This small Jupyter notebook is a short experiment, to see if I can implement the some basic Hashing functions, more specifically cryptographic hashing functions, like MD5
, SHA1
, SHA256
, SHA512
etc
And then I want compare my manual implementations with the functions implemented in the hashlib
module in Python standard library.
Ideally, my implementation should work exactly like the reference one, only slower!
hashlib
module in Python standard library.I will copy the API proposed by the hashlib
module in Python standard library, so it will be very easy to compare my implementations with the one provided with your default Python installation.
class Hash(object):
""" Common class for all hash methods.
It copies the one of the hashlib module (https://docs.python.org/3.5/library/hashlib.html).
"""
def __init__(self, *args, **kwargs):
""" Create the Hash object."""
self.name = self.__class__.__name__ # https://docs.python.org/3.5/library/hashlib.html#hashlib.hash.name
self.byteorder = 'little'
self.digest_size = 0 # https://docs.python.org/3.5/library/hashlib.html#hashlib.hash.digest_size
self.block_size = 0 # https://docs.python.org/3.5/library/hashlib.html#hashlib.hash.block_size
def __str__(self):
return self.name
def update(self, arg):
""" Update the hash object with the object arg, which must be interpretable as a buffer of bytes."""
pass
def digest(self):
""" Return the digest of the data passed to the update() method so far. This is a bytes object of size digest_size which may contain bytes in the whole range from 0 to 255."""
return b""
def hexdigest(self):
""" Like digest() except the digest is returned as a string object of double length, containing only hexadecimal digits. This may be used to exchange the value safely in email or other non-binary environments."""
digest = self.digest()
raw = digest.to_bytes(self.digest_size, byteorder=self.byteorder)
format_str = '{:0' + str(2 * self.digest_size) + 'x}'
return format_str.format(int.from_bytes(raw, byteorder='big'))
hashlib
module in Python standard library¶import hashlib
We can check the available algorithms, some of them being guaranteed to be on any platform, some are not.
list(hashlib.algorithms_available)
I will need at least these ones:
assert 'MD5' in hashlib.algorithms_available
assert 'SHA1' in hashlib.algorithms_available
assert 'SHA256' in hashlib.algorithms_available
assert 'SHA224' in hashlib.algorithms_available
assert 'SHA512' in hashlib.algorithms_available
assert 'SHA384' in hashlib.algorithms_available
Lets check that they have the block size and digest size announced:
for name, s in zip(
('MD5', 'SHA1', 'SHA256', 'SHA224', 'SHA512', 'SHA384'),
(hashlib.md5(), hashlib.sha1(), hashlib.sha256(), hashlib.sha224(), hashlib.sha512(), hashlib.sha384())
):
print("For {:<8} : the block size is {:<3} and the digest size is {:<2}.".format(name, s.block_size, s.digest_size))
This "stupid" hashing function will use digest_size
of 128 bytes (= 16 bits), and compute it by ... just looking at the first 128 bytes of the input data.
This is just to check the API and how to read from a bytes buffer.
class HeaderHash(Hash):
""" This "stupid" hashing function will use `digest_size` of 128 bytes, and compute it by ... just looking at the first 128 bytes of the input data.
"""
def __init__(self):
# Common part
self.digest_size = 16
self.block_size = 16
self.name = "Header"
# Specific part
self._data = b""
def update(self, arg):
""" Update the hash object with the object arg, which must be interpretable as a buffer of bytes."""
if len(self._data) == 0:
self._data = arg[:self.block_size]
def digest(self):
""" Return the digest of the data passed to the update() method so far. This is a bytes object of size digest_size which may contain bytes in the whole range from 0 to 255."""
return self._data
Let us try it:
h1 = HeaderHash()
h1
print(h1)
Let us use some toy data, to test here and after.
data = b"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" * 100
h1.update(data)
h1.digest()
Well... It seems to work, even if this first example is stupid.
Let start with a simple one: the MD5 hashing function, from Rivest in 1992.
Instead of writing the complete MD5 algorithm in the class below, I preferred to define here some useful functions, using Bitwise operators.
def MD5_f1(b, c, d):
""" First ternary bitwise operation."""
return ((b & c) | ((~b) & d)) & 0xFFFFFFFF
def MD5_f2(b, c, d):
""" Second ternary bitwise operation."""
return ((b & d) | (c & (~d))) & 0xFFFFFFFF
def MD5_f3(b, c, d):
""" Third ternary bitwise operation."""
return (b ^ c ^ d) & 0xFFFFFFFF
def MD5_f4(b, c, d):
""" Forth ternary bitwise operation."""
return (c ^ (b | (~d))) & 0xFFFFFFFF
def leftrotate(x, c):
""" Left rotate the number x by c bytes."""
x &= 0xFFFFFFFF
return ((x << c) | (x >> (32 - c))) & 0xFFFFFFFF
def leftshift(x, c):
""" Left shift the number x by c bytes."""
return x << c
from math import floor, sin
MD5
class¶It is a direct implementation of the pseudo-code, as given for instance on the Wikipedia page, or the original research article by Rivest.
class MD5(Hash):
"""MD5 hashing, see https://en.wikipedia.org/wiki/MD5#Algorithm."""
def __init__(self):
self.name = "MD5"
self.byteorder = 'little'
self.block_size = 64
self.digest_size = 16
# Internal data
s = [0] * 64
K = [0] * 64
# Initialize s, s specifies the per-round shift amounts
s[ 0:16] = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22]
s[16:32] = [5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20]
s[32:48] = [4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23]
s[48:64] = [6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21]
# Store it
self._s = s
# Use binary integer part of the sines of integers (Radians) as constants:
for i in range(64):
K[i] = floor(2**32 * abs(sin(i + 1))) & 0xFFFFFFFF
# Store it
self._K = K
# Initialize variables:
a0 = 0x67452301 # A
b0 = 0xefcdab89 # B
c0 = 0x98badcfe # C
d0 = 0x10325476 # D
self.hash_pieces = [a0, b0, c0, d0]
def update(self, arg):
s, K = self._s, self._K
a0, b0, c0, d0 = self.hash_pieces
# 1. Pre-processing
data = bytearray(arg)
orig_len_in_bits = (8 * len(data)) & 0xFFFFFFFFFFFFFFFF
# 1.a. Add a single '1' bit at the end of the input bits
data.append(0x80)
# 1.b. Padding with zeros as long as the input bits length ≡ 448 (mod 512)
while len(data) % 64 != 56:
data.append(0)
# 1.c. append original length in bits mod (2 pow 64) to message
data += orig_len_in_bits.to_bytes(8, byteorder='little')
assert len(data) % 64 == 0, "Error in padding"
# 2. Computations
# Process the message in successive 512-bit = 64-bytes chunks:
for offset in range(0, len(data), 64):
# 2.a. 512-bits = 64-bytes chunks
chunks = data[offset : offset + 64]
# 2.b. Break chunk into sixteen 32-bit = 4-bytes words M[j], 0 ≤ j ≤ 15
A, B, C, D = a0, b0, c0, d0
# 2.c. Main loop
for i in range(64):
if 0 <= i <= 15:
F = MD5_f1(B, C, D)
g = i
elif 16 <= i <= 31:
F = MD5_f2(B, C, D)
g = (5 * i + 1) % 16
elif 32 <= i <= 47:
F = MD5_f3(B, C, D)
g = (3 * i + 5) % 16
elif 48 <= i <= 63:
F = MD5_f4(B, C, D)
g = (7 * i) % 16
# Be wary of the below definitions of A, B, C, D
to_rotate = (A + F + K[i] + int.from_bytes(chunks[4*g : 4*g+4], byteorder='little')) & 0xFFFFFFFF
new_B = (B + leftrotate(to_rotate, s[i])) & 0xFFFFFFFF
A, B, C, D = D, new_B, B, C
# Add this chunk's hash to result so far:
a0 = (a0 + A) & 0xFFFFFFFF
b0 = (b0 + B) & 0xFFFFFFFF
c0 = (c0 + C) & 0xFFFFFFFF
d0 = (d0 + D) & 0xFFFFFFFF
# 3. Conclusion
self.hash_pieces = [a0, b0, c0, d0]
def digest(self):
return sum(leftshift(x, (32 * i)) for i, x in enumerate(self.hash_pieces))
We can also write a function to directly compute the hex digest from some bytes data.
def hash_MD5(data):
""" Shortcut function to directly receive the hex digest from MD5(data)."""
h = MD5()
if isinstance(data, str):
data = bytes(data, encoding='utf8')
h.update(data)
return h.hexdigest()
*Note:* [This page helped for debugging](https://rosettacode.org/wiki/MD5/Implementation#Python).
Let us try it:
h2 = MD5()
h2
print(h2)
h2.update(data)
h2.digest()
h2.hexdigest()
Let try the example from MD5 Wikipedia page :
hash_MD5("The quick brown fox jumps over the lazy dog")
assert hash_MD5("The quick brown fox jumps over the lazy dog") == '9e107d9d372bb6826bd81d3542a419d6'
Even a small change in the message will (with overwhelming probability) result in a mostly different hash, due to the avalanche effect. For example, adding a period to the end of the sentence:
hash_MD5("The quick brown fox jumps over the lazy dog.")
assert hash_MD5("The quick brown fox jumps over the lazy dog.") == 'e4d909c290d0fb1ca068ffaddf22cbd0'
The hash of the zero-length string is:
hash_MD5("")
assert hash_MD5("") == 'd41d8cd98f00b204e9800998ecf8427e'
$\implies$ We obtained the same result, OK our function works!
On a small sentence:
hash_MD5("My name is Zorro !")
h = hashlib.md5()
h.update(b"My name is Zorro !")
h.hexdigest()
It starts to look good.
def true_hash_MD5(data):
h = hashlib.md5()
if isinstance(data, str):
data = bytes(data, encoding='utf8')
h.update(data)
return h.hexdigest()
On some random data:
import numpy.random as nr
alphabets = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
def random_string(size=10000):
return ''.join(alphabets[nr.randint(len(alphabets))] for _ in range(size))
random_string(10)
from tqdm import tqdm_notebook as tqdm
%%time
for _ in tqdm(range(1000)):
x = random_string()
assert hash_MD5(x) == true_hash_MD5(x), "Error: x = {} gave two different MD5 hashes: my implementation = {} != hashlib implementation = {}...".format(x, hash_MD5(x), true_hash_MD5(x))
Let now study and implement another hashing function, slightly harder to write but more secure: SHA1, "Secure Hash Algorithm, version 1". See the SHA1 hashing function on Wikipedia, if needed.
For instance, see this nice blog post.
Pretty similar to the ones used for the MD5 algorithm.
def SHA1_f1(b, c, d):
""" First ternary bitwise operation."""
return ((b & c) | ((~b) & d)) & 0xFFFFFFFF
def SHA1_f2(b, c, d):
""" Second ternary bitwise operation."""
return (b ^ c ^ d) & 0xFFFFFFFF
def SHA1_f3(b, c, d):
""" Third ternary bitwise operation."""
return ((b & c) | (b & d) | (c & d) ) & 0xFFFFFFFF
def SHA1_f4(b, c, d):
""" Forth ternary bitwise operation, = SHA1_f1."""
return (b ^ c ^ d) & 0xFFFFFFFF
This is exactly like for MD5.
def leftrotate(x, c):
""" Left rotate the number x by c bytes."""
x &= 0xFFFFFFFF
return ((x << c) | (x >> (32 - c))) & 0xFFFFFFFF
As SHA-1 plays with big-endian and little-endian integers, and at the end it requires a leftshift to combine the 5 hash pieces into one.
def leftshift(x, c):
""" Left shift the number x by c bytes."""
return x << c
SHA1
class¶I will use a simple class, very similar to the class used for the MD5 algorithm (see above). It is a direct implementation of the pseudo-code, as given for instance on the Wikipedia page.
class SHA1(Hash):
"""SHA1 hashing, see https://en.wikipedia.org/wiki/SHA-1#Algorithm."""
def __init__(self):
self.name = "SHA1"
self.byteorder = 'big'
self.block_size = 64
self.digest_size = 20
# Initialize variables
h0 = 0x67452301
h1 = 0xEFCDAB89
h2 = 0x98BADCFE
h3 = 0x10325476
h4 = 0xC3D2E1F0
# Store them
self.hash_pieces = [h0, h1, h2, h3, h4]
def update(self, arg):
h0, h1, h2, h3, h4 = self.hash_pieces
# 1. Pre-processing, exactly like MD5
data = bytearray(arg)
orig_len_in_bits = (8 * len(data)) & 0xFFFFFFFFFFFFFFFF
# 1.a. Add a single '1' bit at the end of the input bits
data.append(0x80)
# 1.b. Padding with zeros as long as the input bits length ≡ 448 (mod 512)
while len(data) % 64 != 56:
data.append(0)
# 1.c. append original length in bits mod (2 pow 64) to message
data += orig_len_in_bits.to_bytes(8, byteorder='big')
assert len(data) % 64 == 0, "Error in padding"
# 2. Computations
# Process the message in successive 512-bit = 64-bytes chunks:
for offset in range(0, len(data), 64):
# 2.a. 512-bits = 64-bytes chunks
chunks = data[offset : offset + 64]
w = [0 for i in range(80)]
# 2.b. Break chunk into sixteen 32-bit = 4-bytes words w[i], 0 ≤ i ≤ 15
for i in range(16):
w[i] = int.from_bytes(chunks[4*i : 4*i + 4], byteorder='big')
# 2.c. Extend the sixteen 32-bit words into eighty 32-bit words
for i in range(16, 80):
w[i] = leftrotate(w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16], 1)
# 2.d. Initialize hash value for this chunk
a, b, c, d, e = h0, h1, h2, h3, h4
# 2.e. Main loop, cf. http://www.faqs.org/rfcs/rfc3174.html
for i in range(80):
if 0 <= i <= 19 :
f = SHA1_f1(b, c, d)
k = 0x5A827999
elif 20 <= i <= 39 :
f = SHA1_f2(b, c, d)
k = 0x6ED9EBA1
elif 40 <= i <= 59 :
f = SHA1_f3(b, c, d)
k = 0x8F1BBCDC
elif 60 <= i <= 79 :
f = SHA1_f4(b, c, d)
k = 0xCA62C1D6
new_a = leftrotate(a, 5) + f + e + k + w[i] & 0xFFFFFFFF
new_c = leftrotate(b, 30)
# Rotate the 5 variables
a, b, c, d, e = new_a, a, new_c, c, d
# Add this chunk's hash to result so far:
h0 = (h0 + a) & 0xFFFFFFFF
h1 = (h1 + b) & 0xFFFFFFFF
h2 = (h2 + c) & 0xFFFFFFFF
h3 = (h3 + d) & 0xFFFFFFFF
h4 = (h4 + e) & 0xFFFFFFFF
# 3. Conclusion
self.hash_pieces = [h0, h1, h2, h3, h4]
def digest(self):
return sum(leftshift(x, 32 * i) for i, x in enumerate(self.hash_pieces[::-1]))
We can also write a function to directly compute the hex digest from some bytes data.
def hash_SHA1(data):
""" Shortcut function to directly receive the hex digest from SHA1(data)."""
h = SHA1()
if isinstance(data, str):
data = bytes(data, encoding='utf8')
h.update(data)
return h.hexdigest()
Let us try it:
h3 = SHA1()
h3
print(h3)
h3.update(data)
h3.digest()
digest = h3.digest()
bin(digest)
len(bin(digest))
h3.hexdigest()
Let try the example from SHA-1 Wikipedia page :
hash_SHA1("The quick brown fox jumps over the lazy dog")
assert hash_SHA1("The quick brown fox jumps over the lazy dog") == '2fd4e1c67a2d28fced849ee1bb76e7391b93eb12'
Even a small change in the message will (with overwhelming probability) result in a mostly different hash, due to the avalanche effect. For example, changing one letter in the sentence:
hash_SHA1("The quick brown fox jumps over the lazy cog")
assert hash_SHA1("The quick brown fox jumps over the lazy cog") == 'de9f2c7fd25e1b3afad3e85a0bd17d9b100db4b3'
The hash of the zero-length string is:
hash_SHA1("")
assert hash_SHA1("") == 'da39a3ee5e6b4b0d3255bfef95601890afd80709'
$\implies$ We obtained the same result, OK our function works!
On a small sentence:
hash_SHA1("My name is Zorro !")
h = hashlib.sha1()
h.update(b"My name is Zorro !")
h.hexdigest()
It starts to look good.
def true_hash_SHA1(data):
h = hashlib.sha1()
if isinstance(data, str):
data = bytes(data, encoding='utf8')
h.update(data)
return h.hexdigest()
On some random data:
random_string(10)
from tqdm import tqdm_notebook as tqdm
%%time
for _ in tqdm(range(1000)):
x = random_string()
assert hash_SHA1(x) == true_hash_SHA1(x), "Error: x = {} gave two different SHA1 hashes: my implementation = {} != hashlib implementation = {}...".format(x, hash_SHA1(x), true_hash_SHA1(x))
Let now study and implement a last hashing function, again slightly harder to write but more secure: SHA-2, "Secure Hash Algorithm, version 2". See the SHA-2 hashing function on Wikipedia, if needed.
This is exactly like for MD5. But SHA-2 requires right-rotate as well.
def leftrotate(x, c):
""" Left rotate the number x by c bytes."""
x &= 0xFFFFFFFF
return ((x << c) | (x >> (32 - c))) & 0xFFFFFFFF
def rightrotate(x, c):
""" Right rotate the number x by c bytes."""
x &= 0xFFFFFFFF
return ((x >> c) | (x << (32 - c))) & 0xFFFFFFFF
As SHA-2 plays with big-endian and little-endian integers, and at the end it requires a leftshift to combine the 5 hash pieces into one.
def leftshift(x, c):
""" Left shift the number x by c bytes."""
return x << c
def rightshift(x, c):
""" Right shift the number x by c bytes."""
return x >> c
SHA2
class¶I will use a simple class, very similar to the class used for the SHA-1 algorithm (see above). It is a direct implementation of the pseudo-code, as given for instance on the Wikipedia page.
I will only implement the simpler one, SHA-256, of digest size of 256 bits. Other variants are SHA-224, SHA-384, SHA-512 (and others include SHA-512/224, SHA-512/256).
class SHA2(Hash):
"""SHA256 hashing, see https://en.wikipedia.org/wiki/SHA-2#Pseudocode."""
def __init__(self):
self.name = "SHA256"
self.byteorder = 'big'
self.block_size = 64
self.digest_size = 32
# Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 ≤ i ≤ 63
# Note 3: The compression function uses 8 working variables, a through h
# Note 4: Big-endian convention is used when expressing the constants in this pseudocode,
# and when parsing message block data from bytes to words, for example,
# the first word of the input message "abc" after padding is 0x61626380
# Initialize hash values:
# (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
h0 = 0x6a09e667
h1 = 0xbb67ae85
h2 = 0x3c6ef372
h3 = 0xa54ff53a
h4 = 0x510e527f
h5 = 0x9b05688c
h6 = 0x1f83d9ab
h7 = 0x5be0cd19
# Initialize array of round constants:
# (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
self.k = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
]
# Store them
self.hash_pieces = [h0, h1, h2, h3, h4, h5, h6, h7]
def update(self, arg):
h0, h1, h2, h3, h4, h5, h6, h7 = self.hash_pieces
# 1. Pre-processing, exactly like MD5
data = bytearray(arg)
orig_len_in_bits = (8 * len(data)) & 0xFFFFFFFFFFFFFFFF
# 1.a. Add a single '1' bit at the end of the input bits
data.append(0x80)
# 1.b. Padding with zeros as long as the input bits length ≡ 448 (mod 512)
while len(data) % 64 != 56:
data.append(0)
# 1.c. append original length in bits mod (2 pow 64) to message
data += orig_len_in_bits.to_bytes(8, byteorder='big')
assert len(data) % 64 == 0, "Error in padding"
# 2. Computations
# Process the message in successive 512-bit = 64-bytes chunks:
for offset in range(0, len(data), 64):
# 2.a. 512-bits = 64-bytes chunks
chunks = data[offset : offset + 64]
w = [0 for i in range(64)]
# 2.b. Break chunk into sixteen 32-bit = 4-bytes words w[i], 0 ≤ i ≤ 15
for i in range(16):
w[i] = int.from_bytes(chunks[4*i : 4*i + 4], byteorder='big')
# 2.c. Extend the first 16 words into the remaining 48
# words w[16..63] of the message schedule array:
for i in range(16, 64):
s0 = (rightrotate(w[i-15], 7) ^ rightrotate(w[i-15], 18) ^ rightshift(w[i-15], 3)) & 0xFFFFFFFF
s1 = (rightrotate(w[i-2], 17) ^ rightrotate(w[i-2], 19) ^ rightshift(w[i-2], 10)) & 0xFFFFFFFF
w[i] = (w[i-16] + s0 + w[i-7] + s1) & 0xFFFFFFFF
# 2.d. Initialize hash value for this chunk
a, b, c, d, e, f, g, h = h0, h1, h2, h3, h4, h5, h6, h7
# 2.e. Main loop, cf. https://tools.ietf.org/html/rfc6234
for i in range(64):
S1 = (rightrotate(e, 6) ^ rightrotate(e, 11) ^ rightrotate(e, 25)) & 0xFFFFFFFF
ch = ((e & f) ^ ((~e) & g)) & 0xFFFFFFFF
temp1 = (h + S1 + ch + self.k[i] + w[i]) & 0xFFFFFFFF
S0 = (rightrotate(a, 2) ^ rightrotate(a, 13) ^ rightrotate(a, 22)) & 0xFFFFFFFF
maj = ((a & b) ^ (a & c) ^ (b & c)) & 0xFFFFFFFF
temp2 = (S0 + maj) & 0xFFFFFFFF
new_a = (temp1 + temp2) & 0xFFFFFFFF
new_e = (d + temp1) & 0xFFFFFFFF
# Rotate the 8 variables
a, b, c, d, e, f, g, h = new_a, a, b, c, new_e, e, f, g
# Add this chunk's hash to result so far:
h0 = (h0 + a) & 0xFFFFFFFF
h1 = (h1 + b) & 0xFFFFFFFF
h2 = (h2 + c) & 0xFFFFFFFF
h3 = (h3 + d) & 0xFFFFFFFF
h4 = (h4 + e) & 0xFFFFFFFF
h5 = (h5 + f) & 0xFFFFFFFF
h6 = (h6 + g) & 0xFFFFFFFF
h7 = (h7 + h) & 0xFFFFFFFF
# 3. Conclusion
self.hash_pieces = [h0, h1, h2, h3, h4, h5, h6, h7]
def digest(self):
# h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7
return sum(leftshift(x, 32 * i) for i, x in enumerate(self.hash_pieces[::-1]))
We can also write a function to directly compute the hex digest from some bytes data.
def hash_SHA2(data):
""" Shortcut function to directly receive the hex digest from SHA2(data)."""
h = SHA2()
if isinstance(data, str):
data = bytes(data, encoding='utf8')
h.update(data)
return h.hexdigest()
Let us try it:
h4 = SHA2()
h4
print(h4)
h4.update(data)
h4.digest()
digest = h4.digest()
bin(digest)
len(bin(digest))
h4.hexdigest()
Let try the example from SHA-2 Wikipedia page :
hash_SHA2("The quick brown fox jumps over the lazy dog")
assert hash_SHA2("The quick brown fox jumps over the lazy dog") == 'd7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592'
Even a small change in the message will (with overwhelming probability) result in a mostly different hash, due to the avalanche effect. For example, adding a period at the end of the sentence:
hash_SHA2("The quick brown fox jumps over the lazy dog.")
assert hash_SHA2("The quick brown fox jumps over the lazy dog.") == 'ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c'
The hash of the zero-length string is:
hash_SHA2("")
assert hash_SHA2("") == 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'
$\implies$ We obtained the same result, OK our function works!
On a small sentence:
hash_SHA2("My name is Zorro !")
h = hashlib.sha256()
h.update(b"My name is Zorro !")
h.hexdigest()
It starts to look good.
def true_hash_SHA2(data):
h = hashlib.sha256()
if isinstance(data, str):
data = bytes(data, encoding='utf8')
h.update(data)
return h.hexdigest()
On some random data:
random_string(10)
from tqdm import tqdm_notebook as tqdm
%%time
for _ in tqdm(range(1000)):
x = random_string()
assert hash_SHA2(x) == true_hash_SHA2(x), "Error: x = {} gave two different SHA2 hashes: my implementation = {} != hashlib implementation = {}...".format(x, hash_SHA2(x), true_hash_SHA2(x))
It can be interesting to compare each hash functions, with respect to its time complexity.
def test_MD5():
x = random_string()
return hash_MD5(x) == true_hash_MD5(x)
%timeit test_MD5()
def test_SHA1():
x = random_string()
return hash_SHA1(x) == true_hash_SHA1(x)
%timeit test_SHA1()
def test_SHA2():
x = random_string()
return hash_SHA2(x) == true_hash_SHA2(x)
%timeit test_SHA2()
As expected, the MD5 hash is the fastest, and SHA-2 is slower than SHA-1.
$\implies$ The more secure, the slowest. Of course.
Now that we have implemented SHA-256, it should be quick to add the SHA-224 variant, which is simply the SHA-256 with different initial values and a shorter digest.
The SHA-512 variant is working with 64-bits words and 1024-bits chunks, instead of 32-bits words and 512-bits chunks, and the SHA-384 is very similar to SHA-512 with different initial values and a shorter digest.
Sorry about the length of this part, I know all these variants are very similar, but I wanted to write them all.
As said on the Wikipedia page:
SHA-224 is identical to SHA-256, except that:
- the initial hash values
h0
throughh7
are different, and- the output is constructed by omitting
h7
.
SHA224
class¶class SHA224(Hash):
"""SHA224 hashing, see https://en.wikipedia.org/wiki/SHA-2#Pseudocode."""
def __init__(self):
self.name = "SHA224"
self.byteorder = 'big'
self.block_size = 64
self.digest_size = 28
# Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 ≤ i ≤ 63
# Note 3: The compression function uses 8 working variables, a through h
# Note 4: Big-endian convention is used when expressing the constants in this pseudocode,
# and when parsing message block data from bytes to words, for example,
# the first word of the input message "abc" after padding is 0x61626380
# Initialize hash values:
# (The second 32 bits of the fractional parts of the square roots of the 9th through 16th primes 23..53)
h0 = 0xc1059ed8
h1 = 0x367cd507
h2 = 0x3070dd17
h3 = 0xf70e5939
h4 = 0xffc00b31
h5 = 0x68581511
h6 = 0x64f98fa7
h7 = 0xbefa4fa4
# Initialize array of round constants:
# (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
self.k = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
]
# Store them
self.hash_pieces = [h0, h1, h2, h3, h4, h5, h6, h7]
def update(self, arg):
h0, h1, h2, h3, h4, h5, h6, h7 = self.hash_pieces
# 1. Pre-processing, exactly like MD5
data = bytearray(arg)
orig_len_in_bits = (8 * len(data)) & 0xFFFFFFFFFFFFFFFF
# 1.a. Add a single '1' bit at the end of the input bits
data.append(0x80)
# 1.b. Padding with zeros as long as the input bits length ≡ 448 (mod 512)
while len(data) % 64 != 56:
data.append(0)
# 1.c. append original length in bits mod (2 pow 64) to message
data += orig_len_in_bits.to_bytes(8, byteorder='big')
assert len(data) % 64 == 0, "Error in padding"
# 2. Computations
# Process the message in successive 512-bit = 64-bytes chunks:
for offset in range(0, len(data), 64):
# 2.a. 512-bits = 64-bytes chunks
chunks = data[offset : offset + 64]
w = [0 for i in range(64)]
# 2.b. Break chunk into sixteen 32-bit = 4-bytes words w[i], 0 ≤ i ≤ 15
for i in range(16):
w[i] = int.from_bytes(chunks[4*i : 4*i + 4], byteorder='big')
# 2.c. Extend the first 16 words into the remaining 48
# words w[16..63] of the message schedule array:
for i in range(16, 64):
s0 = (rightrotate(w[i-15], 7) ^ rightrotate(w[i-15], 18) ^ rightshift(w[i-15], 3)) & 0xFFFFFFFF
s1 = (rightrotate(w[i-2], 17) ^ rightrotate(w[i-2], 19) ^ rightshift(w[i-2], 10)) & 0xFFFFFFFF
w[i] = (w[i-16] + s0 + w[i-7] + s1) & 0xFFFFFFFF
# 2.d. Initialize hash value for this chunk
a, b, c, d, e, f, g, h = h0, h1, h2, h3, h4, h5, h6, h7
# 2.e. Main loop, cf. https://tools.ietf.org/html/rfc6234
for i in range(64):
S1 = (rightrotate(e, 6) ^ rightrotate(e, 11) ^ rightrotate(e, 25)) & 0xFFFFFFFF
ch = ((e & f) ^ ((~e) & g)) & 0xFFFFFFFF
temp1 = (h + S1 + ch + self.k[i] + w[i]) & 0xFFFFFFFF
S0 = (rightrotate(a, 2) ^ rightrotate(a, 13) ^ rightrotate(a, 22)) & 0xFFFFFFFF
maj = ((a & b) ^ (a & c) ^ (b & c)) & 0xFFFFFFFF
temp2 = (S0 + maj) & 0xFFFFFFFF
new_a = (temp1 + temp2) & 0xFFFFFFFF
new_e = (d + temp1) & 0xFFFFFFFF
# Rotate the 8 variables
a, b, c, d, e, f, g, h = new_a, a, b, c, new_e, e, f, g
# Add this chunk's hash to result so far:
h0 = (h0 + a) & 0xFFFFFFFF
h1 = (h1 + b) & 0xFFFFFFFF
h2 = (h2 + c) & 0xFFFFFFFF
h3 = (h3 + d) & 0xFFFFFFFF
h4 = (h4 + e) & 0xFFFFFFFF
h5 = (h5 + f) & 0xFFFFFFFF
h6 = (h6 + g) & 0xFFFFFFFF
h7 = (h7 + h) & 0xFFFFFFFF
# 3. Conclusion
self.hash_pieces = [h0, h1, h2, h3, h4, h5, h6, h7]
def digest(self):
# h0 append h1 append h2 append h3 append h4 append h5 append h6
pieces_without_h7 = self.hash_pieces[:-1]
return sum(leftshift(x, 32 * i) for i, x in enumerate(pieces_without_h7[::-1]))
We can also write a function to directly compute the hex digest from some bytes data.
def hash_SHA224(data):
""" Shortcut function to directly receive the hex digest from SHA224(data)."""
h = SHA224()
if isinstance(data, str):
data = bytes(data, encoding='utf8')
h.update(data)
return h.hexdigest()
Let try the example from SHA-2 Wikipedia page :
def true_hash_SHA224(data):
h = hashlib.sha224()
if isinstance(data, str):
data = bytes(data, encoding='utf8')
h.update(data)
return h.hexdigest()
hash_SHA224("The quick brown fox jumps over the lazy dog")
assert hash_SHA224("The quick brown fox jumps over the lazy dog") == '730e109bd7a8a32b1cb9d9a09aa2325d2430587ddbc0c38bad911525'
assert hash_SHA224("The quick brown fox jumps over the lazy dog") == true_hash_SHA224("The quick brown fox jumps over the lazy dog")
Even a small change in the message will (with overwhelming probability) result in a mostly different hash, due to the avalanche effect. For example, adding a period at the end of the sentence:
hash_SHA224("The quick brown fox jumps over the lazy dog.")
assert hash_SHA224("The quick brown fox jumps over the lazy dog.") == '619cba8e8e05826e9b8c519c0a5c68f4fb653e8a3d8aa04bb2c8cd4c'
assert hash_SHA224("The quick brown fox jumps over the lazy dog.") == true_hash_SHA224("The quick brown fox jumps over the lazy dog.")
The hash of the zero-length string is:
hash_SHA224("")
assert hash_SHA224("") == 'd14a028c2a3a2bc9476102bb288234c415a2b01f828ea62ac5b3e42f'
assert hash_SHA224("") == true_hash_SHA224("")
$\implies$ We obtained the same result, OK our function works!
As said on the Wikipedia page:
SHA-512 is identical in structure to SHA-256, but:
- the message is broken into 1024-bit chunks,
- the initial hash values and round constants are extended to 64 bits,
- there are 80 rounds instead of 64,
- the message schedule array w has 80 64-bit words instead of 64 32-bit words,
- to extend the message schedule array w, the loop is from 16 to 79 instead of from 16 to 63,
- the round constants are based on the first 80 primes 2..409,
- the word size used for calculations is 64 bits long,
- the appended length of the message (before pre-processing), in bits, is a 128-bit big-endian integer, and
- the shift and rotate amounts used are different.
This is exactly like for SHA-256, except we work with 64-bits words instead of 32-bits.
def leftrotate_64(x, c):
""" Left rotate the number x by c bytes, for 64-bits numbers."""
x &= 0xFFFFFFFFFFFFFFFF
return ((x << c) | (x >> (64 - c))) & 0xFFFFFFFFFFFFFFFF
def rightrotate_64(x, c):
""" Right rotate the number x by c bytes, for 64-bits numbers."""
x &= 0xFFFFFFFFFFFFFFFF
return ((x >> c) | (x << (64 - c))) & 0xFFFFFFFFFFFFFFFF
SHA512
class¶class SHA512(Hash):
"""SHA384 hashing, see https://en.wikipedia.org/wiki/SHA-2#Pseudocode."""
def __init__(self):
self.name = "SHA512"
self.byteorder = 'big'
self.block_size = 128
self.digest_size = 64
# Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 ≤ i ≤ 79
# Note 3: The compression function uses 8 working variables, a through h
# Note 4: Big-endian convention is used when expressing the constants in this pseudocode
# Initialize hash values:
# (The second 64 bits of the fractional parts of the square roots of the first 8 primes 2..19)
h0 = 0x6a09e667f3bcc908
h1 = 0xbb67ae8584caa73b
h2 = 0x3c6ef372fe94f82b
h3 = 0xa54ff53a5f1d36f1
h4 = 0x510e527fade682d1
h5 = 0x9b05688c2b3e6c1f
h6 = 0x1f83d9abfb41bd6b
h7 = 0x5be0cd19137e2179
# Initialize array of round constants:
# (first 64 bits of the fractional parts of the cube roots of the first 80 primes 2..409):
self.k = [
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 0x3956c25bf348b538,
0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, 0x12835b0145706fbe,
0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, 0x983e5152ee66dfab,
0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed,
0x53380d139d95b3df, 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, 0x19a4c116b8d2d0c8, 0x1e376c085141ab53,
0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373,
0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 0xca273eceea26619c,
0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, 0x0a637dc5a2c898a6,
0x113f9804bef90dae, 0x1b710b35131c471b, 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817
]
# Store them
self.hash_pieces = [h0, h1, h2, h3, h4, h5, h6, h7]
def update(self, arg):
h0, h1, h2, h3, h4, h5, h6, h7 = self.hash_pieces
# 1. Pre-processing, exactly like MD5
data = bytearray(arg)
orig_len_in_bits = (8 * len(data)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
# 1.a. Add a single '1' bit at the end of the input bits
data.append(0x80)
# 1.b. Padding with zeros as long as the input bits length ≡ 896 (mod 1024)
while len(data) % 128 != 112:
data.append(0)
# 1.c. append original length in bits mod (2 pow 128) to message
data += orig_len_in_bits.to_bytes(16, byteorder='big')
assert len(data) % 128 == 0, "Error in padding"
# 2. Computations
# Process the message in successive 1024-bit = 128-bytes chunks:
for offset in range(0, len(data), 128):
# 2.a. 1024-bits = 128-bytes chunks
chunks = data[offset : offset + 128]
w = [0 for i in range(80)]
# 2.b. Break chunk into sixteen 128-bit = 8-bytes words w[i], 0 ≤ i ≤ 15
for i in range(16):
w[i] = int.from_bytes(chunks[8*i : 8*i + 8], byteorder='big')
# 2.c. Extend the first 16 words into the remaining 64
# words w[16..79] of the message schedule array:
for i in range(16, 80):
s0 = (rightrotate_64(w[i-15], 1) ^ rightrotate_64(w[i-15], 8) ^ rightshift(w[i-15], 7)) & 0xFFFFFFFFFFFFFFFF
s1 = (rightrotate_64(w[i-2], 19) ^ rightrotate_64(w[i-2], 61) ^ rightshift(w[i-2], 6)) & 0xFFFFFFFFFFFFFFFF
w[i] = (w[i-16] + s0 + w[i-7] + s1) & 0xFFFFFFFFFFFFFFFF
# 2.d. Initialize hash value for this chunk
a, b, c, d, e, f, g, h = h0, h1, h2, h3, h4, h5, h6, h7
# 2.e. Main loop, cf. https://tools.ietf.org/html/rfc6234
for i in range(80):
S1 = (rightrotate_64(e, 14) ^ rightrotate_64(e, 18) ^ rightrotate_64(e, 41)) & 0xFFFFFFFFFFFFFFFF
ch = ((e & f) ^ ((~e) & g)) & 0xFFFFFFFFFFFFFFFF
temp1 = (h + S1 + ch + self.k[i] + w[i]) & 0xFFFFFFFFFFFFFFFF
S0 = (rightrotate_64(a, 28) ^ rightrotate_64(a, 34) ^ rightrotate_64(a, 39)) & 0xFFFFFFFFFFFFFFFF
maj = ((a & b) ^ (a & c) ^ (b & c)) & 0xFFFFFFFFFFFFFFFF
temp2 = (S0 + maj) & 0xFFFFFFFFFFFFFFFF
new_a = (temp1 + temp2) & 0xFFFFFFFFFFFFFFFF
new_e = (d + temp1) & 0xFFFFFFFFFFFFFFFF
# Rotate the 8 variables
a, b, c, d, e, f, g, h = new_a, a, b, c, new_e, e, f, g
# Add this chunk's hash to result so far:
h0 = (h0 + a) & 0xFFFFFFFFFFFFFFFF
h1 = (h1 + b) & 0xFFFFFFFFFFFFFFFF
h2 = (h2 + c) & 0xFFFFFFFFFFFFFFFF
h3 = (h3 + d) & 0xFFFFFFFFFFFFFFFF
h4 = (h4 + e) & 0xFFFFFFFFFFFFFFFF
h5 = (h5 + f) & 0xFFFFFFFFFFFFFFFF
h6 = (h6 + g) & 0xFFFFFFFFFFFFFFFF
h7 = (h7 + h) & 0xFFFFFFFFFFFFFFFF
# 3. Conclusion
self.hash_pieces = [h0, h1, h2, h3, h4, h5, h6, h7]
def digest(self):
# h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7
return sum(leftshift(x, 64 * i) for i, x in enumerate(self.hash_pieces[::-1]))
We can also write a function to directly compute the hex digest from some bytes data.
def hash_SHA512(data):
""" Shortcut function to directly receive the hex digest from SHA512(data)."""
h = SHA512()
if isinstance(data, str):
data = bytes(data, encoding='utf8')
h.update(data)
return h.hexdigest()
Let try the example from SHA-2 Wikipedia page :
def true_hash_SHA512(data):
h = hashlib.sha512()
if isinstance(data, str):
data = bytes(data, encoding='utf8')
h.update(data)
return h.hexdigest()
hash_SHA512("The quick brown fox jumps over the lazy dog")
assert hash_SHA512("The quick brown fox jumps over the lazy dog") == true_hash_SHA512("The quick brown fox jumps over the lazy dog")
Even a small change in the message will (with overwhelming probability) result in a mostly different hash, due to the avalanche effect. For example, adding a period at the end of the sentence:
hash_SHA512("The quick brown fox jumps over the lazy dog.")
assert hash_SHA512("The quick brown fox jumps over the lazy dog.") == true_hash_SHA512("The quick brown fox jumps over the lazy dog.")
The hash of the zero-length string is:
hash_SHA512("")
assert hash_SHA512("") == 'cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e'
assert hash_SHA512("") == true_hash_SHA512("")
$\implies$ We obtained the same result, OK our function works!
As said on the Wikipedia page:
SHA-384 is identical to SHA-512, except that:
- the initial hash values h0 through h7 are different (taken from the 9th through 16th primes), and
- the output is constructed by omitting h6 and h7.
SHA384
class¶class SHA384(Hash):
"""SHA384 hashing, see https://en.wikipedia.org/wiki/SHA-2#Pseudocode."""
def __init__(self):
self.name = "SHA384"
self.byteorder = 'big'
self.block_size = 96
self.digest_size = 48
# Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 ≤ i ≤ 79
# Note 3: The compression function uses 8 working variables, a through h
# Note 4: Big-endian convention is used when expressing the constants in this pseudocode
# Initialize hash values:
# (The second 64 bits of the fractional parts of the square roots of the first 9th through 16th primes 23..53)
h0 = 0xcbbb9d5dc1059ed8
h1 = 0x629a292a367cd507
h2 = 0x9159015a3070dd17
h3 = 0x152fecd8f70e5939
h4 = 0x67332667ffc00b31
h5 = 0x8eb44a8768581511
h6 = 0xdb0c2e0d64f98fa7
h7 = 0x47b5481dbefa4fa4
# Initialize array of round constants:
# (first 64 bits of the fractional parts of the cube roots of the first 80 primes 2..409):
self.k = [
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 0x3956c25bf348b538,
0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, 0x12835b0145706fbe,
0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, 0x983e5152ee66dfab,
0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed,
0x53380d139d95b3df, 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, 0x19a4c116b8d2d0c8, 0x1e376c085141ab53,
0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373,
0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 0xca273eceea26619c,
0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, 0x0a637dc5a2c898a6,
0x113f9804bef90dae, 0x1b710b35131c471b, 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817
]
# Store them
self.hash_pieces = [h0, h1, h2, h3, h4, h5, h6, h7]
def update(self, arg):
h0, h1, h2, h3, h4, h5, h6, h7 = self.hash_pieces
# 1. Pre-processing, exactly like MD5
data = bytearray(arg)
orig_len_in_bits = (8 * len(data)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
# 1.a. Add a single '1' bit at the end of the input bits
data.append(0x80)
# 1.b. Padding with zeros as long as the input bits length ≡ 896 (mod 1024)
while len(data) % 128 != 112:
data.append(0)
# 1.c. append original length in bits mod (2 pow 128) to message
data += orig_len_in_bits.to_bytes(16, byteorder='big')
assert len(data) % 128 == 0, "Error in padding"
# 2. Computations
# Process the message in successive 1024-bit = 128-bytes chunks:
for offset in range(0, len(data), 128):
# 2.a. 1024-bits = 128-bytes chunks
chunks = data[offset : offset + 128]
w = [0 for i in range(80)]
# 2.b. Break chunk into sixteen 128-bit = 8-bytes words w[i], 0 ≤ i ≤ 15
for i in range(16):
w[i] = int.from_bytes(chunks[8*i : 8*i + 8], byteorder='big')
# 2.c. Extend the first 16 words into the remaining 64
# words w[16..79] of the message schedule array:
for i in range(16, 80):
s0 = (rightrotate_64(w[i-15], 1) ^ rightrotate_64(w[i-15], 8) ^ rightshift(w[i-15], 7)) & 0xFFFFFFFFFFFFFFFF
s1 = (rightrotate_64(w[i-2], 19) ^ rightrotate_64(w[i-2], 61) ^ rightshift(w[i-2], 6)) & 0xFFFFFFFFFFFFFFFF
w[i] = (w[i-16] + s0 + w[i-7] + s1) & 0xFFFFFFFFFFFFFFFF
# 2.d. Initialize hash value for this chunk
a, b, c, d, e, f, g, h = h0, h1, h2, h3, h4, h5, h6, h7
# 2.e. Main loop, cf. https://tools.ietf.org/html/rfc6234
for i in range(80):
S1 = (rightrotate_64(e, 14) ^ rightrotate_64(e, 18) ^ rightrotate_64(e, 41)) & 0xFFFFFFFFFFFFFFFF
ch = ((e & f) ^ ((~e) & g)) & 0xFFFFFFFFFFFFFFFF
temp1 = (h + S1 + ch + self.k[i] + w[i]) & 0xFFFFFFFFFFFFFFFF
S0 = (rightrotate_64(a, 28) ^ rightrotate_64(a, 34) ^ rightrotate_64(a, 39)) & 0xFFFFFFFFFFFFFFFF
maj = ((a & b) ^ (a & c) ^ (b & c)) & 0xFFFFFFFFFFFFFFFF
temp2 = (S0 + maj) & 0xFFFFFFFFFFFFFFFF
new_a = (temp1 + temp2) & 0xFFFFFFFFFFFFFFFF
new_e = (d + temp1) & 0xFFFFFFFFFFFFFFFF
# Rotate the 8 variables
a, b, c, d, e, f, g, h = new_a, a, b, c, new_e, e, f, g
# Add this chunk's hash to result so far:
h0 = (h0 + a) & 0xFFFFFFFFFFFFFFFF
h1 = (h1 + b) & 0xFFFFFFFFFFFFFFFF
h2 = (h2 + c) & 0xFFFFFFFFFFFFFFFF
h3 = (h3 + d) & 0xFFFFFFFFFFFFFFFF
h4 = (h4 + e) & 0xFFFFFFFFFFFFFFFF
h5 = (h5 + f) & 0xFFFFFFFFFFFFFFFF
h6 = (h6 + g) & 0xFFFFFFFFFFFFFFFF
h7 = (h7 + h) & 0xFFFFFFFFFFFFFFFF
# 3. Conclusion
self.hash_pieces = [h0, h1, h2, h3, h4, h5, h6, h7]
def digest(self):
# h0 append h1 append h2 append h3 append h4 append h5
hash_pieces_without_67 = self.hash_pieces[:-2]
return sum(leftshift(x, 64 * i) for i, x in enumerate(hash_pieces_without_67[::-1]))
We can also write a function to directly compute the hex digest from some bytes data.
def hash_SHA384(data):
""" Shortcut function to directly receive the hex digest from SHA384(data)."""
h = SHA384()
if isinstance(data, str):
data = bytes(data, encoding='utf8')
h.update(data)
return h.hexdigest()
Let try the example from SHA-2 Wikipedia page :
def true_hash_SHA384(data):
h = hashlib.sha384()
if isinstance(data, str):
data = bytes(data, encoding='utf8')
h.update(data)
return h.hexdigest()
hash_SHA384("The quick brown fox jumps over the lazy dog")
assert hash_SHA384("The quick brown fox jumps over the lazy dog") == true_hash_SHA384("The quick brown fox jumps over the lazy dog")
Even a small change in the message will (with overwhelming probability) result in a mostly different hash, due to the avalanche effect. For example, adding a period at the end of the sentence:
hash_SHA384("The quick brown fox jumps over the lazy dog.")
assert hash_SHA384("The quick brown fox jumps over the lazy dog.") == true_hash_SHA384("The quick brown fox jumps over the lazy dog.")
The hash of the zero-length string is:
hash_SHA384("")
assert hash_SHA384("") == '38b060a751ac96384cd9327eb1b1e36a21fdb71114be07434c0cc7bf63f6e1da274edebfe76f65fbd51ad2f14898b95b'
assert hash_SHA384("") == true_hash_SHA384("")
$\implies$ We obtained the same result, OK our function works!
def test_SHA224():
x = random_string()
return hash_SHA224(x) == true_hash_SHA224(x)
%timeit test_SHA224()
def test_SHA512():
x = random_string()
return hash_SHA512(x) == true_hash_SHA512(x)
%timeit test_SHA512()
def test_SHA384():
x = random_string()
return hash_SHA384(x) == true_hash_SHA384(x)
%timeit test_SHA384()
SHA512
and SHA384
are slower than SHA256
obviously, but it's weird that SHA224
is slower than the 64-bits versions...
Well, it was fun and interesting to implement these hashing functions, manually. Using Python made it easy!
Note that a Python 2 library implementing manually all these hashing functions already exist:
pysha2
, by @thomdixon. (I discovered it after writing this notebook!)
"SHA" is pronouced like the French word "chat", which means cat.
See my GitHub
notebooks
project for others notebooks.