
What Doubling Tricks Can and Can’t Do for Multi-Armed Bandits

Lilian Besson† LILIAN.BESSON@CENTRALESUPELEC.FR

CentraleSupélec (campus of Rennes), IETR, SCEE Team,

Avenue de la Boulaie – CS 47601, F-35576 Cesson-Sévigné, France

Emilie Kaufmann EMILIE.KAUFMANN@UNIV-LILLE1.FR

CNRS & Université de Lille, Inria SequeL team

UMR 9189 – CRIStAL, F-59000 Lille, France

Abstract

An online reinforcement learning algorithm is anytime if it does not need to know in advance the

horizon T of the experiment. A well-known technique to obtain an anytime algorithm from any non-

anytime algorithm is the “Doubling Trick”. In the context of adversarial or stochastic multi-armed

bandits, the performance of an algorithm is measured by its regret, and we study two families of

sequences of growing horizons (geometric and exponential) to generalize previously known results

that certain doubling tricks can be used to conserve certain regret bounds. In a broad setting, we

prove that a geometric doubling trick can be used to conserve (minimax) bounds in RT = O(
√
T)

but cannot conserve (distribution-dependent) bounds in RT = O(log T). We give insights as to

why exponential doubling tricks may be better, as they conserve bounds in RT = O(log T), and are

close to conserving bounds in RT = O(
√
T).

Keywords: Multi-Armed Bandits; Anytime Algorithms; Sequential Learning; Doubling Trick.

1. Introduction

Multi-Armed Bandit (MAB) problems are well-studied sequential decision making problems in

which an agent repeatedly chooses an action (the “arm” of a one-armed bandit) in order to maximize

some total reward (Robbins, 1952; Lai and Robbins, 1985). Initial motivation for their study came

from the modeling of clinical trials, as early as 1933 with the seminal work of Thompson (1933).

In this example, arms correspond to different treatments with unknown, random effect. Since then,

MAB models have been proved useful for many more applications, that range from cognitive radio

(Jouini et al., 2009) to online content optimization (e.g., news article recommendation (Li et al.,

2010), online advertising (Chapelle and Li, 2011), A/B Testing (Kaufmann et al., 2014; Yang et al.,

2017)), or portfolio optimization (Sani et al., 2012).

While the number of patients involved in a clinical study (and thus the number of treatments

to select) is often decided in advance, in other contexts the total number of decisions to make (the

horizon T) is unknown. It may correspond to the total number of visitors of a website optimizing

its displays for a certain period of time, or to the number of attempted communications in a smart

radio device. In such cases, it is thus crucial to devise anytime algorithms, that is algorithms that do

no rely on the knowledge of this horizon T to sequentially select arms. A general way to turn any

base algorithm into an anytime algorithm is the use of the so-called Doubling Trick, first proposed

by Auer et al. (1995), that consists in repeatedly running the base algorithm with increasing horizons.

Motivated by the frequent use of this technique and the absence of a generic study of its effect

c© 2018 L. Besson & E. Kaufmann.

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

on the algorithm’s efficiency, this paper investigates in details two families of doubling sequences

(geometric and exponential), and shows that the former should be avoided for stochastic problems.

More formally, a MAB model is a set of K arms, each arm k being associated to a (unknown)

reward stream (Yk,t)t∈N. Fix T a finite (possibly unknown) horizon. At each time step t ∈ {1, . . . , T}
an agent selects an arm A(t) ∈ {1, . . . ,K} and receives as a reward the current value of the associated

reward stream, r(t) := YA(t),t. The agent’s decision strategy (or bandit algorithm) AT := (A(t), t ∈
{1, . . . , T}) is such that A(t) can only rely on the past observations A(1), r(1), . . . , A(t−1), r(t−1),
on external randomness and (possibly) on the knowledge of the horizon T . The objective of the agent

is to find an algorithm A that maximizes the expected cumulated rewards, where the expectation

is taken over the possible randomness used by the algorithm and the possible randomness in the

generation of the rewards stream. In the oblivious case, in which the reward streams are independent

of the algorithm’s choice, this is equivalent to minimizing the regret, defined as

RT (AT) := max
k∈{1,...,K}

E

[
T∑

t=1

(
Yk,t − YA(t),t

)
]
. (1)

This quantity, referred to as pseudo-regret in Bubeck et al. (2012), quantifies the difference

between the expected cumulated reward of the best fixed action, and that of the strategy AT . For the

general adversarial bandit problem (Auer et al., 2002b), in which the rewards streams are arbitrary

(picked by an adversary), a worst-case lower bound has been given. It says that for every algorithm,

there exists (stochastic) reward streams such that the regret is larger than (1/20)
√
KT (Auer et al.,

2002b). Besides, the EXP3 algorithm has been shown to have a regret of order
√
KT log(K).

Much smaller regret may be obtained in stochastic MAB models, in which the reward stream

from each arm k is assumed to be i.i.d., from some (unknown) distribution νk, with mean µk. In

that case, various algorithms have been proposed with problem-dependent regret upper bounds

of the form C(ν) log(T), where C(ν) is a constant that only depend on the arms distributions.

Different assumptions on the arms distributions lead to different problem-dependent constants. In

particular, under some parametric assumptions (e.g., Gaussian distributions, exponential families),

asymptotically optimal algorithms have been proposed and analyzed (e.g., kl-UCB (Cappé et al.,

2013) or Thompson sampling (Agrawal and Goyal, 2012; Kaufmann et al., 2012)), for which the

constant C(ν) obtained in the regret upper bound matches exactly that of the lower bound given

by Lai and Robbins (1985). Under the non-parametric assumption that the νk are bounded in

[0, 1], the regret of the UCB1 algorithm (Auer et al., 2002a) is of the above form with C(ν) =
8 ×∑k:µk>µ∗(µ∗ − µk)

−1, where µ∗ = maxk µk is the mean of the best arm. Like in this last

example, all the available constants C(ν) become very large on “hard” instances, in which some

arms are very close to the best arm. On such instances, C(ν) log(T) may be much larger than the

worst-case (1/20)
√
KT , and distribution-independent guarantees may actually be preferred.

The MOSS algorithm, proposed by Audibert and Bubeck (2009), is the first stochastic bandit

algorithm to enjoy a problem-dependent logarithmic regret and to be optimal in a minimax sense, as

its regret is proved to be upper bounded by
√
KT , for bandit models with rewards in [0, 1]. However

the corresponding constant C(ν) is proportional to K/∆min, where ∆min = mink(µ
∗ − µk) is the

minimal gap, which worsen the constant of UCB1. Another drawback of MOSS is that it is not

anytime. These two shortcoming have been overcame recently in two different works. On the one

hand, the MOSS-anytime algorithm (Degenne and Perchet, 2016) is minimax optimal and anytime,

but its problem-dependent regret does not improve that of MOSS. On the other hand, the kl-UCB++

2

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

algorithm (Ménard and Garivier, 2017) is simultaneously minimax optimal and asymptotically

optimal (i.e., it has the best problem-dependent constant C(ν)), but it is not anytime. A natural

question is thus to know whether a Doubling Trick could overcome this limitation.

This question is the starting point of our comprehensive study of the Doubling Trick: can a

single Doubling Trick be used to preserve both problem-dependent (logarithmic) regret and minimax

(square-root) regret? We answer this question partially, by showing that two different types of

Doubling Trick may actually be needed. In this paper, we investigate how algorithms enjoying regret

guarantees of the generic form

∀T ≥ 1, RT (AT) ≤ c T γ(log(T))δ + o(T γ
(
log(T))δ

)
(2)

may be turned into an anytime algorithm enjoying similar regret guarantees with an appropriate

Doubling Trick. This does not come for free, and we exhibit a “price of Doubling Trick”, that is a

constant factor larger than 1, referred to as a constant manipulative overhead.

The rest of the paper is organized as follows. The Doubling Trick is formally defined in Section 2,

along with a generic tool for its analysis. In Section 3, we present upper and lower bounds on the

regret of algorithms to which a geometric Doubling Trick is applied. Section 4 investigates regret

guarantees that can be obtained for a “faster” exponential Doubling Trick. Experimental results are

then reported in Section 5. Complementary elements of proofs are deferred to the appendix.

2. Doubling Tricks

The Doubling Trick, denoted by DT , is a general procedure to convert a (possibly non-anytime)

algorithm into an anytime algorithm. It is formally stated below as Algorithm 1 and depends on a

non-decreasing diverging doubling sequence (Ti)i∈N (i.e., Ti → ∞ for i → ∞). DT fully restarts

the underlying algorithm A at the beginning of each new sequence (at t = Ti + 1), and run this

algorithm on a sequence of length (Ti − Ti−1).

Input: Bandit algorithm A, and doubling sequence (Ti)i∈N.

1 Let i = 0, and initialize algorithm A(0) = AT0
.

2 for t = 1, . . . , T − 1 do

3 if t > Ti then // Next horizon Ti+1 from the sequence

4 Let i = i+ 1.

5 Initialize algorithm A(i) = ATi−Ti−1
. // Full restart

6 end

7 Play with A(i): play arm A′(t) := A(i)(t− Ti−1), observe reward r(t) = YA′(t),t.

8 end

Algorithm 1: The Generic Doubling Trick Algorithm, A′ = DT (A, (Ti)i∈N).

Related work. The Doubling Trick is a well known idea in online learning, that can be traced

back to Auer et al. (1995). In the literature, the term Doubling Trick usually refers to the geometric

sequence Ti = 2i, in which the horizon is actually doubling, that was popularized by Cesa-Bianchi

and Lugosi (2006) in the context of adversarial bandits. Specific doubling tricks have also been used

for stochastic bandits, for example in the work of Auer and Ortner (2010), which uses the doubling

sequence Ti = 22
i

to turn the UCB-R algorithm into an anytime algorithm.

3

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

Elements of regret analysis. For a sequence (Ti)i∈N, with Ti ∈ N for all i, we denote T−1 = 0,

and T0 is always taken non-zero, T0 > 0 (i.e., T0 ∈ N
∗). We only consider non-decreasing and

diverging sequences (that is, ∀i, Ti+1 ≥ Ti, and Ti → ∞ for i → ∞).

Definition 1 (Last Term LT)

For a non-decreasing diverging sequence (Ti)i∈N and T ∈ N, we can define LT

(
(Ti)i∈N

)
by

∀T ≥ 1, LT

(
(Ti)i∈N

)
:= min {i ∈ N : Ti > T} . (3)

It is simply denoted LT when there is no ambiguity (e.g., if the doubling sequence is chosen).

DT (A) reinitializes its underlying algorithm A at each time Ti, and in generality the total regret

is upper bounded by the regret on each sequence {Ti, . . . , Ti+1 − 1}. By considering the last partial

sequence {TLT−1, . . . , T − 1}, this splitting can be used to get a generic upper bound (UB) by

taking into account a larger last sequence (up to TLT
− 1). And for stochastic bandit models, the

i.i.d. hypothesis on the rewards streams makes the splitting on each sequence an equality, so we

can also get the lower bound (LB) by excluding the last partial sequence. Lemma 2 is proved in

Appendix A.1.

Lemma 2 (Regret Lower and Upper Bounds for DT)

For any bandit model and algorithm A and horizon T , one has the generic upper bound

RT (DT (A, (Ti)i∈N)) ≤
LT∑

i=0

RTi−Ti−1
(ATi−Ti−1

). (LB)

Under a stochastic bandit model, one has furthermore the lower bound

RT (DT (A, (Ti)i∈N)) ≥
LT−1∑

i=0

RTi−Ti−1
(ATi−Ti−1

). (UB)

As expected, the key to obtain regret guarantees for a Doubling Trick algorithm is to carefully

choose the doubling sequence (Ti)i∈N. Empirically, one can verify that sequences with slow growth

gives terrible results, and for example using an arithmetic progression typically gives a linear regret.

Building on this result, we will prove that if A satisfies a certain regret bound (RT = O(T γ),
O((log T)δ), or O(T γ(log T)δ)) then an appropriate anytime version of A with a certain doubling

trick can conserve the regret bound, with an explicit constant multiplicative overhead ℓ > 1. In this

paper, we study in depth two families of sequences: first geometric and then exponential growths.

3. What the Geometric Doubling Trick Can and Can’t Do

We define geometric doubling sequences, and prove that they can be used to conserve bounds in

O
(
T γ(log T)δ

)
with γ > 0 but cannot be used to conserve bounds in O

(
(log T)δ

)
.

Definition 3 (Geometric Growth) For b ∈ R, b > 1 and T0 ∈ N
∗, the geometric sequence

Ti = ⌊T0b
i⌋, ∀i ∈ N is non-decreasing and diverging, and satisfies furthermore

∀T < T0, LT = 0, and ∀T ≥ T0, LT =

⌈
logb

(
T

T0

)⌉
, (4)

∀i > 0, T0(b− 1)bi−1 − 1 ≤ Ti − Ti−1 ≤ 1 + T0(b− 1)bi−1. (5)

Asymptotically for i and T → ∞, Ti = O
(
bi
)

and LT ∼ logb(T) = O(log T).

4

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

3.1. Conserving a Regret Upper Bound with Geometric Horizons

A geometric doubling sequence allows to conserve a minimax bound (i.e., RT = O(
√
T)). It was

suggested, for instance, in (Cesa-Bianchi and Lugosi, 2006, Ex.2.9). We generalize this result in the

following theorem, proved in Appendix A.2, by extending it from
√
T bounds to bounds of the form

T γ(log T)δ for any 0 < γ < 1 and δ ≥ 0. Note that no distinction is done on the case δ = 0 neither

in the expression of the constant overhead, nor in the proof.

Theorem 4 If an algorithm A satisfies RT (AT) ≤ c T γ(log T)δ + f(T), for 0 < γ < 1, δ ≥ 0
and for c > 0, and an increasing function f(t) = o

(
tγ(log t)δ

)
(at t → ∞), then the anytime version

A′ := DT (A, (Ti)i∈N) with the geometric sequence (Ti)i∈N of parameters T0 ∈ N
∗, b > 1 (i.e.,

Ti = ⌊T0b
i⌋) with the condition T0(b− 1) > 1 if δ > 0, satisfies,

RT (A′) ≤ ℓ(γ, δ, T0, b) c T
γ (log T)δ + g(T), (6)

with a increasing function g(t) = o
(
tγ(log t)δ

)
, and a constant overhead ℓ(γ, δ, T0, b) > 1,

ℓ(γ, δ, T0, b) :=

(
log(T0(b− 1) + 1)

log(T0(b− 1))

)δ

× bγ(b− 1)γ

bγ − 1
. (7)

For a fixed γ and δ, minimizing ℓ(γ, δ, T0, b) does not always give a unique solution. On the one

hand, if γ & 0.384, there is a unique solution b∗(γ) > 1 minimizing the
bγ(b−1)γ

bγ−1 term, solution of

bγ+1 − 2b + 1 = 0, but without a closed form if γ is unknown. On the other hand, for any γ, the

term depending on δ tends quickly to 1 when T0 increases.

Practical considerations. Empirically, when γ and δ are fixed and known, there is no need to

minimize ℓ jointly. It can be minimized separately by first minimizing
bγ(b−1)γ

bγ−1 , that is by solving

bγ+1 − 2b+ 1 = 0 numerically (e.g., with Newton’s method), and then by taking T0 large enough so

that the other term is close enough to 1.

For the usual case of γ = 1/2 and δ = 0 (i.e., bounds in
√
T), the optimal choice of b is 3+

√
5

2
leading to ℓ ≃ 3.33, and the usual choice of b = 2 gives ℓ ≃ 3.41 (see Corollary 10 in appendix).

Any large enough T0 gives similar performance, and empirically T0 ≫ K is preferred, as most

algorithms explore each arm once in their first steps (e.g., T0 = 200 for K = 9 for our experiments).

3.2. A Regret Lower Bound with Geometric Horizons

We observe that the constant overhead in Eq. (7) from the previous Theorem 4 blows up when γ goes

to zero, giving the intuition that no geometric doubling trick could be used to preserve a logarithmic

bound (i.e., with γ = 0, δ > 0). This is confirmed by the lower bound given below.

Theorem 5 If A satisfies RT (AT) ≥ c (log T)δ, for c > 0 and δ > 0, and under a certain

stochastic model, then the anytime version A′ := DT (A, (Ti)i∈N) with the geometric sequence

(Ti)i∈N of parameters T0 ∈ N
∗, b > 1 (i.e., Ti = ⌊T0b

i⌋) satisfies this lower bound for a certain

constant c′ > 0, under the same model,

∀T ≥ 1, LT ≥ 2 =⇒ RT (A′) ≥ c′ (log T)δ+1 . (8)

This implies that RT (A′) = Ω((log T)δ+1), which proves that a geometric sequence cannot be used

to conserve a logarithmic regret bound.

5

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

Theorem 5 implies that a geometric sequence cannot1 be used to conserve a finite-horizon

lower bound like RT (AT) ≥ c log(T). A complementary lower bound, stated as Theorem 11 in

Appendix B, shows that if the regret is lower bounded at finite horizon by RT (AT) ≥ c
√
T , then a

comparable lower bound for the Doubling Trick algorithm DT (A), possibly with a larger constant.

This special case (δ = 1) is indeed the most interesting, as in the stochastic case the regret of any

uniformly efficient algorithm is at least logarithmic (Lai and Robbins (1985)), and efficient algorithm

with logarithmic regret have been exhibited. If RT (AT)/log T is bounded, then using a geometric

sequence in the doubling trick algorithm is a bad idea as it guarantees a blow up in the regret, that

is RT (DT (A, (Ti)i∈N)) = Ω((log T)2). This result is the reason we need to consider successive

horizons growing faster than a geometric sequence (i.e., such that log(Ti) ≫ i), like the exponential

sequence, which is studied in Section 4.

3.3. Proof of Theorem 5

Let A′ := DT (A, (Ti)i∈N) and consider a fixed stochastic bandit problem. The lower bound (LB)

from Lemma 2 gives

RT (A′) ≥
LT−1∑

i=0

RTi−Ti−1
(AT=Ti−Ti−1

)

We bound Ti − Ti−1 ≥ T0(b− 1)bi−1 − 1 for any i > 0, thanks to Definition 3, and we can use the

hypothesis on A for each regret term.

≥
LT−1∑

i=0

c(log(Ti − Ti−1))
δ ≥ c

LT−1∑

i=1

(
log
(
T0(b− 1)bi−1 − 1

))δ

= c

LT−2∑

i=0

(
log
(
T0(b− 1)bi − 1

))δ
(with i := i− 1)

Let xi := T0(b− 1)bi > 0. If we have T0(b− 1) > 1 (see below (♣) in Page 7 for a discussion on

the other case), then Lemma 15 (Eq. (26)) gives log(xi − 1) ≥ log(T0(b−1)−1)
log(T0(b−1)) log(xi) as xi > 1. For

lower bounds, there is no need to handle the constants tightly, and we have xi ≥ bi by hypothesis, so

let call this constant c′ = c
(
log(T0(b−1)−1)
log(T0(b−1))

)δ
> 0, and thus it simplifies to

≥ c′
LT−2∑

i=0

(
log(bi)

)δ

A sum-integral minoration for the increasing function t 7→ tδ (as δ > 0) gives
∑LT−2

i=0

(
log(bi)

)δ
=

(log b)δ
∑LT−2

i=1 iδ ≥ (log b)δ
∫ LT−2
0 tδ dt = (log b)δ

δ+1 (LT − 2)δ+1
(if LT ≥ 2), and so

RT (A′) ≥ c′
(log b)δ

δ + 1
(LT − 2)δ+1

1. Note that we only pay one extra log(T) factor, which is bad if δ is small, but not so bad for large δ.

6

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

For the geometric sequence, we know that LT ≥ logb

(
T
T0

)
≥ logb(T), and logb(T)− 2 ∼ logb(T)

at T → ∞ so there exists a constant 0 < c′′ < 1 such that LT − 2 ≥ c′′ logb(T) for T large enough

(≥ 2
b−1), and such that LT ≥ 2. And thus we just proved that there is a constant c′′′ > 0 such that

RT (A′) ≥ c′′′(log T)δ+1 =: g(T).

So this proves that for T large enough, RT (A′) ≥ g(T) with g(T) = O
(
(log T)δ+1

)
, and so

RT (A′) = Ω((log T)δ+1), which also implies that RT (A′) cannot be a O
(
(log T)δ

)
.

(♣) If we do not have the hypothesis T0(b− 1) > 1, the same proof could be done, by observing

that from i ≥ i0 large enough, we have xi ≥ bi−i0 (as soon as bi0 ≥ 1
T0(b−1) > 0, i.e., i0 ≥

⌈− logb(T0(b− 1))⌉ ≥ 1), and so the same arguments can be used, to obtain a sum from i = i0 + 1
instead of from i = 1. For a fixed i0, we also have LT − 2− i0 ≥ c′′ log(T) for a (small enough)

constant c′′, and thus we obtain the same result. �

4. What Can the Exponential Doubling Trick Do?

We define exponential doubling sequences, and prove that they can be used to conserve bounds in

O
(
(log T)δ

)
, unlike the previously studied geometric sequences. Furthermore, we provide elements

showing that they may also conserve bounds in O(T γ) or O
(
T γ(log T)δ

)
.

Definition 6 (Exponential Growth) For a, b ∈ R, a, b > 1, T0 ∈ N
∗, and τ := T0

a ∈ R, the expo-

nential sequence Ti := ⌊τabi⌋, ∀i ∈ N is non-decreasing and diverging, and satisfies furthermore

∀T < T0, LT = 0, and ∀T ≥ T0, LT =

⌈
logb

(
loga

(
T

τ

))⌉
. (9)

Asymptotically for i and T → ∞, Ti = O
(
ab

i
)

and LT ∼ logb(loga(
T
τ)) = O(log log T).

4.1. Conserving a Regret Upper Bound with Exponential Horizons

An exponential doubling sequence allows to conserve a problem-dependent bound on regret (i.e.,

RT = O(log T)). This was already used in particular cases by Auer and Ortner (2010) and more

recently by Liau et al. (2018). We generalize this result in the following theorem.

Theorem 7 If an algorithm A satisfies RT (AT) ≤ c T γ(log T)δ + f(T), for 0 ≤ γ < 1, δ ≥ 0,

and for c > 0, and an increasing function f(t) = o
(
tγ(log t)δ

)
(at t → ∞), then the anytime version

A′ := DT (A, (Ti)i∈N) with the exponential sequence (Ti)i∈N of parameters T0 ∈ N
∗, a, b > 1 (i.e.,

Ti = ⌊T0

a ab
i⌋), satisfies the following inequality,

RT (A′) ≤ ℓ(γ, δ, T0, a, b) c
(
T b
)γ

(log T)δ + g(T). (10)

with an increasing function g(t) = o
(
(tb)γ(log t)δ

)
, and a constant overhead ℓ(γ, δ, T0, a, b) > 0,

ℓ(γ, δ, T0, a, b) :=





(
a
T0

)(b−1)γ
b2δ

bδ−1
> 0 if δ > 0

1 + 1
(log(a))(log(bγ)) > 1 if δ = 0

(11)

7

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

This result first shows that an exponential doubling trick can preserve a logarithmic regret bound

(O(log(T)), which corresponds to γ = 0 and δ = 1), with a multiplicative constant overhead ℓ ≥ 4.

It can further be applied to bounds of the generic form RT = O
(
T γ(log T)δ

)
, but with a significant

overhead as T γ becomes T bγ , additionally to the constant multiplicative overhead ℓ > 0. However,

it is important to notice that for γ > 0, the constant ℓ can be made arbitrarily small (with a large

enough first step T0). This observation is encouraging, and let the authors think that a tighter upper

bound could be proved.

Remark 8 An interesting particular case of Theorem 7 is the following (γ = 0, δ = 1 and f(t) = 0).

RT (AT) ≤ c log(T) =⇒ RT (DT (A, (⌊T bi

0 ⌋)i∈N)) ≤
b2

b− 1
c log(T). (12)

In this upper bound, the optimal choice of b is b = 2, which yields a constant multiplicative overhead

of ℓ(γ = 0, b) = 4. It can be observed that this overhead is twice smaller as the overhead of 8.0625
obtained by (Auer and Ortner, 2010, Sec.4)2.

4.2. A Regret Lower Bound with Exponential Horizons

Assuming the upper bound of Theorem 7 obtained for γ > 0 are tight would lead to think that

exponential doubling tricks cannot preserve minimax regret bounds of the form O(
√
T)). If true,

such a conjecture would need to be supported by a lower bound (a counterpart of Theorem 5).

Theorem 9 provides such a lower bound, but as discussed below, combined with Theorem 7, this

result rather advocates the use of exponential doubling tricks. Theorem 9 is proved in Appendix A.3.

Theorem 9 If A satisfies RT (AT) ≥ c T γ , for c > 0 and 0 < γ ≤ 1, and under a certain

stochastic model, then the anytime version A′ := DT (A, (Ti)i∈N) with the exponential sequence

(Ti)i∈N of parameters T0 ∈ N
∗, a > 1, b > 1 (i.e., Ti = ⌊T0

a ab
i⌋), satisfies this lower bound for a

certain constant c′ > 0, under the same model,

∀T ≥ 1, RT (A′) ≥ c′
(
T

1

b

)γ
. (13)

We already saw that any exponential doubling trick can conserve logarithmic problem-dependent

regret bounds. If we could take b → 1 in the two previous Theorems 7 and 9, both results would

match and prove that there exists an exponential doubling trick that can also be used to conserve

minimax regret bounds. This argument is not so easy to formulate, as b cannot depend on T , but

it supports our belief that exponential doubling tricks are good candidates for (asymptotically)

preserving both problem-dependent and minimax regret bounds.

4.3. Proof of Theorem 7

Let A′ := DT (A, (Ti)i∈N), and consider a fixed bandit problem. We first consider the harder case

of δ > 0, see below in Page 10 in (♠) for the other case. The lower bound (LB) from Lemma 2 gives

RT (A′) ≤
LT∑

i=0

RTi−Ti−1
(AT=Ti−Ti−1

)

2. In Auer and Ortner (2010), the authors obtained an overhead of 258/32 = 8.0625 ≥ 8, as the ratio between the

constants for the log(T) terms, respectively 258 in Th.4.1 and 32 in Th.3.1.

8

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

We bound naively3 Ti − Ti−1 ≤ Ti ≤ T0

a ab
i
, and we can use the hypothesis on A for each regret

term, as f and t 7→ ctγ(log t)δ are non-decreasing for t ≥ 1 (by hypothesis for f and by Lemma 16).

≤
LT∑

i=0

f(Ti) + c

LT∑

i=0

(Ti)
γ (log (Ti))

δ ≤ g1(T) + c

LT∑

i=0

(
T0

a
ab

i

)γ (
log

(
T0

a
ab

i

))δ

The first part is denoted g1(T) :=
∑LT

i=0 f(Ti) and is dealt with Lemma 17: the sum of f(Ti) is

a o
(∑LT

i=0 T
γ
i (log(Ti))

δ
)

, as f(t) = o
(
tγ(log t)δ

)
by hypothesis, and this sum of T γ

i (log(Ti))
δ is

proved below to be bounded by T bγ(log(T))δ. So g1(T) = o
(
T bγ(log T)δ

)
. The second part is

c
(
T0

a

)γ∑LT

i=0

(
ab

i
)γ (

log
(
T0

a ab
i
))δ

. Define log+(x) := max(log(x), 0) ≥ 0, so whether T0

a ≤ 1

or > 1, we always have log
(
T0

a ab
i
)
≤ log+

(
T0

a

)
+log

(
ab

i
)

. Then we can use Lemma 14 (Eq. (23))

to distribute the power on δ (as it is < 1). So
(
log
(
T0

a ab
i
))δ

≤
(
log+

(
T0

a

))δ
+ (log(a))δ

(
bi
)δ

with the convention that 0δ = 0 (even if δ = 0), and so this gives

≤ g1(T) + c

(
T0

a

)γ
[(

log+
(
T0

a

))δ LT∑

i=0

(ab
i

)γ + (log(a))δ
LT∑

i=0

(ab
i

)γ
(
bi
)δ
]

If γ = 0 then the first sum is just LT + 1 = O(log(log(T))) which can be included in g1(T) =
o
(
(log T)δ

)
(still increasing), and so only the second sum has to be bounded, and a geometric

sum gives
∑LT

i=0

(
bi
)δ ≤ bδ

bδ−1
(bLT)δ. But if γ > 0, we can naively bound the first sum by

∑LT

i=0(a
bi)γ ≤ (LT + 1)(ab

LT)γ Observe that ab
LT = (ab

LT −1)b ≤ (a T
T0
)b. So ab

LT = O
(
T b
)

and LT + 1 = O(log(log(T))), thus the first sum is a O
(
T bγ log(log(T))

)
= o
(
T bγ(log T)δ

)
(as

δ > 0). In both cases, the first sum can be included in g2(T) which is still a o
(
T bγ(log T)δ

)
Another

geometric sum bounds the second sum by
∑LT

i=0(a
bi)γ

(
bi
)δ ≤ (ab

LT)γ
∑LT

i=0

(
bi
)δ ≤ bδ

bδ−1
(bLT)δ.

≤ g1(T) + c1(a
bLT)γ(bLT)δ

We identify a constant multiplicative overhead c1 := c
(
T0

a

)γ bδ

bδ−1
(log a)δ > 0. The only term

left which depends on LT is (ab
LT)γ(bLT)δ, and it can be bounded by using bLT = bbLT−1 ≤

b loga(a
T
T0
) = b + b log+a (

T
T0
) ≤ b + b loga(T) (as T ≥ 1), and again with ab

LT ≤ (a T
T0
)b. The

constant part of bLT also gives a O
(
T bγ
)

term, that can be included in g(T) := g2(T) + (a T
T0
)bγ

which is still a o
(
T bγ(log T)δ

)
, and is still increasing as sum of increasing functions. So we can

focus on the last term, and we obtain

≤ g(T) + c1

(
b

log(a)

)δ
[(

a

T0

)b

T b

]γ
(log T)δ

=⇒ RT (A′) ≤ g(T) + ℓ(γ, δ, T0, a, b) cT
bγ (log T)δ with an increasing g(t) = o

(
tbγ (log t)δ

)
.

3. Here, using the more subtle bound Ti − Ti ≤
T0

a
abi−1

(αbi−1

) + 1, with α = ab−1, from Definition 6, does not seem

to help as it becomes too complicated to handle clearly in the log terms.

9

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

So the constant multiplicative overhead ℓ depends on γ and δ as well as on T0, a and b and is

ℓ(γ, δ, T0, a, b) :=

(
a

T0

)(b−1)γ

× b2δ

bδ − 1
> 0, if δ > 0. (14)

If T0 = a, the overhead ℓ(γ, δ, T0, a, b) is minimal at b∗(δ) = 21/δ > 1 and for a minimal value

of minb>1 ℓ(γ, δ, T0, a, b) = 4 (for any δ and γ). Finally, the a/T0 part tends to 0 if T0 → ∞ so the

overhead can be made as small as we want, simply by choosing a T0 large enough (but constant w.r.t.

T).

(♠) Now for the other case of δ = 0, we can start similarly, but instead of bounding naively∑LT

i=0(a
bi)γ by (LT + 1)(ab

LT)γ we use Lemma 13 to get a more subtle bound:
∑LT

i=0(a
bi)γ ≤

aγ +(1+ 1
(log(a))(log(bγ)))(a

bLT)γ . The constant term gets included in g(T), and for the non-constant

part, (ab
LT)γ is handled similarly. Finally we obtain the overhead

ℓ(γ, 0, T0, a, b) := 1 +
1

(log(a))(log(bγ))
> 1. (15)

�

5. Numerical Experiments

We illustrate here the practical cost of using Doubling Trick, for two interesting non-anytime

algorithms that have recently been proposed in the literature: Approximated Finite-Horizon Gittins

indexes, that we refer to as AFHG, by Lattimore (2016) (for Gaussian bandits with known variance)

and kl-UCB++ by Ménard and Garivier (2017) (for Bernoulli bandits).

We first provide some details on these two algorithms, and then illustrate the behavior of Doubling

Tricks applied to these algorithms with different doubling sequences.

5.1. Two Index-Based Algorithms

We denote by Xk(t) :=
∑

s<t YA(s),s✶(A(s) = k) the accumulated rewards from arm k, and

Nk(t) :=
∑

s<t ✶(A(s) = k) the number of times arm k was sampled. Both algorithms A assume

to know the horizon T . They compute an index IAk (t) ∈ R for each arm k ∈ {1, . . . ,K} at

each time step t ∈ {1, . . . , T}, and use the indexes to choose the arm with highest index, i.e.,

A(t) := argmaxk∈{1,...,K} Ik(t) (ties are broken uniformly at random).

• The algorithm AFHG can be applied for Gaussian bandits with variance V (= 1 for our

experiments). Let m(T, t) = T − t+ 1 ≥ 1, and let

IAFHG
k (t) :=

Xk(t)

Nk(t)
+

√√√√√ V

Nk(t)
log


 m(T, t)

Nk(t) log
1/2
(
m(T,t)
Nk(t)

)


. (16)

• The algorithm kl-UCB++ can be applied for bounded rewards in [0, 1], and in particular for

Bernoulli bandits. The binary Kullback-Leibler divergence is kl(x, y) := x log(x/y) + (1−
x) log((1− x)/(1− y)) (for 0 < x, y < 1), and let log+(x) := max(0, log(x)) ≥ 0. Let the

function g(n, T) := log+
(

T
Kn(1 +

(
log+(T

Kn)
)2
)
)

for n ≤ T , and finally let

Ikl-UCB++

k (t) := sup
q∈[0,1]

{
q : kl

(
Xk(t)

Nk(t)
, q

)
≤ g(Nk(t), T)

Nk(t)

}
. (17)

10

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

5.2. Experiments

We present some results from numerical experiments on Bernoulli and Gaussian bandits. More results

are presented in Appendix E. We present in pages 12 and 13 results for K = 9 arms and horizon

T = 45678 (to ensure that no choice of sequence were lucky and had TLT−1 = T or too close to it).

We ran n = 1000 repetitions of the random experiment, either on the same “easy” bandit problem

µ (with evenly spaced means), or on n different random instances µ sampled uniformly in [0, 1]K ,

and we plot the average regret on n simulations. The black line without markers is the (asymptotic)

lower bound in
∑

k 6=k∗(kl(µk, µ
∗))−1 log T , from Lai and Robbins (1985). We consider kl-UCB++

for Bernoulli bandits (Figures 2, 3) or AFHG for Gaussian bandits (Figures 4, 5),

Each doubling trick algorithm uses the same T0 = 200 as a first guess for the horizon. We include

both the non-anytime version that knows the horizon T , and different anytime versions to compare

the choice of doubling trick. To compare against an algorithm that does not need the horizon, we also

include kl-UCB (Cappé et al., 2013) as a baseline for Bernoulli bandits and for Gaussian bandits (in

the Gaussian version, the divergence used is kl(x, y) = (x− y)2/2, and the algorithm is referred to

as UCB). We consider are a geometric doubling sequence with b = 2, and two different exponential

doubling sequences: the “classical” b = 2 and a “slower” one with b = 1.1. Both use a = T0 = 200,

and the last one is using a = 2, b = 2. Despite what was proved theoretically in Theorem 7, using

a = T0 and a large enough T0 improves regarding to using a = 2 and a leading (T0/a) factor.

Another version of the Doubling Trick with “no restart”, denoted DT no-restart, is presented in

Appendix C, but it is only an heuristic and cannot be applied to any algorithm A. Algorithm 2 can be

applied to kl-UCB++ or AFHG for instance, as they use T just as a numerical parameter (see Eqs. 16

and 17), but its first limitation is that it cannot be applied to DMED+ (Honda and Takemura, 2010)

or EXP3++ (Seldin and Lugosi, 2017), or any algorithms based on arm eliminations, for example.

A second limitation is the difficulty to analyze this “no restart” variant, due to the unpredictable

effect on regret of giving non-uniform prior information to the underlying algorithm A on each

successive sequence. An interesting future work would be to analyze it, either in general or for a

specific algorithm like kl-UCB++. Despite its limitations, this heuristic exhibits as expected better

empirical performance than DT , as can be observed in Appendix E.

6. Conclusion

We formalized and studied the well-known “Doubling Trick” for generic multi-armed bandit prob-

lems, that is used to automatically obtain an anytime algorithm from any non-anytime algorithm.

Our results are summarized in Table 1. We show that a geometric doubling can be used to conserve

minimax regret bounds (in
√
T), with a constant overhead (typically ≥ 3.33), but cannot be used

to conserve problem-dependent bounds (in log T), for which a faster doubling sequence is needed.

An exponential doubling sequence can conserve logarithmic regret bounds also with a constant

overhead, but it is still an open question to know if minimax bounds can be obtained for this faster

growing sequence. Partial results of both a lower and an upper bound, for bounds of the generic form

T γ(log T)δ, let use believe in a positive answer.

It is still an open problem to know if an anytime algorithm can be both asymptotically optimal

for the problem-dependent regret (i.e., with the exact constant) and optimal in a minimax regret

(i.e., have a
√
KT regret), but we believe that using a doubling trick on non-anytime algorithms

like kl-UCB++ cannot be the solution. We showed that it cannot work with a geometric doubling

sequence, and conjecture that exponential doubling trick would never bring the right constant either.

11

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

Bound \ Doubling Geometric, Ti = ⌊T0b
i⌋ Exponential, Ti = ⌊T0

a ab
i⌋

(log T)δ

× Known to fail

RT (DT) ≥ c′(log T)1+δ if

RT (AT) ≥ c(log T)δ.

(Theorem 5)

X Known to work, with overhead

ℓ(δ, b) = b2δ

bδ−1
> 1.

(Theorem 7)

T γ

X Known to work, with

overhead

ℓ(γ, b) = bγ(b−1)γ

bγ−1 > 1.

(Theorem 4)

? Partial, best known bound is

c′0(T
1

b)γ ≤ RT (DT ≤ ℓc(T b)γ with

overhead ℓ > 1, if

c0T
γ ≤ RT (AT) ≤ cT γ .

(Theorems 7, 9)

T γ (log T)δ

for both

γ > 0, δ > 0

X Known to work, with

overhead ℓ(γ, δ, T0, b) =(
log(T0(b−1)+1)
log(T0(b−1))

)δ
bγ(b−1)γ

bγ−1 > 1.

(Theorem 4)

? Partial, best known bound is

RT (DT) ≤ ℓc(T b)γ if

RT (AT) ≤ cT γ , with overhead ℓ → 0
for T0 → ∞.

(Theorem 7)

Figure 1: Summary of known positive X and negative × and partial results ?.

0 10000 20000 30000 40000
Time steps t=0. . . T− 1, horizon T=45678

0

100

200

300

400

500

Cu
m

ul
at

ed
 re

gr
et

 R
t
=

tµ
∗
−

t
−
1 ∑ s

=
0

9 ∑ k
=
1µ

k
10

00
[T

k
(s
)]

Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]

KLUCB
KLUCB++ (T=45678)
DT(Ti =200× 2i)[KLUCB++]
DT(Ti =2002i)[KLUCB++]
DT(Ti =2001.1i)[KLUCB++]
DT(Ti = (200/2)22i)[KLUCB++]
Lai & Robbins lower bound = 3.74 log(t)

Figure 2: Regret for DT , for K = 9 Bernoulli arms, horizon T = 45678, n = 1000 repetitions and

µ taken uniformly in [0, 1]K . Geometric doubling (b = 2) and slow exponential doubling (b = 1.1)

are too slow, and short first sequences make the regret blow up in the beginning of the experiment.

At t = 40000 we see clearly the effect of a new sequence for the best doubling trick (Ti = 200× 2i).
As expected, kl-UCB++ outperforms kl-UCB, and if the doubling sequence is growing fast enough

then DT (kl-UCB++) can perform as well as kl-UCB++ (see for t < 40000).

12

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

0 10000 20000 30000 40000
Time steps t=0. . . T− 1, horizon T=45678

0

50

100

150

200

250

300

350

400
Cu

m
ul

at
ed

 re
gr

et
 R

t
=
tµ

∗
−

t
−
1 ∑ s

=
0

9 ∑ k
=
1µ

k
10

00
[T

k
(s
)]

Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4), B(0.5), B(0.6), B(0.7), B(0.8), B(0.9) ∗]

KLUCB
KLUCB++ (T=45678)
DT(Ti =200× 2i)[KLUCB++]
DT(Ti =2002i)[KLUCB++]
DT(Ti =2001.1i)[KLUCB++]
DT(Ti = (200/2)22i)[KLUCB++]
Lai & Robbins lower bound = 7.52 log(t)

Figure 3: Similarly but for µ evenly spaced in [0, 1]K ({0.1, . . . , 0.9}). Both kl-UCB and kl-UCB++

are very efficient on “easy” problems like this one, and we can check visually that they match the

lower bound from Lai and Robbins (1985). As before we check that slow doubling are too slow to

give reasonable performance.

0 10000 20000 30000 40000
Time steps t=0. . . T− 1, horizon T=45678

0

500

1000

1500

2000

2500

Cu
m

ul
at

ed
 re

gr
et

 R
t
=

tµ
∗
−

t
−

1 ∑ s
=

0
9 ∑ k
=

1µ
k

10
00
[T

k
(s
)]

Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: Bayesian MAB, Gaussian with uniform means on [−5, 5]

UCB
ApprFHG(T=45678)
DT(Ti =200× 2i)[ApprFHG]
DT(Ti =2002i)[ApprFHG]
DT(Ti =2001.1i)[ApprFHG]
DT(Ti = (200/2)22i)[ApprFHG]
Lai & Robbins lower bound = 4.06 log(t)

Figure 4: Regret for K = 9 Gaussian arms N (µ, 1), horizon T = 45678, n = 1000 repetitions and

µ taken uniformly in [−5, 5]K and variance V = 1. On “hard” problems like this one, both UCB
and AFHG perform similarly and poorly w.r.t. to the lower bound from Lai and Robbins (1985). As

before we check that geometric doubling (b = 2) and slow exponential doubling (b = 1.1) are too

slow, but a fast enough doubling sequence does give reasonable performance for the anytime AFHG
obtained by Doubling Trick.

13

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

Acknowledgments

This work is supported by the French National Research Agency (ANR), under the project BADASS

(grant coded: N ANR-16-CE40-0002), by the French Ministry of Higher Education and Research

(MENESR) and ENS Paris-Saclay. The authors wish to thank the anonymous reviewers for their

valuable comments that helped to improve the paper.

References

S. Agrawal and N. Goyal. Analysis of Thompson sampling for the Multi-Armed Bandit problem. In

Conference On Learning Theory. PMLR, 2012.

J-Y. Audibert and S. Bubeck. Minimax policies for adversarial and stochastic bandits. In Conference

on Learning Theory, pages 217–226. PMLR, 2009.

P. Auer and R. Ortner. UCB Revisited: Improved Regret Bounds For The Stochastic Multi-Armed

Bandit Problem. Periodica Mathematica Hungarica, 61(1-2):55–65, 2010.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. Gambling in a Rigged Casino: The Adversarial

Multi-Armed Bandit Problem. In Annual Symposium on Foundations of Computer Science, pages

322–331. IEEE, 1995.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time Analysis of the Multi-armed Bandit Problem.

Machine Learning, 47(2):235–256, 2002a.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The Nonstochastic Multiarmed Bandit

Problem. SIAM journal on computing, 32(1):48–77, 2002b.

S. Bubeck, N. Cesa-Bianchi, et al. Regret Analysis of Stochastic and Non-Stochastic Multi-Armed

Bandit Problems. Foundations and Trends R© in Machine Learning, 5(1), 2012.

O. Cappé, A. Garivier, O-A. Maillard, R. Munos, and G. Stoltz. Kullback-Leibler upper confidence

bounds for optimal sequential allocation. Annals of Statistics, 41(3):1516–1541, 2013.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,

2006.

O. Chapelle and L. Li. An Empirical Evaluation of Thompson Sampling. In Advances in Neural

Information Processing Systems, pages 2249–2257. Curran Associates, Inc., 2011.

R. Degenne and V. Perchet. Anytime Optimal Algorithms In Stochastic Multi Armed Bandits. In

International Conference on Machine Learning, pages 1587–1595, 2016.

A. Garivier, E. Kaufmann, and T. Lattimore. On Explore-Then-Commit Strategies. volume 29 of

Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain, 2016.

J. Honda and A. Takemura. An Asymptotically Optimal Bandit Algorithm for Bounded Support

Models. In Conference on Learning Theory, pages 67–79. PMLR, 2010.

W. Jouini, D. Ernst, C. Moy, and J. Palicot. Multi-Armed Bandit Based Policies for Cognitive Radio’s

Decision Making Issues. In International Conference Signals, Circuits and Systems. IEEE, 2009.

14

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

E. Kaufmann, N. Korda, and R. Munos. Thompson Sampling: an Asymptotically Optimal Finite-Time

Analysis, pages 199–213. PMLR, 2012.

E. Kaufmann, O. Cappé, and A. Garivier. On the Complexity of A/B Testing. In Conference on

Learning Theory, pages 461–481. PMLR, 2014.

T. L. Lai and H. Robbins. Asymptotically Efficient Adaptive Allocation Rules. Advances in Applied

Mathematics, 6(1):4–22, 1985.

T. Lattimore. Regret Analysis Of The Finite Horizon Gittins Index Strategy For Multi Armed Bandits.

In Conference on Learning Theory, pages 1214–1245. PMLR, 2016.

L. Li, W. Chu, J. Langford, and R. E. Schapire. A Contextual-Bandit Approach to Personalized News

Article Recommendation. In International Conference on World Wide Web, pages 661–670. ACM,

2010.

D. Liau, E. Price, Z. Song, and G. Yang. Stochastic Multi-Armed Bandits in Constant Space. In

International Conference on Artificial Intelligence and Statistics, 2018.

P. Ménard and A. Garivier. A Minimax and Asymptotically Optimal Algorithm for Stochastic

Bandits. In Algorithmic Learning Theory, volume 76, pages 223–237. PMLR, 2017.

H. Robbins. Some Aspects of the Sequential Design of Experiments. Bulletin of the American

Mathematical Society, 58(5):527–535, 1952.

A. Sani, A. Lazaric, and R. Munos. Risk-Aversion In Multi-Armed Bandits. In Advances in Neural

Information Processing Systems, pages 3275–3283, 2012.

Y. Seldin and G. Lugosi. An Improved Parametrization and Analysis of the EXP3++ Algorithm for

Stochastic and Adversarial Bandits. In Conference on Learning Theory, volume 65, pages 1–17.

PMLR, 2017.

W. R. Thompson. On the Likelihood that One Unknown Probability Exceeds Another in View of the

Evidence of Two Samples. Biometrika, 25, 1933.

F. Yang, A. Ramdas, K. Jamieson, and M. Wainwright. A framework for Multi-A(rmed)/B(andit)

Testing with Online FDR Control. In Advances in Neural Information Processing Systems, pages

5957–5966. Curran Associates, Inc., 2017.

Note: the simulation code used for the experiments is using Python 3. It is open-sourced at

https://GitHub.com/SMPyBandits/SMPyBandits and fully documented at

https://SMPyBandits.GitHub.io.

15

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

Appendix A. Omitted Proofs

We include here the proofs omitted in the main document.

A.1. Proof of Lemma 2, “Regret Lower and Upper Bounds for DT ”

Let A′ denote DT (A, (Ti)i∈N). For every k ∈ {1, . . . ,K},

E

[
T∑

t=1

(Xk,t −XA(t),t)

]
=

LT−1∑

i=0

E




Ti∑

t=Ti−1

(Xk,t −XA(t),t)


+ E




T∑

t=TLT−1

(Xk,t −XA(t),t)




≤
LT−1∑

i=0

max
k∈{1,...,K}

E




Ti∑

t=Ti−1

(Xk,t −XA(t),t)


+ max

k∈{1,...,K}
E




T∑

t=TLT−1

(Xk,t −XA(t),t)




≤
LT−1∑

i=0

RTi−Ti−1

(
A′)+RT−TLT−1

(
A′) .

Thus, by definition of the regret

RT (A′) ≤
LT−1∑

i=0

RTi−Ti−1
(A′) +RT−TLT−1

(A′)

=

LT−1∑

i=0

RTi−Ti−1

(
ATi−Ti−1

)
+RT − TLT−1︸ ︷︷ ︸

≤TLT
−TLT−1

(
ATLT

−TLT−1

)

≤
LT∑

i=0

RTi−Ti−1

(
ATi−Ti−1

)
.

In the stochastic case, it is well known that the regret can be rewritten in the following way,

introducing µk the mean of arm k and µ∗ the mean of the best arm:

RT (A′) = E

[
T∑

t=1

(µ∗ − µA(t))

]

=

LT−1∑

i=0

E




Ti∑

t=Ti−1

(µ∗ − µA(t))


+ E




T∑

t=TLT−1

(µ∗ − µA(t))




=

LT−1∑

i=0

RTi−Ti−1

(
ATi−Ti−1

)
) +RT−TLT−1

(A′)
︸ ︷︷ ︸

≥0

.

and the lower bound follows. �

16

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

A.2. Proof of Theorem 4, “Conserving a Regret Upper Bound with Geometric Horizons”

It is interesting to note that the proof is valid for both the easiest case when δ = 0 (as it was known in

Cesa-Bianchi and Lugosi (2006) for γ = 1/2) and the generic case when δ ≥ 0, with no distinction.

As far as the authors know, this result in its generality with δ ≥ 0 is new.

Proof Let A′ := DT (A, (Ti)i∈N), and consider a fixed bandit problem. The upper bound (UB) from

Lemma 2 gives

RT (A′) ≤
LT∑

i=0

RTi−Ti−1
(AT=Ti−Ti−1

)

We can use the hypothesis on A for each regret term, as f and t 7→ ctγ(log t)δ are non-decreasing

for t ≥ 1 (by hypothesis for f and by Lemma 16).

≤
LT∑

i=0

f(Ti − Ti−1) + cT γ
0 (log T0)

δ + c

LT∑

i=1

(Ti − Ti−1)
γ (log (Ti − Ti−1))

δ

The first part is denoted g1(T) :=
∑LT

i=0 f(Ti − Ti−1) + cT γ
0 (log T0)

δ, it is an increasing function

as a sum of increasing functions, and it is dealt with by using Lemma 17: the sum of f(Ti − Ti−1)

is a o
(∑LT

i=0(Ti − Ti−1)
γ(log(Ti − Ti−1))

δ
)

, as f(t) = o
(
tγ(log t)δ

)
by hypothesis, and this sum

of (Ti − Ti−1)
γ(log(Ti − Ti−1))

δ is proved below to be bounded by c′T γ(log(T))δ for a certain

constant c′ > 0, which gives g1(T) = o
(
T γ(log T)δ

)
. For the second part, we bound Ti − Ti−1 ≤

T0(b− 1)bi−1 + 1 thanks to Definition 3. Moreover, as γ < 1 we can use Lemma 14 (Eq. (23)) to

distribute the power on γ, so (T0(b− 1)bi−1 +1)γ ≤ (T0(b− 1)bi−1)γ +✶(γ 6= 0) (indeed if γ = 0
both sides are equal to 1). This gives

≤ g1(T) + c(T0(b− 1))γ
LT∑

i=1

(bi−1)γ (log(Ti − Ti−1))
δ + c✶(γ 6= 0)

LT∑

i=1

(log(Ti − Ti−1))
δ

If γ 6= 0, the last sum is bounded by
∑LT

i (log Ti)
δ ≤ (log T0)

δ(LT + 1) + (log b)δ
∑LT

i iδ which

is a O
(
Lδ+1
T

)
= O

(
(log T)δ+1

)
= o

(
T γ(log T)δ

)
(as γ > 0, thanks to a geometric sum), and

so it can be included in g2(T) = o
(
T γ(log T)δ

)
. If γ = 0, there is only the first sum. We bound

again Ti − Ti−1 ≤ T0(b − 1)bi−1 + 1 and use Lemma 15 to bound log(T0(b − 1)bi−1 + 1) by
log(T0(b−1)+1)
log(T0(b−1)) log(T0(b− 1)bi−1) term (as T0(b− 1) > 1 by hypothesis).

≤ g2(T) + c(T0(b− 1))γ
LT∑

i=1

(bi−1)γ
(
log(T0(b− 1) + 1)

log(T0(b− 1))
log(T0(b− 1)bi−1)

)δ

We split the log(T0(b− 1)bi−1) term in two, and once again, the term with log(T0(b− 1)) gives a

O
(
bLT−1

)
(by a geometric sum), which gets included in g3(T) = o

(
T γ(log T)δ

)
. We focus on the

fastest term, and we can now rewrite the sum from i = 0 to LT − 1,

≤ g2(T) + c(T0(b− 1))γ
(
log(b)

log(T0(b− 1) + 1)

log(T0(b− 1))

)δ LT−1∑

i=0

(bi)γiδ

17

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

We naively bound iδ by (LT − 1)δ, and use a geometric sum to have

≤ g2(T) + c(T0(b− 1))γ
(
log(b)

log(T0(b− 1) + 1)

log(T0(b− 1))

)δ

(LT − 1)δ
bγ

bγ − 1
(bLT−1)γ

Finally, observe that LT − 1 ≤ logb(
T
T0
) ≤ logb(T), so the (log b)δ term simplifies, and observe that

bLT−1 ≤ T
T0

so the T γ
0 term also simplifies. Thus we get

≤ g2(T) + c

(
log(T0(b− 1) + 1)

log(T0(b− 1))

)δ bγ(b− 1)γ

bγ − 1
T γ(log T)δ.

The constant multiplicative overhead ℓ depends on γ and δ as well as on T0 and b, and is

ℓ(γ, δ, T0, b) :=
(
log(T0(b−1)+1)
log(T0(b−1))

)δ
bγ(b−1)γ

bγ−1 > 1.

Minimizing the constant overhead? This constant overhead has two distinct part, ℓ(γ, δ, T0, b) =
ℓ1(δ, T0, b) ℓ2(γ, b), with ℓ1 depending on δ, T0 and b (equal to 1 if δ = 0), and ℓ2 depending on γ
and b.

• Minimizing this constant overhead ℓ1(δ, T0, b) :=
(
log(T0(b−1)+1)
log(T0(b−1))

)δ
≥ 1 is independent of δ

(even if it is 0). If we assume b to be fixed, ℓ1(δ, T0, b) → 1 when T0 → ∞. Moreover, for

any δ and b > 1, ℓ1(δ, T0, b) goes to 1 very quickly when T0 is large enough. For instance, for

γ = δ = 1
2 and b = 3+

√
5

2 (see Corollary 10), then ℓ1(δ, T0, b) ≃ 1.109 for T0 = 2, ≃ 1.01
for T0 = 10 and ≃ 1.0004 for T0 = 100.

• To minimize this constant overhead ℓ2(γ, b) := bγ(b−1)γ

bγ−1 > 1, we fix γ and study h :

b 7→ ℓ2(γ, b). The function h is of class C1 on (1,∞) and h(b) → +∞ for b → 1+

and b → ∞, so h has a (possibly non-unique) global minimum and attains it. Moreover

h′(b) = γbγ−1(b−1)γ−1

(bγ−1)2

(
bγ+1 − 2b+ 1

)
has the sign of bγ+1 − 2b + 1, which does not have

a constant sign and does not have explicit root(s) for a generic γ. However, it is easy to

minimizing ℓ2(γ, b) for b numerically when γ is known and fixed (with, e.g., Newton’s

method).

The result from Theorem 4 of course implies the result from (Cesa-Bianchi and Lugosi, 2006,

Ex.2.9), in the special case of δ = 0 and γ = 1
2 (for minimax bounds), as stated numerically in the

following Corollary 10.

Corollary 10 If γ = 1
2 and δ = 0, the multiplicative overhead ℓ(12 , 0, T0, b) does not depend on T0.

It is then minimal for b∗(12) =
3+

√
5

2 ≃ 2.62 and its minimum is

√
11+5

√
5

2 ≃ 3.33. Usually b = 2 is

used, which gives an overhead of
√
2√

2−1
≃ 3.41, close to the optimal value.

In particular, order-optimal and optimal algorithms for the minimax bound have γ = 1
2 and

f(t) = 0, for which Theorem 7 gives a simpler bound

RT (AT) ≤ c
√
T =⇒ RT (DT (A, (T02

i)i∈N)) ≤
√
2√

2− 1
c
√
T . (18)

18

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

A.3. Proof of Theorem 9, “Minimax Regret Lower Bound with Exponential Horizons”

Proof Let A′ := DT (A, (Ti)i∈N), and consider a fixed stochastic bandit problem. The lower bound

(LB) from Lemma 2 gives

RT (A′) ≥
LT−1∑

i=0

RTi−Ti−1
(AT=Ti−Ti−1

)

We can use the hypothesis on A for each regret term, and as 0 < γ ≤ 1, we can use Lemma 14

(Eq. (24)) to distribute the power on γ to ease the proof and obtain

≥ cT γ
0 + c

LT−1∑

i=1

(Ti − Ti−1)
γ

≥ cT γ
0 + c

LT−1∑

i=1

(
T γ
i − T γ

i−1

)
(it is a telescopic sum and simplifies)

≥ cT γ
LT−1

Observe that TLT−1 ≥ (TLT
)
1

b by definition of the exponential sequence (Def. 6), and TLT
≥ T

(Def. 1). For the log(TLT−1) term, we simply have log(TLT−1) ≥ 1
b log(T) so if c′ = c/b, then we

obtain what we want

RT (A′) ≥ c′ T
γ
b .

This lower bound goes from RT (AT) = ΩT γ to RT (DT (A)) = ΩT
γ
b , and it looks very similar to

the upper bound from Theorem 7 where RT (DT (A)) = O
(
T bγ
)

was obtained from RT (AT) =
O(T γ).

Remark It does seem sub-optimal to lower bound TLT−1 like this (TLT−1 ≥ (TLT
)
1

b), but we

remind that T can be located anywhere in the discrete interval {TLT−1, . . . , TLT
− 1}, so in the

worst case when T is very close to TLT
(and for large enough T), we indeed have T b

LT−1 ∼ TLT
and

TLT
∼ T , so with this approach, the lower bound TLT−1 ≥ T

1

b cannot be improved.

Appendix B. Minimax Regret Lower Bound with Geometric Horizons

We include here a last result that partly replies to Theorem 4. It is more subtle that the lower bound in

Theorem 5 but still provides an interesting insight: if b is not chosen carefully (i.e., if ℓ0(γ, b) > 1),

then the anytime version of AT using a geometric Doubling Trick suffers a non-improvable constant

multiplicative overhead compared to AT .

Theorem 11 For stochastic models, if A satisfies RT (AT) ≥ c T γ , for 0 < γ < 1 and c > 0,

then the anytime version A′ := DT (A, (Ti)i∈N) with the geometric sequence (Ti)i∈N of parameters

T0 ∈ N
∗, b > 1 (i.e., Ti = ⌊T0b

i⌋) satisfies

LT ≥ 2 =⇒ RT (A′) ≥ ℓ0(γ, b) c T
γ + g0(T). (19)

19

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

with g0(t) = O(log t) = o(tγ), and a constant overhead ℓ0(γ, b) depending only on γ and b,

ℓ0(γ, b) =
(b− 1)γ

bγ(bγ − 1)
> 0. (20)

ℓ0(γ, b) is always > 0 and tends to 0 for b → ∞, and some choice of b gives ℓ0(γ, b) > 1.

Proof Let A′ := DT (A, (Ti)i∈N), and consider a fixed stochastic bandit problem. Assume LT ≥ 2.

The lower bound (LB) from Lemma 2 gives

RT (A′) ≥
LT−1∑

i=0

RTi−Ti−1
(AT=Ti−Ti−1

)

We bound Ti − Ti−1 ≥ T0(b − 1)bi−1 − 1 for i > 0, thanks to Definition 3, and we can use the

hypothesis on A for each regret term. Additionally, we have (Ti−Ti−1)
γ ≥ (T0(b− 1)bi−1− 1)γ ≥

(T0(b− 1))γ(bi−1)γ − 1 by Lemma 14 (Eq. (24), as b > 1 and 0 < γ < 1), thus

≥
LT−1∑

i=0

c(Ti − Ti−1)
γ ≥ cT γ

0 + cT γ
0 (b− 1)γ

LT−1∑

i=1

(bi−1)γ − c

LT−1∑

i=1

1

≥ cT γ
0 + cT γ

0 (b− 1)γ
LT−2∑

i=0

(bi)γ − c(LT − 1)

We have
∑LT−1

i=0 (bi)γ = (bLT−1)γ−1
bγ−1 thanks to a geometric sum (with γ > 0) and thus

≥ cT γ
0 + cT γ

0 (b− 1)γ
(bLT−1)γ − 1

bγ − 1
+ c(1− LT)

Thanks to Definition 3, bLT−1 satisfies bLT−1 ≥ 1
b
T
T0

. Let g0(T) := cT γ
0

(
(b−1)γ

bγ−1 − 1
)
+ c(LT −

1) = O(1) +O
(
logb(

T
T0
)
)
= O(log T) = o(T γ) and g0(T) > 0, then we have

≥ c
(b− 1)γ

bγ(bγ − 1)
T γ −

[
cT γ

0

(
(b− 1)γ

bγ − 1
− 1

)
+ c(LT − 1)

]
.

We obtain as announced, RT (A′) ≥ ℓ0(b) cT
γ + g0(T) with g0(T) = O(log T) = o(T γ).

Maximizing the constant overhead? To maximize4 ℓ0(γ, b) :=
(b−1)γ

bγ(bγ−1) > 0, we fix γ and study

the function h : b 7→ ℓ0(γ, b). The function h is of class C1 on (1,∞) and h(b) → +∞ for

b → 1+ and h(b) → 0 for b → ∞. Moreover h′(b) = −γ (b−1)γ−1

bγ+1(bγ−1)2

(
−2bγ + bγ+1 + 1

)
has the

same sign as f(b) := −
(
−2bγ + bγ+1 + 1

)
. The function f is of class C1, with f(1) = 0 and

f ′(b) = −(γ + 1)(b− 2γ
γ+1)b

γ−1, and as 0 < γ < 1, 2γ
γ+1 < 1 so f ′(b) < 0 for all b > 1. Thus f is

decreasing, and ∀b > 1, f(b) < f(1) = 0. So h′ has a negative sign, and this allows to conclude that

h is decreasing, and so b 7→ ℓ0(γ, b) has no global maximum at fixed γ, and ℓ0 → ∞ if b → 1+.

4. For the largest possible lower bound, we try to maximize the constant overhead in the lower bound.

20

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

Relationship with the upper bound. For any b > 1, we compare ℓ0(γ, b) with ℓ(γ, b) and we see

that, interestingly, ℓ0(γ, b) = ℓ2(γ, b)/b
2γ , with ℓ2(γ, b) from Theorem 4. For the particular case

of γ = 1
2 , this lower bound also leads to another interesting remark: if b is chosen to minimize the

overhead in the upper bound (Theorem 4, b∗(12) =
3+

√
5

2), then this lower bound gives ℓ0(
1
2 , b

∗(12)) =

1 +
√
2
2 ≃ 1.71 > 1, which proves that this choice of geometric doubling trick cannot be used to

conserve an optimal algorithm, i.e., the constant overhead cannot be made as close to 1 as we want.

Appendix C. An Efficient Heuristic, the Doubling Trick with “No Restart”

Let A′ := DT no-restart(A, (Ti)i∈N) denotes the following Algorithm 2. The only difference with

DT (Algorithm 1) is that the history from all the steps from t = 1 to t = Ti is used to reinitialize

the new algorithm A(i). To be more precise, this means that a fresh algorithm A(i) is created, and

then fed with successive observations (A′(s), YA′(s),s) for all 1 ≤ s < t, like if it was playing

from the beginning. Note that A(i) could have chosen a different path of actions, but we give it the

observations from the previous plays of A′.
This obviously cannot be applied to any kind of algorithm A, and for instance any algorithm

based on arm elimination (e.g., Explore-Then-Commit approaches like in Garivier et al. (2016)) will

most surely fail with this approach. This second doubling trick algorithm DT no-restart can be applied

in practice if A is index-based and uses the horizon T as a simple numerical parameter in its indexes,

like it is the case for instance for AFHG (cf. Eq. (16)). or kl-UCB++ (cf. Eq. (17)).

Input: Bandit algorithm A, and sequence (Ti)i∈N

1 Let i = 0, and initialize algorithm A(0) = AT0
.

2 for t = 1, . . . , T do

3 if t > Ti then // Next horizon Ti+1 from the sequence

4 Let i = i+ 1.

5 Initialize algorithm A(i) = ATi−Ti−1
.

6 Update internal memory of A(i) with the history of plays and rewards from Ai−1.

7 end

8 Play with A(i): play arm A′(t) := A(i)(t− Ti), observe reward r(t) = YA′(t),t.

9 end

Algorithm 2: The Non-Restarting Doubling Trick Algorithm, A′ = DT no-restart(A, (Ti)i∈N).

However, it is much harder to state any theoretical result on this heuristic DT no-restart. We

conjecture that a regret upper bound similar to (UB) from Lemma 2 could still be obtained, but

it is still an open problem that the authors do not know how to tackle for a generic algorithm.

The intuition is that starting A(i) with some previous observations from the (same) i.i.d. process

(Yk,s)k∈{1,...,K},s∈N can only improve the performance of A(i), and lead to a smaller regret on the

interval {Ti, . . . , Ti+1 − 1}.

21

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

Appendix D. Basic but Useful Results

All the logarithm log are taken in base e = exp(1) (i.e., natural logarithm ln, but log is preferred for

readability). Logarithms in a basis b > 1 are denoted logb(x) :=
log x
log b , for any x ∈ R, x > 0.

We remind that ⌊x⌋ denotes the integer part of x ∈ R, and for x > 0, that is the unique integer i
such that i ≤ x < i + 1. The only property we use is its definition and the fact that ⌊x⌋ ≤ x. We

also define ⌈x⌉ := 1 + ⌊x⌋ for x ≥ 0, which is the unique integer j such that j − 1 ≤ x < j.

D.1. Weighted Geometric Inequality

Lemma 12 (Weighted Geometric Inequality) For any n ∈ N
∗, b > 1 and δ > 0, and if f is a

function of class C1, non-decreasing and non-negative on [0,∞), we have

n∑

i=0

f(i)(bi)δ ≤ bδ

bδ − 1
f(n)(bn)δ. (21)

Proof By hypothesis, f is non-decreasing, so ∀i ∈ {0, . . . , n}, f(i) ≤ f(n), and so by using the

sum of a geometric sequence, we have

n∑

i=0

f(i)(bi)δ ≤ f(n)

(
n∑

i=0

(bi)δ

)
≤ f(n)

1

bδ − 1
(bn+1)δ =

bδ

bδ − 1

(
f(n)(bn)δ

)
.

f(i) = 1 gives the geometric inequality. Note that if we make δ → 0, the left sum converges to∑n−1
i=0 f(i) and the right term diverges to +∞, making this inequality completely uninformative.

D.2. Another Sum Inequality

This second result is similar to the previous one but for a “doubly exponential” sequence, i.e., ab
i
, as

it also bounds a sum of increasing terms by a constant times its last term.

Lemma 13 For any n ∈ N
∗, a > 1, b > 1 and γ > 0, we have

n∑

i=0

(ab
i

)γ ≤ aγ +

(
1 +

1

(log(a))(log(bγ))

)
(ab

n

)γ = O
(
(ab

n

)γ
)
. (22)

Proof We first isolate both the first and last term in the sum and focus on the from i = 1 sum up to

i = n− 1. As the function t 7→ (ab
t
)γ is increasing for t ≥ 1, we use a sum-integral inequality, and

then the change of variable u := γbt, of Jacobian dt = 1
log b

du
u , gives

n−1∑

i=1

(ab
i

)γ ≤
∫ n

1
aγb

t

dt ≤ 1

log(bγ)

∫ γbn

γb

au

u
du

Now for u ≥ 1, observe that au

u ≤ au, and as γb > 1, we have

≤ 1

log(bγ)

∫ γbn

γb
au du ≤ 1

log(bγ)

1

log(a)
aγb

n

=
1

(log(a))(log(bγ))
(ab

n

)
γ
.

Finally, we obtain as desired,
n∑

i=0
(ab

i
)γ ≤ aγ + (ab

n
)γ + 1

(log(a))(log(bγ))(a
bn)

γ
.

22

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

D.3. Basic Functional Inequalities

These functional inequalities are used in the proof of the main theorems.

Lemma 14 (Generalized Square Root Inequalities) For any x, y ≥ 0 and 0 < δ < 1,

(x+ y)δ ≤ xδ + yδ. (23)

And conversely for any 0 < δ < 1, and x, y ≥ 0, if x ≥ y then

(x− y)δ ≥ xδ − yδ. (24)

Proof Fix y ≥ 0. Let f(x) := (x+y)δ−(xδ+yδ) for x ≥ 0. First, f(0) = yδ−yδ = 0, and as δ > 0,

f is differentiable on [0,∞), with f ′(x) = (log δ)(x+y)δ−(log δ)xδ = (log δ)((x+y)δ−xδ), and

as δ < 1, log δ < 0, and (x+ y)δ ≥ xδ, so f ′(x) ≤ 0 for any x ≥ 0. Therefore, f is non-increasing,

and so ∀x ≥ 0, f(x) ≤ f(0) = 0, so f is non-positive, giving the desired inequality (for any y ≥ 0
and any x ≥ 0).

The second inequality is a direct application of the first one. Assume x ≥ y, and let x′ = x−y ≥
0, then (x′ + y)δ ≤ (x′)δ + yδ. This gives (x− y)δ = (x′)δ ≤ (x′ + y)δ − yδ = xδ − yδ.

Lemma 15 (Bounding log(x−∆)) Let x0 > 1 and 0 < ∆ < x0 (e.g., ∆ ≤ 1), then

∀x ≥ x0,
log(x0 −∆)

log(x0)
log(x) ≤ log(x−∆) ≤ log(x). (25)

With ∆ = 1, it implies that if T0 > 1, b > 1 satisfy T0(b− 1) > 1, then for any i ∈ N, we have

log(T0(b− 1)bi − 1) ≥ log(T0(b− 1)− 1)

log(T0(b− 1))
log(T0(b− 1)bi). (26)

Proof Let f(x) := log(x−∆)
log(x) , defined for x ≥ x0. It is of class C1, and by differentiating, we have

f ′(x) = log(x)−log(x−∆)
x(log x)2

> 0 as log is increasing. So f is increasing, and its minimum is attained at

x = x0, i.e., ∀x ≥ x0, f(x) ≥ f(x0) =
log(x0−∆)
log(x0)

> 0, which gives Eq. (25).

The corollary is immediate but stated explicitly for clarity when used in page 6.

Lemma 16 For any γ > 0 and δ > 0, the function f : x 7→ xγ(log x)δ is increasing on [1,∞).

Proof f is of class C1 on [1,∞). First, if γ > 0, we have f ′(x) = xγ−1(log x)δ−1 (δ + γ log(x)).
So f ′(x) > 0 if and only if δ + γ log(x) ≥ 0, that it x ≥ exp(− δ

γ). But x ≥ 1 and < 0 so f ′(x) is

always positive, and thus f is increasing. Then, if γ = 0, we have f ′(x) = δ 1
x(log x)

δ−1 > 0 as

x > 1 gives log x > 0 and so (log x)δ−1 > 0.

It is also true if γ ≥ 0, δ ≥ 0 if not both are zero simultaneously.

23

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

D.4. Controlling an Unbounded Sum of Dominated Terms

This Lemma is used in the proofs of our upper bounds (Theorems 4 and 7), to handle the sum of

f(Ti) terms. In particular, it can be applied to (Ti) the geometric sequence and g(t) = h(t) = tγ or

g(t) = h(t) = tγ(log t)δ (for Theorem 4) for γ > 0 and δ ≥ 0; or (Ti) the exponential sequence,

g(t) = tγ(log t)δ and h(t) = tbγ(log t)δ (for Theorem 7) for γ ≥ 0 and δ ≥ 0. Note that it would be

obvious if LT was bounded for T → ∞, but a more careful analysis has to be given as LT → ∞.

Lemma 17 Let f , g and h be three positive, diverging and non-decreasing functions on [1,∞),
such that f(t) = o(g(t)) for t → ∞. Let a non-decreasing diverging sequence (Ti)i∈N, and a

diverging sequence (LT)T∈N (i.e., Ti → ∞ for i → ∞ and LT → ∞ if T → ∞), such that there

exists a constant c ≥ 0 satisfying ∀T ≥ 1,
∑LT

i=0 g(Ti) ≤ c× h(T). Then the (unbounded) sum of

dominated terms f(Ti) is still dominated by h(T), i.e.,

f(t) =
T→∞

o(g(t)) and ∃c ≥ 0,

LT∑

i=0

g(Ti) ≤
∀T≥1

c× h(T) =⇒
LT∑

i=0

f(Ti) =
T→∞

o(h(T)) . (27)

Proof By hypothesis, if f is dominated by g, formally f(t) = o(g(t)), then there exists a positive

function ε(t) such that f(t) = g(t)ε(t) and ε(t) → 0 for t → 0. Fix η > 0, as small as we want,

then there exists Tη ≥ 1 such that ∀t ≥ Tη, ε(t) ≤ η. Let iη such that Tiη−1 < Tη ≤ Tiη . Now for

any T ≥ Tη and large enough so that LT ≥ Tη, we can start to split the sum

LT∑

i=0

f(Ti) =

iη−1∑

i=0

f(Ti) +

LT∑

i=iη

f(Ti)

The first sum is naively bounded by iη × f(Tiη−1) as f is increasing, and for the second sum, for

any i ≥ iη, Ti ≥ Tη and so f(Ti) = ε(Ti)g(Ti) ≤ ηg(Ti), thus

≤ iηf(Tiη−1) + η ×




LT∑

i=iη

g(Ti)




The sum is smaller than a sum on a larger interval, as g(Ti) ≥ 0 for any i, and f is increasing so

≤ iηf(Tη) + η

(
LT∑

i=0

g(Ti)

)

But now, f(Tη) ≤ ηg(Tη) by hypothesis, and this sum is smaller than c× h(T) also by hypothesis

≤ iηη × g(Tη) + ηc× h(T) = η (iηg(Tη) + c× h(T))

Finally, we use the hypothesis that h(T) is diverging and as η and Tη are both fixed, there exists a

T̃η ≥ Tη large enough so that iηg(Tη) ≤ h(T) for all T ≥ T̃η. And so we have finally proved that

∀η > 0, ∃T̃η ≥ 1, ∀T ≥ T̃η,

LT∑

i=0

f(Ti) ≤ η(c+ 1)× h(T).

This concludes the proof and shows that
LT∑
i=0

f(Ti) = o(h(T)) as wanted.

24

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

Appendix E. Additional Experiments

We presents additional experiments, for Gaussian bandits and for the heuristic DT no-restart.

E.1. Experiments with Gaussian Bandits (with Known Variance)

We include here another figure for experiments on Gaussian bandits, see Fig. 5.

0 10000 20000 30000 40000
Time steps t=0. . . T− 1, horizon T=45678

0

50

100

150

200

250

300

350

400

Cu
m

ul
at

ed
 re

gr
et

 R
t
=
tµ

∗
−

t
−

1 ∑ s
=

0
9 ∑ k
=

1µ
k

10
00
[T

k
(s
)]

Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [N(−4, 1), N(−3, 1), N(−2, 1), N(−1, 1), N(0, 1), N(1, 1), N(2, 1), N(3, 1), N(4, 1) ∗]

UCB
ApprFHG(T=45678)
DT(Ti =200× 2i)[ApprFHG]
DT(Ti =2002i)[ApprFHG]
DT(Ti =2001.1i)[ApprFHG]
DT(Ti = (200/2)22i)[ApprFHG]
Lai & Robbins lower bound = 5.44 log(t)

Figure 5: Regret for DT , for K = 9 Gaussian arms N (µ, 1), horizon T = 45678, n = 1000
repetitions and µ uniformly spaced in [−5, 5]K . On “easy” problems like this one, both UCB and

AFHG perform similarly and attain near constant regret (identifying the best Gaussian arm is very

easy here as they are sufficiently distinct). Each doubling trick also appear to attain near constant

regret, but geometric doubling (b = 2) and slow exponential doubling (b = 1.1) are slower to

converge and thus less efficient.

E.2. Experiments with DT no-restart

As mentioned previously, the DT no-restart algorithm (Algorithm 2) is only an heuristic so far, as no

theoretical guarantee was proved for it. For the sake of completeness, we also include results from

numerical experiments with it, to compare its performance against the “with restart” version DT .

As expected, DT no-restart enjoys much better empirical performance, and in Figs. 6 and 7 we see

that a geometric or a slow exponential doubling trick with no restart with kl-UCB++ can outperform

kl-UCB and perform similarly to the non-anytime kl-UCB++. But as observed before, the regret

blows up after the beginning of each new sequence if the doubling sequence increase too fast (e.g.,

exponential doubling). Despite what is proved theoretically in Theorem 5, here we observe that the

geometric doubling is the only one to be slow enough to be efficient.

25

WHAT DOUBLING TRICKS CAN AND CAN’T DO FOR MULTI-ARMED BANDITS

0 10000 20000 30000 40000
Time steps t=0. . . T− 1, horizon T=45678

0

100

200

300

400

500

Cu
m

ul
at

ed
 re

gr
et

 R
t
=

tµ
∗
−

t
−
1 ∑ s

=
0

9 ∑ k
=
1µ

k
10

00
[T

k
(s
)]

Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]

KLUCB
KLUCB++ (T=45678)
DTnr(Ti =200× 2i)[KLUCB++]
DTnr(Ti =2002i)[KLUCB++]
DTnr(Ti =2001.1i)[KLUCB++]
DTnr(Ti = (200/2)22i)[KLUCB++]
Lai & Robbins lower bound = 6.81 log(t)

Figure 6: Regret for K = 9 Bernoulli arms, horizon T = 45678, n = 1000 repetitions and µ taken

uniformly in [0, 1]K , for DT no-restart. Geometric doubling (e.g., b = 2) and slow exponential doubling

(e.g., b = 1.1) are too slow, and short first sequences make the regret blow up in the beginning of the

experiment. At t = 40000 we see clearly the effect of a new sequence for the best doubling trick

(Ti = 200 × 2i). As expected, kl-UCB++ outperforms kl-UCB, and if the doubling sequence is

growing fast enough then DT no-restart(kl-UCB
++) can perform as well as kl-UCB++.

0 10000 20000 30000 40000
Time steps t=0. . . T− 1, horizon T=45678

0

20

40

60

80

100

120

140

Cu
m

ul
at

ed
 re

gr
et

 R
t
=
tµ

∗
−

t
−
1 ∑ s

=
0

9 ∑ k
=
1µ

k
10

00
[T

k
(s
)]

Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4), B(0.5), B(0.6), B(0.7), B(0.8), B(0.9) ∗]

KLUCB
KLUCB++ (T=45678)
DTnr(Ti =200× 2i)[KLUCB++]
DTnr(Ti =2002i)[KLUCB++]
DTnr(Ti =2001.1i)[KLUCB++]
DTnr(Ti = (200/2)22i)[KLUCB++]
Lai & Robbins lower bound = 7.52 log(t)

Figure 7: K = 9 Bernoulli arms with µ evenly spaced in [0, 1]K . On easy problems like this

one, both kl-UCB and kl-UCB++ are very efficient, and here the geometric allows the DT no-restart

anytime version of kl-UCB++ to outperform both kl-UCB and kl-UCB++.

26

	Introduction
	Doubling Tricks
	What the Geometric Doubling Trick Can and Can't Do
	Conserving a Regret Upper Bound with Geometric Horizons
	A Regret Lower Bound with Geometric Horizons
	Proof of Theorem 5

	What Can the Exponential Doubling Trick Do?
	Conserving a Regret Upper Bound with Exponential Horizons
	A Regret Lower Bound with Exponential Horizons
	Proof of Theorem 7

	Numerical Experiments
	Two Index-Based Algorithms
	Experiments

	Conclusion
	Omitted Proofs
	Proof of Lemma 2, ``Regret Lower and Upper Bounds for DT''
	Proof of Theorem 4, ``Conserving a Regret Upper Bound with Geometric Horizons''
	Proof of Theorem 9, ``Minimax Regret Lower Bound with Exponential Horizons''

	Minimax Regret Lower Bound with Geometric Horizons
	An Efficient Heuristic, the Doubling Trick with ``No Restart''
	Basic but Useful Results
	Weighted Geometric Inequality
	Another Sum Inequality
	Basic Functional Inequalities
	Controlling an Unbounded Sum of Dominated Terms

	Additional Experiments
	Experiments with Gaussian Bandits (with Known Variance)
	Experiments with DTno-restart

