(**************************************************************************) (* *) (* OCaml *) (* *) (* Benedikt Meurer, University of Siegen *) (* *) (* Copyright 1998 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* Copyright 2012 Benedikt Meurer. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Description of the ARM processor *) open Misc open Cmm open Reg open Arch open Mach (* Instruction selection *) let word_addressed = false (* Registers available for register allocation *) (* Integer register map: r0 - r3 general purpose (not preserved) r4 - r7 general purpose (preserved) r8 trap pointer (preserved) r9 platform register, usually reserved r10 allocation pointer (preserved) r11 domain state pointer (preserved) r12 intra-procedural scratch register (not preserved) r13 stack pointer r14 return address r15 program counter Floating-point register map (VFPv{2,3}): d0 - d7 general purpose (not preserved) d8 - d15 general purpose (preserved) d16 - d31 general purpose (not preserved), VFPv3 only *) let int_reg_name = [| "r0"; "r1"; "r2"; "r3"; "r4"; "r5"; "r6"; "r7"; "r12" |] let float_reg_name = [| "d0"; "d1"; "d2"; "d3"; "d4"; "d5"; "d6"; "d7"; "d8"; "d9"; "d10"; "d11"; "d12"; "d13"; "d14"; "d15"; "d16"; "d17"; "d18"; "d19"; "d20"; "d21"; "d22"; "d23"; "d24"; "d25"; "d26"; "d27"; "d28"; "d29"; "d30"; "d31" |] (* We have three register classes: 0 for integer registers 1 for VFPv2 and VFPv3-D16 2 for VFPv3 This way we can choose between VFPv2/VFPv3-D16 and VFPv3 at (ocamlopt) runtime using command line switches. *) let num_register_classes = 3 let register_class r = match (r.typ, !fpu) with | (Val | Int | Addr), _ -> 0 | Float, VFPv2 -> 1 | Float, VFPv3_D16 -> 1 | Float, _ -> 2 let num_available_registers = [| 9; 16; 32 |] let first_available_register = [| 0; 100; 100 |] let register_name r = if r < 100 then int_reg_name.(r) else float_reg_name.(r - 100) let rotate_registers = true (* Representation of hard registers by pseudo-registers *) let hard_int_reg = let v = Array.make 9 Reg.dummy in for i = 0 to 8 do v.(i) <- Reg.at_location Int (Reg i) done; v let hard_float_reg = let v = Array.make 32 Reg.dummy in for i = 0 to 31 do v.(i) <- Reg.at_location Float (Reg(100 + i)) done; v let all_phys_regs = Array.append hard_int_reg hard_float_reg let phys_reg n = if n < 100 then hard_int_reg.(n) else hard_float_reg.(n - 100) let stack_slot slot ty = Reg.at_location ty (Stack slot) (* Calling conventions *) let loc_int last_int make_stack int ofs = if !int <= last_int then begin let l = phys_reg !int in incr int; l end else begin let l = stack_slot (make_stack !ofs) Int in ofs := !ofs + size_int; l end let loc_float last_float make_stack float ofs = assert (abi = EABI_HF); assert (!fpu >= VFPv2); if !float <= last_float then begin let l = phys_reg !float in incr float; l end else begin ofs := Misc.align !ofs size_float; let l = stack_slot (make_stack !ofs) Float in ofs := !ofs + size_float; l end let loc_int_pair last_int make_stack int ofs = (* 64-bit quantities split across two registers must either be in a consecutive pair of registers where the lowest numbered is an even-numbered register; or in a stack slot that is 8-byte aligned. *) int := Misc.align !int 2; if !int <= last_int - 1 then begin let reg_lower = phys_reg !int in let reg_upper = phys_reg (1 + !int) in int := !int + 2; [| reg_lower; reg_upper |] end else begin let size_int64 = size_int * 2 in ofs := Misc.align !ofs size_int64; let stack_lower = stack_slot (make_stack !ofs) Int in let stack_upper = stack_slot (make_stack (size_int + !ofs)) Int in ofs := !ofs + size_int64; [| stack_lower; stack_upper |] end let calling_conventions first_int last_int first_float last_float make_stack arg = let loc = Array.make (Array.length arg) Reg.dummy in let int = ref first_int in let float = ref first_float in let ofs = ref 0 in for i = 0 to Array.length arg - 1 do match arg.(i) with | Val | Int | Addr -> loc.(i) <- loc_int last_int make_stack int ofs | Float -> loc.(i) <- loc_float last_float make_stack float ofs done; (loc, Misc.align !ofs 8) (* keep stack 8-aligned *) let incoming ofs = Incoming ofs let outgoing ofs = Outgoing ofs let not_supported _ofs = fatal_error "Proc.loc_results: cannot call" (* OCaml calling convention: first integer args in r0...r7 first float args in d0...d15 (EABI+VFP) remaining args on stack. Return values in r0...r7 or d0...d15. *) let max_arguments_for_tailcalls = 8 let loc_arguments arg = calling_conventions 0 7 100 115 outgoing arg let loc_parameters arg = let (loc, _) = calling_conventions 0 7 100 115 incoming arg in loc let loc_results res = let (loc, _) = calling_conventions 0 7 100 115 not_supported res in loc (* C calling convention: first integer args in r0...r3 first 64-bit integer args in r0-r1, r2-r3 first float args in d0...d7 (EABI+VFP) first float args in r0-r1, r2-r3 (soft FP) remaining args on stack. Return values in r0, r0-r1, or d0. *) let external_calling_conventions first_int last_int first_float last_float make_stack ty_args = let loc = Array.make (List.length ty_args) [| Reg.dummy |] in let int = ref first_int in let float = ref first_float in let ofs = ref 0 in List.iteri (fun i ty_arg -> match ty_arg with | XInt | XInt32 -> loc.(i) <- [| loc_int last_int make_stack int ofs |] | XInt64 -> loc.(i) <- loc_int_pair last_int make_stack int ofs | XFloat -> loc.(i) <- (if abi = EABI_HF then [| loc_float last_float make_stack float ofs |] else loc_int_pair last_int make_stack int ofs)) ty_args; (loc, Misc.align !ofs 8) (* keep stack 8-aligned *) let loc_external_arguments ty_args = external_calling_conventions 0 3 100 107 outgoing ty_args let loc_external_results res = let (loc, _) = calling_conventions 0 1 100 100 not_supported res in loc let loc_exn_bucket = phys_reg 0 (* See "DWARF for the ARM architecture" available from developer.arm.com. *) let int_dwarf_reg_numbers = [| 0; 1; 2; 3; 4; 5; 6; 7; 12 |] let float_dwarf_reg_numbers_legacy = [| 64; 65; 66; 67; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78; 79; 80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90; 91; 92; 93; 94; 95; |] let float_dwarf_reg_numbers = [| 256; 257; 258; 259; 260; 261; 262; 263; 264; 265; 266; 267; 268; 269; 270; 271; 272; 273; 274; 275; 276; 277; 278; 279; 280; 281; 282; 283; 284; 285; 286; 287; |] let dwarf_register_numbers ~reg_class = match reg_class with | 0 -> int_dwarf_reg_numbers | 1 -> (* Section 3.1 note 4 says that the "new" VFPv3 register numberings (as per [float_dwarf_reg_numbers]) should be used for VFPv2 as well. However we believe that for <= ARMv6 we should use the legacy VFPv2 numberings. *) if !arch <= ARMv6 then float_dwarf_reg_numbers_legacy else float_dwarf_reg_numbers | 2 -> float_dwarf_reg_numbers | _ -> Misc.fatal_errorf "Bad register class %d" reg_class let stack_ptr_dwarf_register_number = 13 (* Volatile registers: none *) let regs_are_volatile _rs = false (* Registers destroyed by operations *) let destroyed_at_alloc = (* r0-r6, d0-d15 preserved *) Array.of_list (List.map phys_reg [7;8; 116;117;118;119;120;121;122;123; 124;125;126;127;128;129;130;131]) let destroyed_at_c_call = Array.of_list (List.map phys_reg (match abi with EABI -> (* r4-r7 preserved *) [0;1;2;3;8; 100;101;102;103;104;105;106;107; 108;109;110;111;112;113;114;115; 116;117;118;119;120;121;122;123; 124;125;126;127;128;129;130;131] | EABI_HF -> (* r4-r7, d8-d15 preserved *) [0;1;2;3;8; 100;101;102;103;104;105;106;107; 116;117;118;119;120;121;122;123; 124;125;126;127;128;129;130;131])) let destroyed_at_oper = function Iop(Icall_ind | Icall_imm _) | Iop(Iextcall { alloc = true; _ }) -> all_phys_regs | Iop(Iextcall { alloc = false; _}) -> destroyed_at_c_call | Iop(Ialloc _) -> destroyed_at_alloc | Iop(Iconst_symbol _) when !Clflags.pic_code -> [| phys_reg 3; phys_reg 8 |] (* r3 and r12 destroyed *) | Iop(Iintop Imulh) when !arch < ARMv6 -> [| phys_reg 8 |] (* r12 destroyed *) | Iop(Iintop (Icomp _) | Iintop_imm(Icomp _, _)) when !arch >= ARMv8 && !thumb -> [| phys_reg 3 |] (* r3 destroyed *) | Iop(Iintoffloat | Ifloatofint | Iload(Single, _) | Istore(Single, _, _)) -> [| phys_reg 107 |] (* d7 (s14-s15) destroyed *) | _ -> [||] let destroyed_at_raise = all_phys_regs (* lr is destroyed at [Lreloadretaddr], but lr is not used for register allocation, and thus does not need to (and indeed cannot) occur here. *) let destroyed_at_reloadretaddr = [| |] (* Maximal register pressure *) let safe_register_pressure = function Iextcall _ -> if abi = EABI then 0 else 4 | Ialloc _ -> if abi = EABI then 0 else 7 | Iconst_symbol _ when !Clflags.pic_code -> 7 | Iintop Imulh when !arch < ARMv6 -> 8 | _ -> 9 let max_register_pressure = function Iextcall _ -> if abi = EABI then [| 4; 0; 0 |] else [| 4; 8; 8 |] | Ialloc _ -> if abi = EABI then [| 7; 0; 0 |] else [| 7; 8; 8 |] | Iconst_symbol _ when !Clflags.pic_code -> [| 7; 16; 32 |] | Iintoffloat | Ifloatofint | Iload(Single, _) | Istore(Single, _, _) -> [| 9; 15; 31 |] | Iintop Imulh when !arch < ARMv6 -> [| 8; 16; 32 |] | _ -> [| 9; 16; 32 |] (* Pure operations (without any side effect besides updating their result registers). *) let op_is_pure = function | Icall_ind | Icall_imm _ | Itailcall_ind | Itailcall_imm _ | Iextcall _ | Istackoffset _ | Istore _ | Ialloc _ | Iintop(Icheckbound) | Iintop_imm(Icheckbound, _) | Ispecific(Ishiftcheckbound _) -> false | _ -> true (* Layout of the stack *) let frame_required fd = let num_stack_slots = fd.fun_num_stack_slots in fd.fun_contains_calls || num_stack_slots.(0) > 0 || num_stack_slots.(1) > 0 || num_stack_slots.(2) > 0 let prologue_required fd = frame_required fd (* Calling the assembler *) let assemble_file infile outfile = Ccomp.command (Config.asm ^ " " ^ (String.concat " " (Misc.debug_prefix_map_flags ())) ^ " -o " ^ Filename.quote outfile ^ " " ^ Filename.quote infile) let init () = ()