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Abstract

This short note defines formally the Ei function, and gives some interesting inequalities and integra-
tion using it. I illustrate the inequalities and detail what is still to be proved.
Keywords: Analysis; Inequalities; Primitive.

1. Introduction and Motivation

Take a > 1,b > 1 and v > 0, and for an integer L > 0 consider the sum Zle(abl)f We want to
bound it, and the goal is to show that it is bounded by a constant times its last term. A first naive
bound is "% (a¥' )7 < (L + 1)(ab")” which is too brutal as soon as L — .

I first remind and prove two useful elementary results, and then we define and study the Ei
function, to finally prove the desired inequality.

2. Lemma and Proof

Lemmal Foranyn € N*, a > 1,b> 1and~vy > 0, we have

n

abi a !
S e o),

Proof We first isolate both the first and last term in the sum and focus on the from ¢ = 1 sum up to
i =n — 1. As the function ¢ — (abt)7 is increasing for ¢ > 1, we use a sum-integral inequality, and

(@) =o((@")). (M

then the change of variable u := b, of Jacobian dt = @%, gives
n—1 n b
i 1 v v
> (a") < / " dt < / £ du
Now for v > 1, observe that % < a", and as vb > 1, we have
1 /7”” 1 . 1 N
< a* du < a’ = a’ )’
o) /s log(#7) log(@) ~ (loa(a)) (log ) "
n .
Finally, we obtain as desired, >_ (a®)Y < a7 + (a®")” + W(abn)v. u
i=0 g &
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3. Elementary Results
3.1. Integration by Part

The Integration by Part is a basic but useful result to establish inequalities, e.g., for Lemma 10 using
Lemma 3, and to prove the existence of finite integrals, e.g., for Lemma 5 using two chained IP.

Lemma 2 (Integration by Part (IP)) Let z,y € R, x < v, and u,v two functions of class' C*,
and with this notation [uv]i =u(y)v(y) — u(z)v(x), then

y y
/ u(t)v'(t) dt = [uv}i —/ o (t)v(t) dt. ()

Proof The two integrals and the two evaluations are well defined by the C! hypothesis on both v and
v (u and v are continuous at x and y and u/v is continuous so integrable on the interval [z, y]).

The product function v is differentiable, and (uv)' = u'v + uv’, so [uwv]? = [¥(uv)'(t) dt =
2w ) dt + [/ (t)v(t) dt as wanted, by the linearity of the integral. [ |

Lemma 3 (IP Inequality) If both u, v are non-negative, and non-decreasing, then
Y
[ 0@ dt < uyots). 3
x

Proof The non-negativeness gives that —u(z)v(xz) < 0 and the monotony hypothesis gives that
u(t)v’(t) is non-negative on the interval [z, y], and so — [¥ u(t)v/(t) dt < 0, so an Integration by
Part gives the desired inequality. |

3.2. Sum-Integral Inequality

A well known result is the following, which bound a discrete sum » 7__ f(i) by two integrals for
non-decreasing functions, and it is used for Lemma 10.

Lemma4 Forany x,y € N*, © <y, and f a non-decreasing function on [0, +0o0), then

Yy +1
/y_lf(t) dtst(i)s/y f(t) at, )
and

/f dt<Zf < 1y /f )

Proof For the first inequality, both parts comes from the monotony of f and monotony and additivity

of the integral. On any interval [i,i + 1], f(i) = r[nln ]f < fzﬂ f(t) dt, and f(i) =
+1

max f(t) > f:_l f(t) dt, And so, if we sum these terms from i = x to y, we get

tefi—1,4)
y Yo il +1
<> [ o= [T s

i=x

1. A function of class C? is continuous, differentiable and of continuous derivative on its interval of definition.
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as well as ) y |
! )

The two sides of second inequality are immediate by isolating the first (or last) term of the sum f(y)
(or f(x)), and applying the first inequality to 2z — 1 instead of x (or y — 1 instead of y). |

4. The Exponential Integral Ei Function

This last Subsection is rather long, and actually not required to obtain the Lemma 1. But I find
this Ei function to be quite interesting, so I wanted to write down these proofs. We define the Ei
function (Weisstein, 2017; Collective, 2017), by carefully justifying its existence, and then we give
two results using it, to obtain the non-trivial Lemma 10.

Lemma5 Foranye >0, I(¢) := ffs % du exists and is finite, it satisfies this identity
€
I(e) = (" —e °)loge — (e +e °)(cloge —¢) + / (e —e ") (ulogu —u) du.  (6)
0

Additionally, it stays finite when € — 0, and lim I(¢) = lim [°_< du = 0.
e—0 e—07 "€ U

Proof Fix ¢ > 0, and let I(¢) := [°_ < du.

Roughly, one just needs to observe” that for u close to 0, % ~

s ase’ ~ 1, and % can be
integrated on [—¢, €], even if it is not defined at 0, because it is odd: [©_ L du = limy_o( fis Ldu+
J£ L du) (as Cauchy’s principal values), and ffe L du = — [ 1 dv with the change of variable
v=—u.So0 [*_ 1 du=0foranye > 0.

But we have to justify more properly that /(<) exists for any € > 0 and that I(¢) — 0 fore — 0.
A first Integration by Part (Lemma 2) with a(u) = e* and V/(u) = 1, that is a/(u) = e* and by
choosing b(u) = log |ul, gives

I(s):/seudu

e u

€
= [e“log\u”i6 —/ e log |u| du

—e
€
= (e —e %) loge — / (" +e ") log |u| du.
0

Let I5(e) := [, (" +¢ ") logu du. A second Integration by Part (Lemma 2) with a(u) = " +e ™"
and b/ (u) = logu, thatis a’(u) = e* —e~* and b(u) = ulogu — u (C* on (0, £]), gives

&€
Ir(e) = / (e +e ) logu du
0

= [(e"+ e ) (ulogu — u)]g - /Os(e“ —e ") (ulogu — u) du.

2. The notation f(u) ~ g(u) for u — uo means that g(u) # 0 and f(u)/g(u) — 1 for u — wuo.
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Indeed, b(u) = ulogu — w is well defined for u — 0, as ulogu — 0, so we can define b(0) = 0 to
have b of class C! on [0, €]. Therefore, I2(¢) exists, and we have, as wanted, the following identity

I(e) = (" —e %)loge — (e + e %)(cloge —¢) + /Oe(e“ —e “Y(ulogu — u) du.

The last integral is well defined and finite, as the integrated function is continuous and finite for all ,
even at 0. So this proves that I(¢) is finite for any £ > 0.
Now, taking € — 0 gives, for each of the three terms in I(¢),

(ef—ef)loge ~ ((14+¢)—(1 —5))log5 =2ecloge = 0
(ef —i—e*E)(slogs —e) ~2b(e) —
Jo (e — e ") (ulogu — u) du — 0,

so I(g) — 0, as wanted. [ |

Lemma 6 Forany (0 < ¢ < 1, I(e) satisfies I(¢) < e — e~%. In particular, [(1) < e —e™ L,

Proof For 0 < ¢ <1
I(e) < (e — e~

b(l) > —1 and (e° + e7%)log(e) < 0, and so the identity (6) gives
) ()
u € [0,1],s0I(g) <

+f (e “Y(ulogu — u) du, but (e* — e *)(ulogu — u) < 0 for all
(e —e” )as wanted. In particular, (1) < (e —e™1). [ |

Definition 7 The Exponential Integral Ei function is defined for x € R* =R\ {0} by

Ei(z) := /x e du, (7

oo U
where the Cauchy’s principal value of the integral is taken.

Proof This integral exists and is finite for z < 0, as the function u — % is of class C! on (—o0, 0).

For x — 0 (from above or from below), Ei(z) — —occ.

And for z > 0, let e >0, and observe that we can write the integral from —oo to x as three
terms, Ei(z) = Bi(—¢) + [, < du+ [ < du. Ei(—¢) and the last integral both exists and are
finite, thanks to the first case of x < 0 and as the function u — eul is of class C! on (g, +00). And
thanks to Lemma 5, ffa % du is finite. So all the three terms in the decomposition of Ei(x) exist
and are finite, therefore Ei(x) is well defined. [ |

A few properties of Ei worth noting include the following: it has a unique zero (located at
xg =~ 0.327), it is negative for x < x( and in particular for x < 0, it is positive for x > xg, and it is
decreasing on (—o0, 0) and increasing on (0, +oc0). Ei is also concave on (—o0,0) and (0, 1), and
convex on (1, 400).
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Ilustration We can plot this function®:

The function Ei{x) on [—1,1]

—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 100
X

Figure 1: The Ei function on [—1, 1].

5. Using Ei to compute primitives

Lemma 8 Foranya,b,v € Rand L € N such that a,b > 1,y > 0and L > 0,

/OL<abt)7 dt = lolgb (Ei (’Y log(abL)) — Ei(y log(a))) . (8)

Proof A first change of variable with u := b gives dt = @% du (logb > 0 as b > 1), and so

Lo 1 " 1
/ @yd=—— [ Laya=-1 [ Lanaw
0 logb /i wu logh /1 wu
And a second change of variable with v := log(a”)u = ~ylog(a)u gives % du = % dv (and no
change in the order of the integral’s bounds, as loga > 0 as @ > 1), and so

1 vlog(a)bt qv 1 [E Flog@bL)
1{V

- C o= ——
logb ~log(a) v logb ~vlog(a)

= lolgb (Ei ('ylog (abL>> — Ei(y log(a))> -

3. See for instance, the scipy.special.expi function, on https://docs.scipy.org/doc/scipy/
reference/generated/scipy.special.expi.html, if you use Python and SciPy (Foundation, 2017;
Jones et al., 2001-).



https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expi.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expi.html
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[
6. Inequalities for Ei
Lemma 9 (First Inequalities Using Ei) Forany z € R* =R\ {0}, Ei(z) <e".
Moreover, for z > 1, we also have Ei(z) > Ei(1) + ¢ > —1+ <.
A useful consequence is that forany y > 1 and 0 < v <1,
Ei(log(y”)) = Ei(vlog(y)) <y ©)

Proof Let = € R. First, if x < 0, then clearly Ei(z) < 0 < e”.
If 0 < & < 1, we can split the integral defining Ei(x) in two terms, and as I(z) = [* & du <
e? — e~ 7 (see Lemma 6),

Ei(m):/xeudu—i—/x  du < I(z)

oo U L U

=Ei(—z)<0 =I(x)

<e¥ —eTT < e

If z > 1, we do the same with three terms, and by using Ei(—1) = ffl € du < 0, and

—0o0 U
I(1) = f_ll % du < e — e ! (see Lemma 6), we have

—leu 1 el T Qu
Ei(:p):/ udu+/ udu+/ ;duﬁ[(l)—l—ex—e
—00 -1 1

v~ v

=Ei(-1)<0 =I(1) <e®—el

<e—e et —e=e"—e I <e.

Now for the lower bound, let x > 1, and we use the same splitting. For (1), we use conversely
that (1) > 0 (see Lemma 6), and for the integral we have ffc % du > %(ex —e). So Ei(x) >
Ei(1) + % We also have —¢ > —e and numerically, Ei(1) — e > —1 (as Ei(1) ~ 1.895), so
Ei(z) > -1+ <.

Finally, if x = log(y”) and y > 0, then e” = 7, so Ei(x) = Ei (ylog(y)) < e* = y". [
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Ilustration We can check this inequality Ei(z) < e” graphically, as well as a tighter inequality
Ei(z) < Ei(-1) — 1 4.

The function Ei(x) and upper-bound e* and e* + Ei(—1) — 1/e

-4

-1.00 =0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
X

Figure 2: The Ei function and two upper-bounds valid respectively on R and [1, 4+00).

This last sum-inequality is the result we were looking for.

Lemma 10 (Sum Inequality Using Ei) For any a,b,y € R and L € N such that a,b > 1, v > 0
and L > 0, and if Ei (y1og(a)) > 0, then

L-1 1 ;
My < ———(a”). 10
> (@) < (@) (10)
=0
And by isolating the last term, we also have
L 1
"< (14— ) (@) 1
Sy < (14 oy ) @) (1)
=0
Proof Using the sum-integral inequality (Lemma 4) and then Lemma 8, we have directly that
L—-1 ) L
Sy < [y ar
i=0 0
1 L 1 L
<—E'< log(a® ><7 Y.
Sraat og(a”)) < 1Ogb(a )
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In particular, this inequality (11) holds as soon as a > €%-373/7 as ~ log(a) > 0.373 > g =
Ei(vlog(a)) > Ei(xo) > 0 and zp ~ 0.372507 > 0.373. For instance, v = 1/2 gives a >
e0-373/7 = 0746 ~ 2 107, close to the simplest value a = 2.

And if v = 0, then Ei(y log(a)) cannot be > 0, but the sum in (10) is constant and equals to L.

7. Conclusion

This small note defines and studies a useful non-canonical function called the “exponential integral”
function, Ei, and we use it to find a bound on any sum of the form S5 (a¥')7.

Note: the simulation code used for the experiments is using Python 3, (Foundation, 2017), and
Matplotlib (Hunter, 2007) for plotting, as well as SciPy (Jones et al., 2001-). It is open-sourced at
github.com/Naereen/notebooks/blob/master/Exponential_Integral_ Python.ipynb.
This document is also distributed under the open-source MIT License, and is available online at
perso.crans.org/besson/publis/A_note_on_the_Ei_function.pdf.
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