ exp

(
−λx + λ2σ2

2n2
+ λ2σ2

2n1

)
,

where the last inequality uses the sub-Gaussian property. Choosing the value

λ
.= x

2 [σ2/(2n1) + σ2/(2n2)]

which minimizes the right-hand side of the inequality yields

P (µ̂1,n1 − µ̂2,n2 ≥ µ1 − µ2 + x) ≤ exp
(
− n1n2

n1 + n2

x2

2σ2

)
.

Using this inequality twice in the right hand side of (7.31) concludes the proof.
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7.10.3 Time and memory costs of GLR-klUCB

As demonstrated in Section 7.8, our proposal is empirically efficient in terms of regret, but it
is important to also evaluate its cost in terms of both time and memory. Remember that ΥT

denotes the number of change-points. If we denote dmax the longest duration of a stationary
sequence, the worst case is dmax = T for a stationary problem, and the easiest case is dmax ≃
T/ΥT typically for ΥT evenly spaced change-points. We begin by reviewing the costs of the
algorithms designed for stationary problems and then of other approaches.

Classical algorithms. For a stationary bandit problem, almost all classical algorithms (i.e.,
designed for stationary problems) need and use a storage proportional to the number of arms,
i.e., O(K), as most of them only need to store a number of pulls and the empirical mean of
rewards for each arm. They also have a time complexityO(K) at every time step t ∈ [T ], hence
an optimal total time complexity of O(KT ). In particular, this case includes UCB, Thompson
sampling and kl-UCB.

Oracle algorithms. Most algorithms designed for abruptly changing environments are
more costly, both in terms of storage and computation time, as they need more storage and
time to test for changes. The oracle algorithm presented in Section 7.8, combined with any
efficient index policy, needs a storage at mostO(KΥT ) as it stores the change-points, and have
an optimal time complexity of O(KT ) too4.

Passively adaptive algorithms. Passively adaptive algorithms should intuitively be more
efficient, but as they use a non-constant storage, they are actually as costly as the oracle. For
instance SW-UCB uses a storage of O(Kτ), increasing as T increases, and similarly for other
passively adaptive algorithms. We highlight that to the best of our knowledge, the Discounted
Thompson sampling algorithm (DTS) is the only algorithm tailored for abruptly changing
problems that is both efficient in terms of regret (see the simulations results, even though
it has no theoretical guarantee), and optimal in terms of both computational and storage
costs. Indeed, it simply needs a storage proportional to the number of arms, O(K), and a
time complexity of O(KT ) for a horizon T (see the pseudo-code in [RK17]). Note that the
discounting scheme in Discounted-UCB (D-UCB) from [KS06] requires to store the whole
history, and not only empirical rewards of each arm, as after observing a reward, all previous
rewards must be multiplied by γn if that arm was not seen for n > 0 times. So the storage
cannot be simply proportional to K, but needs to grows as t grows. Therefore, D-UCB costs
O(KT ) in memory and O

(
KT 2) in time.

4Note that if implemented naively, that is if testing is t is a change-points takes a time O(ΥT ), its performance
is sub-optimal, as it is of the order of O(KT ΥT ). However, if the change-points are stored in a dynamic linked list,
and the head is removed when it is found to be equal to the current time step, then the test at a time t costs only a
constant time O(1), hence the total time complexity is bounded by O(KT ) and the oracle algorithm is indeed
optimal in terms of time complexity.
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Actively adaptive algorithms. Limited memory actively adaptive algorithms, like M-UCB,
are even more costly. For instance, M-UCB would have the same cost of O(KTdmax), except
that [CZKX19] introduces a window-size w and run their CPD algorithm only using the last
w observations of each arm. If w is constant w.r.t. the horizon T , their algorithm has a storage
cost bounded byO(Kw) and a running time ofO(KTw), being comparable to the costO(KT )
of the oracle approach. However in practice, as well as in the theoretical results, the window
size should depend on T and a prior knowledge of the minimal change size δ̂ (see Remark 1
in [CZKX19]), and w = O(ln(T )/δ̂2). Hence it makes more sense to consider that M-UCB has
a time cost bounded by O(KT ln(T )) and a memory costs bounded by O(K ln(T )), which is
better than our proposal but more costly than the oracle or DTS or stationary algorithms.

Time and memory cost of GLR-klUCB. On the other hand, actively adaptive algorithms
are more efficient (when tuned correctly) but at the price of being more costly, both in terms
of time and memory. The two algorithms using the CUSUM or GLR tests (as well as PHT),
when used with an efficient and low-cost index policy (that is, choosing the arm to play only
costs O(K) at any time t), are found to be efficient in terms of regret. However, they need to
store all past rewards and pulls history, to be able to reset them when the CPD algorithm tells
to do, so they have a memory cost of O(Kdmax), that is O(KT ) in the worst case (compared
to O(K) for algorithms designed for the stationary setting). They are also costly in terms of
computation time, as at current time t, when trying to detect a change with ni observations
of arm i (i.e., (Zi,n)1≤n≤ni in Algorithm 7.1), the CPD algorithm (CUSUM or GLR) costs a
time O(ni). Indeed, it needs to compute sliding averages for every s in an interval of size
ni (i.e., µleft = µ1:s and µright = µs+1:ni) and a test for each s which costs a constant time
O(1) (e.g., computing two kl and checking for a threshold for our GLR test). So for every s,
the running time is O(1), if the sliding averages are computed iteratively based on a simple
scheme: first, one compute the total average µt0:t and set µleft = 0 and µright = µt0:t. Then for
every successive values of s, both the left and right sliding window means can be updated
with a single memory access and two computations (i.e., O(1)):

z ← Zi,s+1, µleft ←
sµleft + z

s + 1 , µright ←
(ni + 1− s)µright − z

ni − s
, s← s + 1. (7.32)

To sum up, at every time step the CPD algorithm needs a time O(ni) = O(dmax), and at the
end, the time complexity of CUSUM-klUCB as well as GLR-klUCB isO(KTdmax), which can
be up-to O

(
KT 2), much more costly than O(KT ) for kl-UCB for instance.

Our proposal GLR-klUCB requires a storage of the order ofO(Kdmax) and a running time
of the order of O(KTdmax), and the two bounds are validated experimentally, see Table 7.4.
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Empirical measurements of computation times and memory costs. A theoretical analysis
shows that there is a large gap between the costs of stationary or passively adaptive algo-
rithms, and the costs of actively adaptive algorithms, for both computation time and memory
consumption. We include here an extensive comparison of memory costs of the different
algorithms. For instance on the same experiment as the one used for Table 7.6, that is problem
1 with T = 5000, and then with T = 10000 and T = 20000, and 100 independent runs, in our
Python implementation (using the SMPyBandits library, [Bes19]), we can measure the (mean)
real memory cost5 of the different algorithms. The Tables 7.4 and 7.5 included below give the
mean (± 1 standard-deviation) of real computation time and memory consumption, used by
the algorithms. The computation time is normalized by the horizon, to reflect the (mean) time
used for each time steps t ∈ [T ]. We also found that our two optimizations described below in
7.10.4 do not reduce the memory, thus we used ∆n = ∆s = 20 to speed-up the simulations.
The conclusions to draw for these two Tables 7.4 and 7.5 are twofold.

Algorithms T = 5000 T = 10000 T = 20000
Thompson sampling 55 µs ± 11 µs 51 µs ± 6 µs 49 µs ± 4 µs

DTS 62 µs ± 11 µs 60 µs ± 8 µs 59 µs ± 7 µs
kl-UCB 122 µs ± 13 µs 125 µs ± 13 µs 128 µs ± 11 µs

Discounted-kl-UCB 94 µs ± 10 µs 97 µs ± 12 µs 103 µs ± 12 µs
SW-kl-UCB 162 µs ± 21 µs 169 µs ± 18 µs 167 µs ± 12 µs

Oracle-Restart kl-UCB 159 µs ± 31 µs 157 µs ± 21 µs 149 µs ± 15 µs
M-klUCB 202 µs ± 25 µs 220 µs ± 26 µs 230 µs ± 19 µs

CUSUM-klUCB 264 µs ± 53 µs 227 µs ± 31 µs 270 µs ± 33 µs
GLR-klUCB 314 µs ± 50 µs 399 µs ± 33 µs 920 µs ± 180 µs

Table 7.4 – Normalized computation time, for each time step t ∈ [T ], for different horizons.

Algorithms T = 5000 T = 10000 T = 20000
Thompson sampling 813 B ± 63 B 819 B ± 27 B 818 B ± 35 B

DTS 946 B ± 38 B 946 B ± 38 B 946 B ± 39 B
kl-UCB 937 B ± 164 B 931 B ± 172 B 933 B ± 164 B

Discounted-kl-UCB 1 KiB ± 79 B 1 KiB ± 94 B 1 KiB ± 78 B
SW-kl-UCB 6 KiB ± 976 B 8 KiB ± 1 KiB 12 KiB ± 2 KiB

Oracle-Restart kl-UCB 11 KiB ± 3 KiB 19 KiB ± 7 KiB 31 KiB ± 17 KiB
M-klUCB 4 KiB ± 1 KiB 6 KiB ± 2 KiB 9 KiB ± 4 KiB

CUSUM-klUCB 8 KiB ± 4 KiB 11 KiB ± 6 KiB 15 KiB ± 10 KiB
GLR-klUCB 19 KiB ± 7 KiB 32 KiB ± 15 KiB 75 KiB ± 26 KiB

Table 7.5 – Non normalized memory costs, for the same problem (Pb 1) with different horizons.

First, we verify the results stated above for the time complexity of different algorithms,
implemented in Python using SMPyBandits [Bes19]. The methodology of time and memory
measurements is discussed in Section 3.4. On the one hand, stationary and passively adaptive

5We used one core of an Intel i5 Core CPU, with GNU/Linux Ubuntu 18.04, Python v3.6, and 8 Gb of RAM.
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algorithms all have a time complexity scaling as O(T ), as their normalized computation time
is almost constant w.r.t. T . We check that TS and DTS are the fastest algorithms, 2.5 to 3
times faster than kl-UCB-based algorithms, due to the fact that sampling from a Beta posterior
is typically faster than doing a (small) numerical optimization step to compute the sup in
the kl-UCB indexes. We also check that the passively adaptive algorithms add a non-trivial
but constant overhead on the computation times of their based algorithm, e.g., SW-kl-UCB
compared to kl-UCB, or DTS compared to TS. On the other hand, we also check that actively
adaptive algorithms are most costly. M-klUCB normalized computation time is not increasing
much when the horizon is doubled, as the window-size M was set to a constant w.r.t. the
horizon T for this experiment. The complexity of GLR-klUCB follows the O

(
KT 2) bound we

presented above.

Second, we also verify the results for the memory costs of the different algorithms. Similarly,
stationary and passively adaptive algorithms based on a discount factor (D-UCB, DTS) have
a memory cost constant w.r.t. the horizon T , as stated above, while algorithms based on a
sliding-window have a memory cost increasing w.r.t. the horizon T . The Oracle-Restart and the
actively adaptive algorithms see their memory costs increase similarly. These measurements
validate the upper-bound we gave on their memory costs, O(Kdmax), as dmax ≃ T/Υ for this
problem with evenly spaced change-points.

7.10.4 Two numerical optimization tricks for GLR-klUCB

As the main weakness of GLR-klUCB is its numerical efficiency, as shown in Table 7.4, we
suggest here two simple ideas to drastically speed-up its computation time.

1. The first optimization, parametrized by a constant ∆n ∈ N∗, is the following idea. We can
test for statistical changes not at all time steps t ∈ [T ] but only every ∆n time steps (i.e.,
for t satisfying t mod ∆n = 0). In practice, instead of sub-sampling for the time t, we
propose to sub-sample for the number of samples of arm i before calling GLR to check
for a change on arm i, that is, ni(t) in Algorithm 7.1. Note that the first heuristic using
∆n can be applied to M-UCB as well as CUSUM-UCB and PHT-UCB, with similar
speed-up and typically leading to similar consequences on the algorithm’s performance.

2. The second optimization is in the same spirit, and uses a parameter ∆s ∈ N∗. When
running the GLR test with data Z1, . . . , Zt, instead of considering every splitting time
steps s ∈ [t], in the same spirit, we can skip some and test not at all time steps s but only
every ∆s time steps.

The new GLR test is using the stopping time T̃δ defined in (7.11), with T = {t ∈ [T ], t

mod ∆n = 0} and St = {s ∈ [t], s mod ∆s = 0}. The goal is to speed up the computation
time of every call to the GLR test (e.g., choosing ∆s = 10, every call should be about 10 times
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faster), and to speed up the overhead cost of running the tests on top of the index policy
(kl-UCB), by testing for changes less often (e.g., choosing ∆n = 10 should speed up the all
computation by a factor 10).

Empirical validation of these optimization tricks. We consider the problem 1 presented
above (Figure 7.1), with T = 5000 and 100 repetitions, and we give the means (± 1 standard-
deviation) of both regret and computation time of GLR-klUCB with Local restarts, for different
parameters ∆n and ∆s, in Table 7.6 below. The other parameters of GLR-klUCB are chosen
as δ = 1/

√
KΥT T and ω = 0.1

√
K ln(T )/T (from Corollary 7.12). The algorithm analyzed in

Section 7.6 corresponds to ∆n = ∆s = 1.

On the same problem, the Oracle-Restart kl-UCB obtained a mean regret of 37 for a running
time of 711 ms, while kl-UCB obtained a regret of 270 for a time of 587 ms. In comparison with
the two other efficient approaches, M-kl-UCB obtained a regret of 290 for a time of 943 ms,
and CUSUM-klUCB obtained a regret of 148 for a time of 46 s. This shows that our proposal
is very efficient compared to stationary algorithms, and comparable to the state-of-the-art
actively adaptive algorithm. Moreover, this shows that two heuristics efficiently speed-up
the computation times of GLR-klUCB. Choosing small values, like ∆n = 20, ∆s = 20, can
speed-up GLR-klUCB, making it fast enough to be comparable to recent efficient approaches
like M-UCB and even comparable to the oracle policy. It is very satisfying to see that these
optimizations do not reduce much the regret of GLR-klUCB, as it still outperforms most
state-of-the-art algorithms, and significantly reduces the computation time as wanted. With
such numerical optimization, GLR-klUCB is not significantly slower than kl-UCB while being
much more efficient for piece-wise stationary problems.

∆n \ ∆s 1 5 10 20
1 44± 29 44± 28 50± 31 53± 28
5 48± 29 41± 30 44± 28 47± 31
10 51± 32 43± 26 47± 28 46± 29
20 46± 31 46± 34 46± 31 49± 31

∆n \ ∆s 1 5 10 20
1 50 s ± 4.5 s 11.1 s ± 1.2 s 5.8 s ± 0.5 s 3.3 s ± 0.3 s
5 17.9 s ± 1.6 s 5.08 s ± 3.3 s 2.5 s ± 0.3 s 1.7 s ± 0.2 s
10 14.9 s ± 1.9 s 3.47 s ± 0.4 s 2.1 s ± 0.2 s 1.4 s ± 0.2 s
20 12.1 s ± 1.1 s 3.02 s ± 0.3 s 1.9 s ± 0.2 s 0.2 s ± 0.1 s

Table 7.6 – Effects of the two optimizations parameters ∆n and ∆s, on the mean regret RT (top) and
mean computation time (bottom) for GLR-klUCB on a simple problem. Using the optimizations with
∆n = ∆s = 20 does not reduce the regret much but speeds up the computations by about a factor 50.
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7.10.5 Sensitivity analysis of the exploration probability ω

As demonstrated in our experiments in Section 7.8, the choice of ω = ω0
√

ΥT ln(T )/T for
the exploration probability is a good choice for GLR-klUCB to be efficient (for the local
restarts option). The dependency w.r.t. the horizon T comes from Corollary 7.12 when ΥT

is unknown, and we observe in the Table 7.7 below that the value of ω0 does not influence
much the performance, as long as ω0 ≤ 1. Different values of ω0 are explored, for problems 1,
2 and 4, and we average the results over 100 independent runs. Other parameters are set to
Local restarts, δT = 1/

√
ΥT T , and ∆n = ∆s = 10 to speed-up the experiments. In the three

experiments, GLR-klUCB performs closely to the Oracle-Restart kl-UCB, and outperforms
all or almost all the other approaches, for all choices of ω0. We observe in Table 7.7 that the
parameter ω0 does not have a significative impact on the performance, and that surprisingly,
choosing ω0 = 0 does not reduce the empirical performance of GLR-klUCB, which means
that on some problems there is no need of a forced exploration. However, the analysis of
GLR-klUCB is based on the forced exploration, and we found that for a larger number of
arms, or for problems when the optimal arm change constantly, the forced exploration is
required. The same observations can be made for other variants of our algorithm, for instance
with Global restarts, or other values of ∆n, ∆s, or other values of δ.

Choice of ω0 Problem 1 Problem 2 Problem 4
ω0 = 1 51± 29 79± 35 82± 45
ω0 = 0.5 38± 29 70± 35 76± 39
ω0 = 0.1 33± 29 69± 31 68± 32
ω0 = 0.05 36± 29 65± 33 67± 36
ω0 = 0.01 38± 33 66± 33 71± 37
ω0 = 0.005 40± 27 69± 30 73± 56
ω0 = 0.001 38± 30 69± 34 67± 34
ω0 = 0 36± 32 66± 36 67± 33

Table 7.7 – Mean regret ± 1 std-dev, for different choices of scaling factor for the forced exploration
probability ω0 ∈ [0, 1] (i.e., ω = ω0ωT ), on three problems of horizon T = 5000, for GLR-klUCB with
local restarts, with ωT = ω0

√
ΥT ln(T )/T .

7.10.6 Sensitivity analysis of the confidence level δ

Similarly, the choice of δ = δ0/
√

ΥT T for the confidence level is a good choice for GLR-klUCB
to be efficient (for the local restarts option). The dependency w.r.t. the horizon T comes from
Corollary 7.12 when ΥT is unknown, and we observe in the Table 7.8 below that the value of δ0

does not influence much the performance of our proposal, as long as δ0 ≤ 1. Different values
of δ0 are explored, for problems 1, 2 and 4, and we average the results over 100 independent
runs. Other parameters are set to Local restarts, ωT = 0.1

√
ΥT ln(T )/T , and ∆n = ∆s = 10 to

speed-up the experiments. We observe in Table 7.8 that the parameter δ0 has no significative
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impact on the performance, and that choosing δ0 = 1 is indeed a valid choice. Inspired by
Occam’s razor, we recommend this choice of δ0 = 1 in practice. The same observations can be
made for other variants of our algorithm, for instance with Global restarts, or other values of
∆n, ∆s, or other values of ω.

Choice of δ0 Problem 1 Problem 2 Problem 4
δ0 = 1000 65± 31 106± 35 93± 34
δ0 = 500 70± 28 104± 35 94± 33
δ0 = 100 72± 32 105± 34 95± 32
δ0 = 50 72± 32 112± 31 94± 31
δ0 = 10 75± 32 107± 31 97± 33
δ0 = 5 76± 31 103± 30 97± 32
δ0 = 1 72± 32 111± 30 96± 31
δ0 = 0.5 72± 30 117± 35 97± 31
δ0 = 0.1 70± 29 111± 29 99± 32
δ0 = 0.05 68± 29 116± 37 101± 30
δ0 = 0.01 74± 29 114± 32 101± 32
δ0 = 0.005 76± 26 114± 34 101± 31
δ0 = 0.001 76± 29 117± 34 102± 32

Table 7.8 – Mean regret ± 1 std-dev, for different choices of scaling factor for the confidence level δ0
(i.e., δ = δ0δT ), on three problems of horizon T = 5000, for GLR-klUCB with δ = δ0/

√
ΥT T .

7.10.7 Comparison of different threshold functions β

We compare the following threshold functions, β(n, δ) for n ∈ N∗ and δ > 0, that can be used
in the B-GLRT test used for the GLR-klUCB algorithm (see the details in equation (7.12) and
in Algorithm 7.1). In the B-GLRT test, there is a sup optimization problem on s ∈ [2, n− 1],
and this sup is compared with the threshold β(n, δ). The threshold function given in (7.7) was
chosen to have Lemma 7.3, that is a false alarm probability bounded by δ. We note that we also
considered the possibility of using a threshold that could be a function of both n the sample
size as well as s ∈ [2, n− 1] the “splitting index” between means µ̂1:s and µ̂s+1:n. We did some
preliminary experiments to explore this direction and did not find a significant difference, in
terms of numerical efficient of the resulting GLR-klUCB algorithm, and mathematically the
analysis presented in Section 7.4.2 is simpler to follow if the threshold are uniform on s.

1. The first variant is the one we advised to use in practice for GLR-klUCB, it is very simple
to compute numerically:

β1(n, δ) .= ln
(

3n3/2

δ

)
= − ln(δ) + ln(3) + 3/2 ln(n).
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2. The second variant is smaller and does not use this power 3/2:

β2(n, δ) .= ln
(1

δ

)
+ ln(1 + ln(n)).

3. The third variant is using the function T , as introduced by (7.6). The function T is
computed with a numerical approximation6 of the Lambert functionW , as explained in
Section 7.4.2,

β3(n, δ) .= 2T
(

ln(2n3/2)/δ

2

)
+ 6 ln(1 + ln(n)).

4. The forth variant is using the function T̃ (x) = x + 4 ln(1 + x +
√

2x), as a simple
approximation of T (x), which is valid and quite accurate as soon as x ≥ 5,

β4(n, δ) .= 2T̃
(

ln(2n3/2)/δ

2

)
+ 6 ln(1 + ln(n)).

As before, we consider the three problems 1, 2 and 4, with time horizon T = 5000, and we
present in Table 7.9 the mean results of 100 independent runs. We only consider the variant
of GLR-klUCB based on Local restarts, and we used the parameters ωT , δT as given by the
Corollary 7.12, and with the deterministic exploration scheme.

Threshold function Problem 1 Problem 2 Problem 4
β1(n, δ) 70± 30 109± 32 99± 29
β2(n, δ) 73± 28 99± 32 88± 32
β3(n, δ) 77± 27 89± 32 134± 35
β4(n, δ) 77± 30 101± 30 135± 30

Table 7.9 – Mean regret ± 1 standard-deviation, for different choices of threshold function β(n, δ), on
three problems of horizon T = 5000, for GLR-klUCB.

As we could expect, the two choices β1 and β2 give similar results, as well as β3 and β4.
The first two choices give better performance in most cases, and they are computationally less
costly. The threshold β1 is closer mathematically to the threshold β3, that was used in the
analysis, and thus it is the one we advise to use in practice. The sum-up of these experiments
is that it sufficient to use the simplest and most explicit threshold β1, instead of the more
complicated one that was used for the analysis. Therefore, the choice of threshold function
β1(n, δ) .= ln

(
3n3/2/δ

)
for our proposal GLR-klUCB presented in Algorithm 7.1 is validated

by these experiments, and this choice gives good empirical performance.
6 The Lambert W function is available in Python as scipy.special.lambertw from scipy [JOP+01].
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7.10.8 Comparison of mechanisms used to enforce uniform exploration

We compare the following exploration mechanisms that can be used to enforce a sufficient
exploration of all arms in the GLR-klUCB algorithm. All options are parametrized by a
constant ω ∈ (0, 1), which represents the fraction of time steps spent in the forced exploration,
either in average or in total.

1. The deterministic exploration corresponds to one described in Algorithm 7.1. At time
t, if t mod

⌊
K
ω

⌋
∈ [K], then the arm At ← t mod

⌊
K
ω

⌋
is played. It is the simplest, both

the compute numerically and to handle mathematically, as the proof of Proposition 7.6
is short and simple. Its deterministic nature makes it the easiest choice for the proof
skeleton given in Section 7.7.1, as the set D(T, ω) used in the decomposition (7.22) of the
regret is deterministic and thus it greatly simplifies the manipulation of expectations and
random events. Note that this mechanism is also the one used by M-UCB [CZKX19].

2. The uniform random exploration is the one proposed for CUSUM-UCB [LLS18]. At
time t, a random arm is played with probability ω/K. That is, first we sample a boolean
variable from a Bernoulli law of mean ω, so that 0 indicates a random play, and 1
indicates a play using the UCB indexes. Then if it is a random play, arm i ∈ [K] is
selected uniformly at random (with probability 1/K), and arm At = i is played. Proving
a result like Proposition 7.6 is not much harder for this second mechanism, but the
difficulty lies in extending the proof skeleton we give in Section 7.7.1 to have a random
set D(T, ω).

3. The tracking-based exploration mechanism is inspired by the tracking trick used in
[GK16], and it is actually quite intuitive. At any time t, instead of having a uniform
probability of sampling forcing an exploration of every arm, it can make sense to force
exploring arms that are not explored enough. This way, we actively enforce that each
arm have enough samples. At time t, the goal is for any arm i to have been sampled
more than ω(t − τi) time, if t − τi represents the number of time steps since the last
restart on this arm. So the tracking-based exploration samples an arm i uniformly at
random among the set of arms i such that ni(t) < ω(t− τi), if it is not empty, otherwise
it plays according to the UCB indexes. Numerically, it is more complicated than the
two previous solutions but it stays reasonably efficient. It was the first direction we
pursued for our analysis, but we dropped it since mathematically, it was harder to prove
a result like Proposition 7.6, and it was also harder to incorporate the randomness of
this exploration scheme in the regret decomposition (7.22).

Note that the analysis we gave in Section 7.6 is based on the deterministic exploration, but
with a careful handling of random events and if we prove a result similar to Proposition 7.6,
we believe our analysis could also be extended to another exploration mechanism.
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As before, we consider the three problems 1, 2 and 4, with time horizon T = 5000, and we
present in Table 7.10 the mean results of 100 independent runs. We include the two variants
of GLR-klUCB, based on Local restarts or Global restarts, for which we used the parameters
ωT , δT as given by the two Corollaries 7.9 and 7.12.

Exploration mechanism Variant Problem 1 Problem 2 Problem 4

Deterministic exploration Local 68± 33 116± 36 99± 33
Global 97± 28 134± 36 131± 32

Uniform random exploration Local 74± 30 108± 33 106± 31
Global 91± 30 134± 33 129± 33

Tracking-based exploration Local 73± 32 104± 33 89± 29
Global 96± 26 133± 32 120± 30

Table 7.10 – Mean regret ± 1 standard-deviation, for different choices of exploration mechanisms, on
three problems of horizon T = 5000, for GLR-klUCB, with local or global restarts.

As expected, all options give similar results, and each of the three options was found
to outperform the two others in one of the three problems considered for this experiments
(problems 1, 2 and 4). The result highlighted in bold in Table 7.10 shows the best algorithm in
each problem (i.e., the algorithm and its option that obtains the smaller mean regret in the
considered column). We note that in terms of its average regret on the different problems,
the tracking-based exploration is the best choice. The sum-up of these experiments is that it
sufficient to use the simplest exploration scheme based on a deterministic exploration, rather
than a more complicated exploration scheme based on tracking. Therefore, our choice of the
deterministic exploration scheme for our proposal GLR-klUCB presented in Algorithm 7.1 is
validated by these experiments, and this choice gives good empirical performance.
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Chapter 8

General Conclusion and Perspectives

8.1 General Conclusion

This manuscript was organized in two parts, Part I and Part II. It presented the problems we
considered for my PhD research, and we discussed about the main contributions produced
during the last three years.

• The first half, Part I, started by motivating our work and situating the context of this
research. In Chapter 2, we presented the multi-armed bandit models, the hypotheses
we usually make, and the most important algorithms that solve different kinds of MAB
problems. Then in Chapter 3 we discussed in details about our open-source Python
library, SMPyBandits, developed to run numerical simulations of MAB problems. Finally,
we presented in Chapter 4 a first mathematical contribution, our algorithm Aggregator,
as an efficient answer to the online algorithm selection problem.

• The second half of this thesis, Part II, presented our main contributions. In Chapter 5, we
first proposed some models for realistic IoT wireless networks, in discrete times and with
no central coordination between end-devices. In two different models, with or without
retransmissions, we showed that end-devices can learn independently to increase their
successful transmission rates in the network, by using low-cost MAB algorithms. We
also presented a proof-of-concept that implements such network on real radio hardware
and validates our model and proposed algorithms. Because the models studied for
realistic IoT networks were found to be intractable to analyze from a theoretical point of
view, mainly due to the large number of algorithms interacting at random times in an
unpredictable environment, in Chapter 6, we studied a weaker but still interesting model.
We presented different variants of the multi-players MAB model, and we proposed the
state-of-the-art algorithm for the variant with collision information (MCTopM-kl-UCB).
Finally, in Chapter 7, we removed the stationary hypothesis on the single-player MAB
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problem, and we analyzed a new actively adaptive algorithm, for which we also proved
state-of-the-art results (GLR-klUCB). For the last two chapters, our proposed algorithms
attain state-of-the-art performances both on numerical simulations and on the regret
bounds obtained in our theoretical analyses.

A more precise summary of each chapter is given below.

Conclusion about Chapter 2. We started to present the multi-armed bandit model, with
a finite number of arms and real-valued rewards. Our main focus is on one-dimensional
exponential families of distributions, and on stochastic and stationary problems. The notations
used in the manuscript were introduced by showcasing an interactive demonstration1.

Conclusion about Chapter 3. Then we presented our Python library SMPyBandits [Bes19,
Bes18], by detailing its purpose and qualities, its organization, and an overview of its usage.
SMPyBandits allows any researcher to easily implement numerical simulations of stochastic or
piece-wise stochastic problems of single- or multi-players multi-armed bandits. SMPyBandits
is distributed on GitHub and Pypi freely, under an open-source license, and it is extensively
documented (at SMPyBandits.GitHub.io).

We detailed how SMPyBandits is implementing arms, problems, algorithms, and how the
library uses these components to implement a simulation loop, with various visualizations
being performed after a simulation. Even if SMPyBandits is still restricted to the finite-arm
case, it supports a wide range of arm distributions (as well as rested or restless Markov
models). Different kinds of models are implemented, from stationary single-player to piece-
wise stationary multi-players with different collision models. One of the main qualities of
the library is that it is quite exhaustive, as all the main families of algorithms covering these
different models have been implemented, even very recent algorithms from the literature.
More than 65 algorithms (or variants) are implemented for the single-player case, 5 for the
experts aggregation problem, about 15 for the multi-players case, and about 20 for the piece-
wise stationary case. The entire codebase is fully documented, and the library is using
continuous integration to run automated tests on the code after every modification. When
comparing algorithms on a problem, the main performance measure is the regret, but the
library also computes, stores and visualizes other measures, such as best-arm selection rate or
mean cumulated reward, as well as real time and memory costs. Our library is used to run
numerical simulations on Chapters 2 6 and 7, and in other contributions such as our article
[BK18b].

1See perso.crans.org/besson/phd/MAB_interactive_demo/
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Conclusion about Chapter 4. This first part ends by presenting one of our first contributions
[BKM18]. We tackle the question of how to select a particular bandit algorithm when a
practitioner is facing a particular (unknown) bandit problem. Instead of always choosing her
favorite algorithm, or running costly benchmarks before real-world deployment of the chosen
algorithm, a third solution for a practitioner can be to select a few candidate algorithms,
where at least one is expected to be very efficient for the given problem, and use online
algorithm selection to automatically and dynamically decide the best candidate. We proposed
an extension of the Exp4 algorithm for this problem, Aggregator, and illustrate its performance
on some bandit problems.

Conclusion about Chapter 5. This chapter started the second part of the manuscript, Part II,
and presents three main contributions.

First in Section 5.2, we proposed an evaluation of the performance of applying MAB
learning algorithms in IoT networks, with a focus on the convergence of algorithms, in terms
of successful transmission rates. We restrict to the case of a protocol slotted in both time and
frequency, and we assume a certain clock pre-agreement and time synchronisation between
devices and the base station. We studied the behavior of the network when the proportion of
intelligent dynamic devices changes. Concretely, increasing this probability allows to insert
more devices in the same network, while maintaining a good Quality of Service. Similarly, if
the number of devices remain constant, increasing the successful transmission rate directly
improves the network QoS. We show that both UCB and Thompson sampling algorithms have
near-optimal performance, even when their underlying i.i.d. assumption (see Chapter 2) is
violated by the presence of many “intelligent” end-devices which follow a random activation
process. This is both surprising and encouraging, it shows that applying bandit algorithms
tailored for a stochastic model is still useful in broader settings. The fully decentralized applica-
tion of classic stochastic MAB algorithms are almost as efficient as the best possible centralized
policy in this setting, after a short learning period, even though the dynamic devices cannot
communicate with each other, and do not know the system parameters.

We presented in Section 5.3 a proof-of-concept, demonstrated in 2018 at the ICT conference
[BBM18], and further detailed in the companion paper [BBM19]. We gave all the necessary
details on both the PHY and the MAC layer, as well as details on the User Interface developed
for the demo. Results obtained in practice were discussed, to highlight the interest of using
learning algorithms for radio online optimization problem, and especially multi-armed ban-
dit learning algorithms. By using such low-cost algorithms, we demonstrated empirically
that a dynamically re-configurable device can learn on its own to favor a certain channel, if
the environment traffic is not uniform between the K different channels, by using onlt the
acknowledgement (Ack) feedback sent from the base station.
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Finally in Section 5.4, we presented an extension of our model of LPWA networks based on
an ALOHA protocol, again under the hypothesis of a protocol slotted in time and frequency
and with perfect synchronisation. If the priority is the Quality of Service (QoS), for instance
with renewable energy capabilities, this second model is more appropriate. We presented
and evaluated several heuristics that try to learn how to transmit and retransmit in a smarter
way, by using the UCB algorithm for channel selection for first transmission (first-stage), and
different proposals based on UCB for the retransmissions upon collisions (second-stage).
The main novelty of this model is to also learn the most efficient way to retransmit packets
upon radio collision, by also using a multi-armed bandit algorithm for this second-stage
optimization problem. We showed that incorporating learning for the transmission is needed
to achieve optimal performance, with significant gain in terms of successful transmission rate
in networks with a large number of devices (up-to 30% in the example network). Our empirical
simulations show that each of our proposed heuristic outperforms a naive random access
scheme. Surprisingly, the main take-away message is that a simple UCB learning approach
(that simply retransmits in the same channel), turns out to perform almost as well as more
complicated heuristics.

Thus in Chapter 5, we proposed two models of Internet of Things (IoT) networks, composed
of many independent IoT end-devices, that can use low-cost RL (Reinforcement Learning)
algorithms to learn to improve their spectrum access. Decentralized RL for IoT lets the devices
use acknowledgements sent by their Base Station as a reward, instead of sensing feedback like
for OSA. We consider many independent “dynamic” devices, communicating with a small
probability at every instant. The first model (without retransmission of packets), is interesting
for its simplicity, and because considering no retransmission can improve the battery life of
the IoT devices, at the cost of a lower Quality of Service (QoS). However, in case of failed
transmission of a message, a dynamic device can also retransmit it up-to a fixed number of
retransmission (e.g., 10 times). The second model is more interesting if the main target is an
improvement of the QoS, rather than a longer battery life.

Conclusion about Chapter 6. The second chapter of Part II of this manuscript studied Multi-
Players Multi-Arm Bandits models. We present three variants of this model, with different
level of feedback being available to the decentralized players, under which we proposed
efficient algorithms. For the two easiest models –with sensing–, our theoretical contribution
improves the state-of-the-art upper bounds on the regret. In the absence of sensing, we also
provide some motivation for the practical use of the Selfish heuristic, a simple index policy
based on hybrid indices that are directly taking into account the collision information. We also
reviewed various variants of this model, and for some interesting variants we discussed the
related literature, which has proven to be very active in the last two years. For some of these
variants, we explained why our approach does not work efficiently without modifications, but
we detailed and illustrated how to adapt MCTopM to other settings. For example, it assumes
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to know the number of players M before-hand, but we illustrated that previously introduced
technique to estimate M can also be applied to our proposal and give satisfactory empirical
performances.

Conclusion about Chapter 7. In the last chapter, we were interested in relaxing the stationary
hypothesis made in Chapter 2. We first describe the break-point detection problem, that we
solve by analyzing at finite-time the properties of the Bernoulli GLR change-point detector.
This sequential break-point detection test can be applied for bounded rewards, and we bound
its false alarm probability as well as its detection delay. For the piece-wise stationary bandit
model, we proposed a new efficient algorithm, GLR-klUCB, which combines the kl-UCB
algorithm with the Bernoulli GLR change-point detector. This actively adaptive method attains
state-of-the-art regret upper-bounds when tuned with a prior knowledge of the number of
changes ΥT , but without any other prior knowledge on the problem, unlike CUSUM-UCB and
M-UCB that require to know a lower bound on the smallest magnitude of a change. We also
gave numerical evidence of the efficiency of our proposal, which performs usually much better
than all the passively adaptive approaches as well as better or comparably to the previous
actively adaptive ones.

8.2 Perspectives

As discussed at the end of each chapter, our works suggest possible directions of future studies.

Perspectives about Part I. As detailed in Chapter 2, we focused in this thesis on finite-arms
and one-dimensional bandit problems, and thus two possible directions of future research
could be to extend our works to MAB models with either multidimensional rewards, like
contextual bandits, or infinite arms, like Lipschitz bandits. The hypotheses we made were
motivated by the target applications, but these other models have also started to be used for
cognitive radio applications.

A few tasks are left on our library SMPyBandits, a first one could be to implement new
variants of the single-player stochastic models, as well as variants for the multi-players or
the non-stationary cases. For more details, see the issue tickets at GitHub.com/SMPyBandits
/SMPyBandits/issues/. A second interesting task could be to extend the library for prob-
lems with non-finite arms, e.g., linear or contextual bandit (ticket 117), or to add support
for the “dynamic case” of multi-players bandits to allow arrivals or departures of players
(ticket 124). A third task that I would have liked to complete is to interface the library
with a web-based interactive demonstration, in order to allow anyone to launch simula-
tions without any knowledge of programming. It is already possible to reproduce some
of the experiments presented in this thesis, by using the Jupyter notebooks [K+16], hosted
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on perso.crans.org/besson/PhD/notebooks/, which can be used locally if you install the
library, but can also be used on cloud platforms, such as Binder2 or Google Colab3.

Perspectives about Chapter 5. The first model presented in Section 5.2 could easily be
generalized with two probabilities pS and pD, if static and dynamic devices have different
transmission pattern, and less easily with one probability per device. Also, other emission
patterns could be considered, instead of a Bernoulli process for each user. In this whole
Chapter 5, we prefer to consider that all devices have the same activation probability, to
keep the notation as simple as possible. Moreover, for sake of simplicity we supposed that
all devices use the same standard. Future works could consider more realistic interference
scenarios and IoT networks, with, e.g., non-slotted time, more than one base station etc.

Another extension could be to not have a Bernoulli process (or any random process), but
a fixed rate of transmission, e.g., one transmission a day. So additionally to deciding the
channel for communication (i.e., where to communicate), each device has to also decide when
to communicate. However, this clearly leads to a much larger action space, as there are many
time slots in one day (for example), and thus we believe that as soon as the action space
becomes too large in this extension, the simple MAB-based learning approach could be no
longer appropriate. It is well-known in the MAB literature that the larger the action space,
the slower is the convergence speed of any stationary MAB algorithms. It could be exciting
to study the possible application of contextual MAB [LCLS10, LWAL18] or structured MAB
[CMP17] models and algorithms for this extension.

In order to validate our results in a realistic experimental setting and not only with simula-
tions, future works should include a hardware implementation of the analyzed models, in
order to complete our demonstration presented in Section 5.3 [BBM18, BBM19]. A hardware
demonstrator could be also benefit to study other settings by relaxing some hypotheses, for
instance by studying a similar model in non-slotted time.

Perspectives about Chapter 6. Our study on multi-players bandits suggests several further
research directions. First, one could want to investigate the notion of optimal algorithms in the
decentralized multi-players model with sensing information. So far we provided the first
matching upper and lower bound on the expected number of sub-optimal arms selections,
which suggests some form of (asymptotic) optimality. However, sub-optimal draws turn out
not be the dominant terms in the regret, both in our upper bounds and in practice, thus a
promising future work is to identify some notion of minimal number of collisions.

2 You can try on mybinder.org/v2/gh/SMPyBandits/SMPyBandits/master from your browser.
3 See colab.research.google.com/github/SMPyBandits/SMPyBandits/tree/master/notebooks/.
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We also presented many extensions of the multi-players bandit model, and even if some
have already been implemented, a major future work is to implement the most interesting
ones in our library SMPyBandits (see tickets 120, 124, 185).

Perspectives about Chapter 7. We believe that our new proof technique could be used to
analyze GLR-klUCB under less stringent assumptions than the one made in this chapter (and
in previous work), that would require only a few “meaningful” changes to be detected. This
promising research direction is left for future work, but the hope is that the regret would
be expressed in term of this number of meaningful changes instead of ΥT . We shall also
investigate whether actively adaptive approaches can attain a O(

√
ΥT T ) regret upper-bound

without the knowledge of ΥT . We also believe that combining change-point localization with an
efficient change-point detection algorithm, such as GLR-klUCB, could lead to an interesting
class of algorithms, as suggested by [Mai19].

We would also like to study in the future possible extension of our approach to the slowly
varying model, as studied in [BGZ14, LRC+16, WS18b], or the rotting bandit model [SLC+19].

Another interesting direction of future work is to study non-stationary distributed multi-
players bandits, to unify the models from Chapter 6 and 7. A natural extension of the non-
stationary model is to consider non-communicating players cooperating in a decentralized way
to play the same bandit game, as it was proposed recently in [WS18a]. We could also build on
the proof technique used in [WS18b], even if we are interested in removing the hypothesis that
player j knows its ID j ∈ [M ] before starting to play. A promising direction is to directly try
to join our contributions from Chapter 6 and 7, and propose an efficient algorithm using three
parts: kl-UCB indexes for arm selection, MCTopM for orthogonalization (i.e., dealing with
collisions), and the Bernoulli GLR break-point detector for non-stationarity (i.e., dealing with
abrupt changes). The three parts should be connected, the same way we built GLR-klUCB
by connecting both components. We propose the idea of incorporating the detected change-
points by B-GLR test in the orthogonalization procedure: after any change-point is detected,
the player is not sitting anymore. Analyzing this strategy is left as a future work.

Other directions of future works. Another very interesting direction of research is to pro-
pose a unique “unified” algorithm that can be used in all the different settings studied in this
thesis, and automatically adapt to the setting at hand. For instance, even if GLR-klUCB is very
efficient for piece-wise stationary problems, its forced exploration makes it sub-optimal for
stationary problems. Another example is for multi-players bandits, where MCTopM-kl-UCB
performs sub-optimally on piece-wise stationary problems. One approach to obtain a uni-
fied “master” algorithm could be to use expert aggregation on the different state-of-the-art
algorithms presented in this thesis, and as each one is efficient in a different setting, the
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resulting aggregated algorithm could also be efficient in each of the different settings. But as
we illustrated in Section 4.3.1, this approach does not seem theoretically promising.
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Appendix A

About Doubling Tricks for
Multi-Armed Bandits

This appendix quickly presents the contributions of another publication that was not presented
in the main text of this thesis. We studied doubling tricks and their possible uses for multi-
armed bandits, between fall 2017 and spring 2018, and we wrote an article [BK18b] which was
rejected at the COLT 2018 conference, and unfortunately we lacked the time to improve it and
resubmit it to another conference.

Motivations for anytime algorithms. As introduced in Chapter 2, an online reinforcement
learning algorithm is anytime if it does not need to know in advance the horizon T of the
experiment. Depending on the context of the practical application of interest, it might be
unrealistic to assume to know in advance T . We give two examples to illustrate where this
prior knowledge can be realistic or not. On the one hand, consider clinical trials: it is likely that
the number of patients is known before starting the trial, and for instance we refer to all the
research that studies the setting of fixed-time best-arm identification [ABM10, GK16]. On the
second hand, consider cognitive radio and decentralized MAB learning implemented on IoT
devices (like we present it in Chapter 5): usually a learning step corresponds to an uplink and
then downlink message sent and received by the IoT device, and so the time horizon T denotes
the total number of such messages. While it can be assumed that the device will run for
instance for 10 years (as it is advertised by some companies), many kinds of application such
as medical sensors or connected fields cannot predict the number of total communications
before setting up the device.

For this later range of applications, it is of highest interest to be able to use low-cost MAB
algorithms that do not rely on prior knowledge of the problem for which they will be applied,
and especially do not need to know the horizon T . In this thesis, while we proposed in
Chapter 6 any-time algorithms solving the presented problem of stationary multi-players
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bandit, our solution for the problem of non-stationary MAB problem studied in Chapter 7
does rely on a prior knowledge of the horizon T . It is interesting to know what is the best
approach to fix this weakness: work more and design algorithms that are inherently any-time,
or use a generic technique to avoid depending on a prior knowledge of T , and automatically
transform our non-anytime approach to make it anytime.

Solution to “patch” a non-anytime algorithm. A well-known technique to obtain an any-
time algorithm from any non-anytime algorithm is the “Doubling Trick”, as first introduced
in [CBL06] and used for instance in [AO10, AGO18]. In the context of adversarial or stochastic
multi-armed bandits, the performance of an algorithm is measured by its regret, and we study
two families of sequences of growing horizons (geometric and exponential) to generalize
previously known results that certain doubling tricks can be used to conserve certain regret
bounds. In a broad setting, we prove that a geometric doubling trick can be used to conserve
(minimax) bounds in RT = O(

√
T ) but cannot conserve (distribution-dependent) bounds

in RT = O(ln T ). We give insights as to why exponential doubling tricks may be better, as
they conserve bounds in RT = O(ln T ), and are close to conserving bounds in RT = O(

√
T ).

Interestingly, we prove that they conserve bounds of the mixed form RT = O(T γ(ln(T ))δ), for
0 < γ < 1 and δ > 0, and so an exponential doubling trick could be used to obtain an anytime
version of the algorithm we propose for non-stationary bandits, GLR-klUCB in Chapter 7.
However, our study was only focussing on stationary bandit, and it is left as a future work to
explore the harder case of piece-wise stationary problems.

In our article [BK18b], we also present numerical experiments in the case of stationary
MAB problems, to compare the performance of efficient anytime algorithms, like kl-UCB,
against efficient non-anytime algorithms, like kl-UCB++ from [MG17], made anytime with
different choices of doubling-trick. We conclude that for such problems, if T is not known
before, it is always more efficient to use policies that were designed to be anytime that to use a
doubling trick. For example, an applicative paper written in 2018, [LLL19], only tested the
use of an exponential doubling trick combined with kl-UCB++, but most surely the kl-UCB
algorithm would have given better empirical performance as well as more robust results. . .

To conclude this work, we would need to complete the study of the doubling tricks, and
instead of focussing on two families (geometric and exponential), we need to completely
characterize the doubling tricks that allow to preserve certain regret bound. Such doubling is
given either by the function mapping the current time t to the current estimate of the horizon
T (t), or the sequence (Ti)i∈N∗ of successive estimates of the horizons. We are interested in
pursuing this work, in the hope of finding an intermediate sequence, growing faster than a
geometric but slower than an exponential doubling sequence, that can preserve both worlds,
problem-dependent bounds in O(ln(T )) and problem-independent bounds in O(

√
T ).
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Acronyms and Abbreviations

Ack Acknowledgement

ALOHA ALOHA (not an acronym)

BTS Base Tranceiver Station (or gateway)

CPU Central Processing Unit

CR Cognitive Radio

DSA Dynamic Spectrum Access

GLR, GLRT Generalized Likelihood Ratio, Generalized Likelihood Ratio Test

i.i.d. identically and independently distributed (variables, observations or samples)

IoT Internet of Things

ISM Industrial, Scientific and Medical (bands)

KL Kullback-Leibler (divergence)

klUCB Kullback-Leibler Upper Confidence Bound (algorithm)

LAN Local Area Network

LPWAN Low-Power Wide-Area Network

MAB Multi-Armed Bandit

MAC Medium Access Control (layer)

MCTopM Musical-Chair on Top-M (algorithm)

ML Machine Learning

NB-IoT Narrow-Band Internet of Things

NOMA Non-Orthogonal Multiple Access

OSA Opportunistic Spectrum Access

PHY PHYsical (layer)

PLR Packet Loss Ratio

PU Primary User

QPSK Quadrature Phase-Shift Keying

RAM Random Access Memory
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RandTopM Random Hoping on Top-M (algorithm)

RF Radio Frequency

RL Reinforcement Learning

SCEE Signal, Communication et Électronique Embarquée (research team in CentraleSupélec,
campus of Rennes)

SNR Signal to Noise Ratio

SU Secondary User

TS Thompson Sampling (algorithm)

UCB Upper Confidence Bound (object or algorithm)

USRP Universal Software Radio Peripheral

WLAN Wireless Local Area Network

wlog with loss of generality

wrt with respect to

Exponents

yj Usually denotes a variable depending on a player in Chapter 6 (for j ∈ [M ]), or
to distinguish between different independent runs in numerical simulations in
Chapter 2 (for j ∈ [N ])

y(i), y(ℓ) Usually the superscript index (i) or (ℓ) denotes a variable in the i-th stationary
interval, under the point-of-views of global or local changes, in Chapter 7

Greek symbols

α Denotes the parameter of a UCB algorithm in Chapters 2 and 5

α0, δ0 Usually denotes a constant scaling of a parameter of an algorithm, for instance
εt = ε0/t is used in Chapter 2, or α = α0αT is used in Chapter 7

β(n, δ) Usually denotes a threshold for the statistical (GLR) tests in Chapter 7

µ, ν, λ, Vector of means (µk) = µ1, . . . , µK , or vector of distributions (νk)k or (λk)k (char-
acterizing a problem)

∆n, ∆s Parameters of numerical optimization tricks in Chapter 7

∆ Usually denotes the gap in terms of means of arms, usually between the best and
second best arms, in Chapters 2, 6. In Chapter 5 in Algorithm 5.5 it denotes a delay.
In Chapter 7, it can denote different gaps (∆opt and ∆change)

δ Usually denotes a lower-bound on the gap ∆, known before hand by an algorithm,
in Chapters 6, 7. Also denote a confidence level of an algorithm in Section 7.4

γ Usually denotes a discount factor, e.g., in D-UCB or D-TS in Chapter 7

µ∗, µ∗
k Mean of the optimal arm (i.e., µ∗ = maxk µk), and mean of the k-th best arm

µk, µk(t), µj
k, µ

(i)
k Mean of arm k, arm k at time t (in Chapter 7), arm k for user j (in Chapter 6), arm

k in the i-th stationary interval (in Chapter 7)

νk, νk(t), νj
k Distribution of arm k, arm k at time t, arm k for user j

ω Denotes a parameter controlling the forced exploration mechanism in Chapter 7
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π It usually denotes the number π ≃ 3.14 . . ., but it also denotes a probability distri-
bution in Chapter 4 or a permutation in Section 6.4.2

τ Length of a sliding-window, e.g., in SW-UCB in Chapter 7

τ j
k , τ

(i)
k Location of a change-point, e.g., the j-th change-point on arm k, in Chapter 7

ΥT Number of break-points in a piece-wise stationary MAB problem in Chapter 7. NCi

denotes the number of change-points on arm i, and CT =
∑K

i=1 NCi the number
of change-points on the arms

ε Usually denotes a small positive real value, e.g., the parameter for the ε-greedy
algorithm, or the drift correction parameter for CUSUM in Chapter 7

Indices

xk Usually denotes a variable depending on an arm, for k ∈ [K]

Yk,t Usually denotes a variable depending on an arm k ∈ [K] and on time t ∈ [T ]

Roman symbols

A An algorithm, also referred to as a policy or a strategy. A1, . . . ,AN denote the N
aggregated algorithms in Chapter 4 and A1, . . . ,AM denotes the algorithms of the
M players in Chapter 6

H0,H1,H2 Hypothesis, in Chapters 5 and 7

T In Chapter 7, denote a function in (7.6) and a set of time steps in Section 7.10.4

MaxBackOff Maximum number of retransmission of a packet in the ALOHA protocol in Chap-
ter 5

UCBk(t) Upper-Confidence Bound (UCB) of arm k at time t for an index policy

µ̂k(t) Empirical mean of rewards obtained for arm k at time t

A(t), Aj(t) Decision of algorithm A at time t ∈ [T ], A(t) ∈ [K] (from algorithm A), decision
for user j ∈ [M ] in Chapter 6 (from algorithm Aj)

Ck(t), Cj(t) In Chapter 6, collision indicator on arm k ∈ [K] or for user j ∈ [M ], at time t

Cµ, Dµ, GM,µ In Chapter 6, constants depending on the problem parameters only and on M

D, Dk In Chapter 5, total number of dynamic devices in the network or in channel k

d(i), d(ℓ) Lower-bound on number of samples for accurate detection of change-points in
Chapter 7

gj
k(t), gj(t) Index of (arm k) at time t of user j for an index policy in Chapter 6

i, j Usually denotes the i-th or j-th player, i, j ∈ [M ] in Chapter 6

Ik(t) Index of arm k at time t for an index policy

K Number of arms for multi-armed bandit games

k Usually denotes the k-th arm, k ∈ [K], mainly used in subscripts

M Number of player for multi-players bandit games in Chapter 6

m Maximum length of the back-off interval after a collision, in Chapter 5

N Usually denotes the number of independent repetitions of the same numerical
experiments (e.g., N = 1000). In Chapter 5, N denotes the number of IoT (dynamic)
devices in the studied network
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Nk(t) Number of samples obtained for arm k at time t

Ot Vector of observations until time t in Chapter 6

p In Chapter 5, probability of transmission for the devices following a Bernoulli
random emission pattern (e.g., p = 10−5)

r(t), rj(t) Reward obtained at time t, for user j at time t

RT , RA
T Regret (of an algorithm A) for horizon T

S, Sk In Chapter 5, total number of static devices in the network or in channel k

T Time horizon, the duration of the bandit game (always T ≥ 1)

t, s, n, r Time step, t ∈ [T ]. Chapter 7 also uses s, n and r, e.g., in the sup of the stopping
times or some technical lemmas

T0, T1 Fixed durations of some algorithms based on different phases, e.g., the Musical
Chair algorithm from [RSS16]

Yk,t Random sample from the arm k at time t

Mathematical notations

[K], T , [N ] etc For an integer N ∈ N, N ≥ 0, [N ] denotes the set {1, . . . , N} = {n ∈ N : 1 ≤ n ≤ N}.
If the order is important, it is ordered from 1 to N .

E , ET Used in Chapter 7 to denote “good events” that happen most of the time

F , Ft Filtration in a probabilistic model, after t− 1 prior observations

W LambertW function, the first branch of the inverse of x 7→ x exp(x), cf. [CGH+96]

E Expectation under a probabilistic model

kl Binary relative entropy, KullBack-Leibler divergence between two Bernoulli distri-
bution: kl(x, y) = x ln(x/y) + (1− x) ln((1− x)/(1− y))

⌊•⌋, ⌈•⌉ Floor ⌊x⌋ = sup{n ∈ Z, n ≤ x} and ceil ⌈x⌉ = inf{n ∈ Z, x < n} functions

1(E) Indicator function of an event E (= 1 if and only if the event E is true)

P Probability measure under a probabilistic model

X̂ Usually denotes an “empirical value”, a mean or an estimate of a quantity X that
depends on time, e.g., µ̂k the empirical mean of arm k or Ŝt the set of selected arms
in Section 6.3.3

X̃ Usually denotes another “empirical value” or an estimate of a quantity X that
depends on time, e.g., Ŝt the set of selected arms in Section 6.4.1. Also denote a
surrogate for a function without a closed form, e.g., T̃ in Section 7.10.7

d(x, y) Divergence function between two distributions of parameters x and y, in a one-
dimensional exponential family, in Chapter 7

Ec Complement of an event E

f , g, h Real-valued functions, e.g., exploration function used for kl-UCB indexes, f(t) =
ln(t) + 3 ln(ln(t))

o(•), O(•), Ω(•) Landau notations for positive functions: f(x) = o(g(x) means that g(x) ̸= 0 and
f(x)/g(x)→ 0 for x→∞, f(x) = O(g(x)) means that there exists x0, K > 0 such
that f(x) ≤ Kg(x) from x ≥ x0, and f(x) = Ω(g(x)) means g(x) = O(f(x))

X ′ Usually denotes a “wrong value” of a variable X , for instance M ′ denotes in Sec-
tion 6.7.1. Also denotes the derivative of a function, e.g., f ′
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Résumé :   Dans cette thèse de doctorat, nous 
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non licenciées et sans supervision centrale. Nous 
considérons des réseaux de l’Internet des Objets 
(IoT), avec l’objectif d’augmenter la durée de vie 
de la batterie des appareils, en les équipant 
d’algorithmes d’apprentissage machine peu 
coûteux mais efficaces, qui leur permettent 
d’améliorer automatiquement l’efficacité de leurs 
communications sans fil.  Nous proposons 
différents modèles de réseaux IoT, et nous 
montrons empiriquement, par des simulations 
numériques et une validation expérimentale 
réaliste, le gain que peuvent apporter nos 
méthodes, qui utilisent l’apprentissage par 
renforcement. 

Les différents problèmes d’accès au réseau sont 
modélisés avec des Bandits Multi-Bras (MAB), 
mais leur analyse est difficile à réaliser, car il est 
délicat de prouver la convergence de nombreux 
appareils jouant à un jeu collaboratif sans 
communication ni aucune coordination, lorsque 
les appareils suivent tous un modèle d’activation 
aléatoire. Le reste de ce manuscrit étudie donc 
deux modèles restreints, d’abord des bandits 
multi-joueurs dans des problèmes stationnaires, 
puis des bandits mono-joueur non stationnaires. 
Nous détaillons également une autre 
contribution, la bibliothèque Python open-source 
SMPyBandits pour des simulations numériques 
de problèmes MAB, qui couvre les modèles 
étudiés et d’autres. 
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Abstract:  In this PhD thesis, we study wireless 
networks and reconfigurable end-devices that 
can access large-scale Cognitive Radio 
networks, in unlicensed bands and without 
central control. We focus on Internet of Things 
networks (IoT), with the objective of extending 
the devices’ battery life, by equipping them with 
low-cost but efficient machine learning 
algorithms, to let them automatically improve the 
efficiency of their wireless communications. We 
propose different models of IoT networks, and we 
show empirically on both numerical simulations 
and real-world validation the possible gain of our 
methods, that use Reinforcement Learning.  

The different network access problems are 
modeled as Multi-Armed Bandits (MAB), but we 
found that analyzing the realistic models was 
intractable, because proving the convergence of 
many end-devices playing a collaborative game 
without communication nor coordination is hard, 
when end-devices all follow random active 
pattern. The rest of this manuscript thus studies 
two restricted models, first multi-players bandits 
in stationary problems, then non-stationary 
single-player bandits. We also detail another 
contribution, SMPyBandits, an open-source 
Python library for numerical MAB simulations, 
covering all the studied models and more. 

 


