(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Introduction of closures, uncurrying, recognition of direct calls *) open Misc open Asttypes open Primitive open Lambda open Switch open Clambda module P = Clambda_primitives module Int = Numbers.Int module Storer = Switch.Store (struct type t = lambda type key = lambda let make_key = Lambda.make_key let compare_key = Stdlib.compare end) module V = Backend_var module VP = Backend_var.With_provenance (* The current backend *) let no_phantom_lets () = Misc.fatal_error "Closure does not support phantom let generation" (* Auxiliaries for compiling functions *) let rec split_list n l = if n <= 0 then ([], l) else begin match l with [] -> fatal_error "Closure.split_list" | a::l -> let (l1, l2) = split_list (n-1) l in (a::l1, l2) end let rec build_closure_env env_param pos = function [] -> V.Map.empty | id :: rem -> V.Map.add id (Uprim(P.Pfield pos, [Uvar env_param], Debuginfo.none)) (build_closure_env env_param (pos+1) rem) (* Auxiliary for accessing globals. We change the name of the global to the name of the corresponding asm symbol. This is done here and no longer in Cmmgen so that approximations stored in .cmx files contain the right names if the -for-pack option is active. *) let getglobal dbg id = Uprim(P.Pread_symbol (Compilenv.symbol_for_global id), [], dbg) (* Check if a variable occurs in a [clambda] term. *) let occurs_var var u = let rec occurs = function Uvar v -> v = var | Uconst _ -> false | Udirect_apply(_lbl, args, _) -> List.exists occurs args | Ugeneric_apply(funct, args, _) -> occurs funct || List.exists occurs args | Uclosure(_fundecls, clos) -> List.exists occurs clos | Uoffset(u, _ofs) -> occurs u | Ulet(_str, _kind, _id, def, body) -> occurs def || occurs body | Uphantom_let _ -> no_phantom_lets () | Uletrec(decls, body) -> List.exists (fun (_id, u) -> occurs u) decls || occurs body | Uprim(_p, args, _) -> List.exists occurs args | Uswitch(arg, s, _dbg) -> occurs arg || occurs_array s.us_actions_consts || occurs_array s.us_actions_blocks | Ustringswitch(arg,sw,d) -> occurs arg || List.exists (fun (_,e) -> occurs e) sw || (match d with None -> false | Some d -> occurs d) | Ustaticfail (_, args) -> List.exists occurs args | Ucatch(_, _, body, hdlr) -> occurs body || occurs hdlr | Utrywith(body, _exn, hdlr) -> occurs body || occurs hdlr | Uifthenelse(cond, ifso, ifnot) -> occurs cond || occurs ifso || occurs ifnot | Usequence(u1, u2) -> occurs u1 || occurs u2 | Uwhile(cond, body) -> occurs cond || occurs body | Ufor(_id, lo, hi, _dir, body) -> occurs lo || occurs hi || occurs body | Uassign(id, u) -> id = var || occurs u | Usend(_, met, obj, args, _) -> occurs met || occurs obj || List.exists occurs args | Uunreachable -> false and occurs_array a = try for i = 0 to Array.length a - 1 do if occurs a.(i) then raise Exit done; false with Exit -> true in occurs u (* Determine whether the estimated size of a clambda term is below some threshold *) let prim_size prim args = let open Clambda_primitives in match prim with | Pread_symbol _ -> 1 | Pmakeblock _ -> 5 + List.length args | Pfield _ -> 1 | Psetfield(_f, isptr, init) -> begin match init with | Root_initialization -> 1 (* never causes a write barrier hit *) | Assignment | Heap_initialization -> match isptr with | Pointer -> 4 | Immediate -> 1 end | Pfloatfield _ -> 1 | Psetfloatfield _ -> 1 | Pduprecord _ -> 10 + List.length args | Pccall p -> (if p.prim_alloc then 10 else 4) + List.length args | Praise _ -> 4 | Pstringlength -> 5 | Pbyteslength -> 5 | Pstringrefs -> 6 | Pbytesrefs | Pbytessets -> 6 | Pmakearray _ -> 5 + List.length args | Parraylength kind -> if kind = Pgenarray then 6 else 2 | Parrayrefu kind -> if kind = Pgenarray then 12 else 2 | Parraysetu kind -> if kind = Pgenarray then 16 else 4 | Parrayrefs kind -> if kind = Pgenarray then 18 else 8 | Parraysets kind -> if kind = Pgenarray then 22 else 10 | Pbigarrayref(_, ndims, _, _) -> 4 + ndims * 6 | Pbigarrayset(_, ndims, _, _) -> 4 + ndims * 6 | _ -> 2 (* arithmetic and comparisons *) (* Very raw approximation of switch cost *) let lambda_smaller lam threshold = let size = ref 0 in let rec lambda_size lam = if !size > threshold then raise Exit; match lam with Uvar _ -> () | Uconst _ -> incr size | Udirect_apply(_, args, _) -> size := !size + 4; lambda_list_size args | Ugeneric_apply(fn, args, _) -> size := !size + 6; lambda_size fn; lambda_list_size args | Uclosure _ -> raise Exit (* inlining would duplicate function definitions *) | Uoffset(lam, _ofs) -> incr size; lambda_size lam | Ulet(_str, _kind, _id, lam, body) -> lambda_size lam; lambda_size body | Uphantom_let _ -> no_phantom_lets () | Uletrec _ -> raise Exit (* usually too large *) | Uprim(prim, args, _) -> size := !size + prim_size prim args; lambda_list_size args | Uswitch(lam, cases, _dbg) -> if Array.length cases.us_actions_consts > 1 then size := !size + 5 ; if Array.length cases.us_actions_blocks > 1 then size := !size + 5 ; lambda_size lam; lambda_array_size cases.us_actions_consts ; lambda_array_size cases.us_actions_blocks | Ustringswitch (lam,sw,d) -> lambda_size lam ; (* as ifthenelse *) List.iter (fun (_,lam) -> size := !size+2 ; lambda_size lam) sw ; Option.iter lambda_size d | Ustaticfail (_,args) -> lambda_list_size args | Ucatch(_, _, body, handler) -> incr size; lambda_size body; lambda_size handler | Utrywith(body, _id, handler) -> size := !size + 8; lambda_size body; lambda_size handler | Uifthenelse(cond, ifso, ifnot) -> size := !size + 2; lambda_size cond; lambda_size ifso; lambda_size ifnot | Usequence(lam1, lam2) -> lambda_size lam1; lambda_size lam2 | Uwhile(cond, body) -> size := !size + 2; lambda_size cond; lambda_size body | Ufor(_id, low, high, _dir, body) -> size := !size + 4; lambda_size low; lambda_size high; lambda_size body | Uassign(_id, lam) -> incr size; lambda_size lam | Usend(_, met, obj, args, _) -> size := !size + 8; lambda_size met; lambda_size obj; lambda_list_size args | Uunreachable -> () and lambda_list_size l = List.iter lambda_size l and lambda_array_size a = Array.iter lambda_size a in try lambda_size lam; !size <= threshold with Exit -> false let is_pure_prim p = let open Semantics_of_primitives in match Semantics_of_primitives.for_primitive p with | (No_effects | Only_generative_effects), _ -> true | Arbitrary_effects, _ -> false (* Check if a clambda term is ``pure'', that is without side-effects *and* not containing function definitions *) let rec is_pure = function Uvar _ -> true | Uconst _ -> true | Uprim(p, args, _) -> is_pure_prim p && List.for_all is_pure args | Uoffset(arg, _) -> is_pure arg | Ulet(Immutable, _, _var, def, body) -> is_pure def && is_pure body | _ -> false (* Simplify primitive operations on known arguments *) let make_const c = (Uconst c, Value_const c) let make_const_ref c = make_const(Uconst_ref(Compilenv.new_structured_constant ~shared:true c, Some c)) let make_const_int n = make_const (Uconst_int n) let make_const_bool b = make_const_int(if b then 1 else 0) let make_integer_comparison cmp x y = let open Clambda_primitives in make_const_bool (match cmp with Ceq -> x = y | Cne -> x <> y | Clt -> x < y | Cgt -> x > y | Cle -> x <= y | Cge -> x >= y) let make_float_comparison cmp x y = make_const_bool (match cmp with | CFeq -> x = y | CFneq -> not (x = y) | CFlt -> x < y | CFnlt -> not (x < y) | CFgt -> x > y | CFngt -> not (x > y) | CFle -> x <= y | CFnle -> not (x <= y) | CFge -> x >= y | CFnge -> not (x >= y)) let make_const_float n = make_const_ref (Uconst_float n) let make_const_natint n = make_const_ref (Uconst_nativeint n) let make_const_int32 n = make_const_ref (Uconst_int32 n) let make_const_int64 n = make_const_ref (Uconst_int64 n) (* The [fpc] parameter is true if constant propagation of floating-point computations is allowed *) let simplif_arith_prim_pure ~backend fpc p (args, approxs) dbg = let module B = (val backend : Backend_intf.S) in let open Clambda_primitives in let default = (Uprim(p, args, dbg), Value_unknown) in match approxs with (* int (or enumerated type) *) | [ Value_const(Uconst_int n1) ] -> begin match p with | Pnot -> make_const_bool (n1 = 0) | Pnegint -> make_const_int (- n1) | Poffsetint n -> make_const_int (n + n1) | Pfloatofint when fpc -> make_const_float (float_of_int n1) | Pbintofint Pnativeint -> make_const_natint (Nativeint.of_int n1) | Pbintofint Pint32 -> make_const_int32 (Int32.of_int n1) | Pbintofint Pint64 -> make_const_int64 (Int64.of_int n1) | Pbswap16 -> make_const_int (((n1 land 0xff) lsl 8) lor ((n1 land 0xff00) lsr 8)) | _ -> default end (* int (or enumerated type), int (or enumerated type) *) | [ Value_const(Uconst_int n1); Value_const(Uconst_int n2) ] -> begin match p with | Psequand -> make_const_bool (n1 <> 0 && n2 <> 0) | Psequor -> make_const_bool (n1 <> 0 || n2 <> 0) | Paddint -> make_const_int (n1 + n2) | Psubint -> make_const_int (n1 - n2) | Pmulint -> make_const_int (n1 * n2) | Pdivint _ when n2 <> 0 -> make_const_int (n1 / n2) | Pmodint _ when n2 <> 0 -> make_const_int (n1 mod n2) | Pandint -> make_const_int (n1 land n2) | Porint -> make_const_int (n1 lor n2) | Pxorint -> make_const_int (n1 lxor n2) | Plslint when 0 <= n2 && n2 < 8 * B.size_int -> make_const_int (n1 lsl n2) | Plsrint when 0 <= n2 && n2 < 8 * B.size_int -> make_const_int (n1 lsr n2) | Pasrint when 0 <= n2 && n2 < 8 * B.size_int -> make_const_int (n1 asr n2) | Pintcomp c -> make_integer_comparison c n1 n2 | _ -> default end (* float *) | [Value_const(Uconst_ref(_, Some (Uconst_float n1)))] when fpc -> begin match p with | Pintoffloat -> make_const_int (int_of_float n1) | Pnegfloat -> make_const_float (-. n1) | Pabsfloat -> make_const_float (abs_float n1) | _ -> default end (* float, float *) | [Value_const(Uconst_ref(_, Some (Uconst_float n1))); Value_const(Uconst_ref(_, Some (Uconst_float n2)))] when fpc -> begin match p with | Paddfloat -> make_const_float (n1 +. n2) | Psubfloat -> make_const_float (n1 -. n2) | Pmulfloat -> make_const_float (n1 *. n2) | Pdivfloat -> make_const_float (n1 /. n2) | Pfloatcomp c -> make_float_comparison c n1 n2 | _ -> default end (* nativeint *) | [Value_const(Uconst_ref(_, Some (Uconst_nativeint n)))] -> begin match p with | Pintofbint Pnativeint -> make_const_int (Nativeint.to_int n) | Pcvtbint(Pnativeint, Pint32) -> make_const_int32 (Nativeint.to_int32 n) | Pcvtbint(Pnativeint, Pint64) -> make_const_int64 (Int64.of_nativeint n) | Pnegbint Pnativeint -> make_const_natint (Nativeint.neg n) | _ -> default end (* nativeint, nativeint *) | [Value_const(Uconst_ref(_, Some (Uconst_nativeint n1))); Value_const(Uconst_ref(_, Some (Uconst_nativeint n2)))] -> begin match p with | Paddbint Pnativeint -> make_const_natint (Nativeint.add n1 n2) | Psubbint Pnativeint -> make_const_natint (Nativeint.sub n1 n2) | Pmulbint Pnativeint -> make_const_natint (Nativeint.mul n1 n2) | Pdivbint {size=Pnativeint} when n2 <> 0n -> make_const_natint (Nativeint.div n1 n2) | Pmodbint {size=Pnativeint} when n2 <> 0n -> make_const_natint (Nativeint.rem n1 n2) | Pandbint Pnativeint -> make_const_natint (Nativeint.logand n1 n2) | Porbint Pnativeint -> make_const_natint (Nativeint.logor n1 n2) | Pxorbint Pnativeint -> make_const_natint (Nativeint.logxor n1 n2) | Pbintcomp(Pnativeint, c) -> make_integer_comparison c n1 n2 | _ -> default end (* nativeint, int *) | [Value_const(Uconst_ref(_, Some (Uconst_nativeint n1))); Value_const(Uconst_int n2)] -> begin match p with | Plslbint Pnativeint when 0 <= n2 && n2 < 8 * B.size_int -> make_const_natint (Nativeint.shift_left n1 n2) | Plsrbint Pnativeint when 0 <= n2 && n2 < 8 * B.size_int -> make_const_natint (Nativeint.shift_right_logical n1 n2) | Pasrbint Pnativeint when 0 <= n2 && n2 < 8 * B.size_int -> make_const_natint (Nativeint.shift_right n1 n2) | _ -> default end (* int32 *) | [Value_const(Uconst_ref(_, Some (Uconst_int32 n)))] -> begin match p with | Pintofbint Pint32 -> make_const_int (Int32.to_int n) | Pcvtbint(Pint32, Pnativeint) -> make_const_natint (Nativeint.of_int32 n) | Pcvtbint(Pint32, Pint64) -> make_const_int64 (Int64.of_int32 n) | Pnegbint Pint32 -> make_const_int32 (Int32.neg n) | _ -> default end (* int32, int32 *) | [Value_const(Uconst_ref(_, Some (Uconst_int32 n1))); Value_const(Uconst_ref(_, Some (Uconst_int32 n2)))] -> begin match p with | Paddbint Pint32 -> make_const_int32 (Int32.add n1 n2) | Psubbint Pint32 -> make_const_int32 (Int32.sub n1 n2) | Pmulbint Pint32 -> make_const_int32 (Int32.mul n1 n2) | Pdivbint {size=Pint32} when n2 <> 0l -> make_const_int32 (Int32.div n1 n2) | Pmodbint {size=Pint32} when n2 <> 0l -> make_const_int32 (Int32.rem n1 n2) | Pandbint Pint32 -> make_const_int32 (Int32.logand n1 n2) | Porbint Pint32 -> make_const_int32 (Int32.logor n1 n2) | Pxorbint Pint32 -> make_const_int32 (Int32.logxor n1 n2) | Pbintcomp(Pint32, c) -> make_integer_comparison c n1 n2 | _ -> default end (* int32, int *) | [Value_const(Uconst_ref(_, Some (Uconst_int32 n1))); Value_const(Uconst_int n2)] -> begin match p with | Plslbint Pint32 when 0 <= n2 && n2 < 32 -> make_const_int32 (Int32.shift_left n1 n2) | Plsrbint Pint32 when 0 <= n2 && n2 < 32 -> make_const_int32 (Int32.shift_right_logical n1 n2) | Pasrbint Pint32 when 0 <= n2 && n2 < 32 -> make_const_int32 (Int32.shift_right n1 n2) | _ -> default end (* int64 *) | [Value_const(Uconst_ref(_, Some (Uconst_int64 n)))] -> begin match p with | Pintofbint Pint64 -> make_const_int (Int64.to_int n) | Pcvtbint(Pint64, Pint32) -> make_const_int32 (Int64.to_int32 n) | Pcvtbint(Pint64, Pnativeint) -> make_const_natint (Int64.to_nativeint n) | Pnegbint Pint64 -> make_const_int64 (Int64.neg n) | _ -> default end (* int64, int64 *) | [Value_const(Uconst_ref(_, Some (Uconst_int64 n1))); Value_const(Uconst_ref(_, Some (Uconst_int64 n2)))] -> begin match p with | Paddbint Pint64 -> make_const_int64 (Int64.add n1 n2) | Psubbint Pint64 -> make_const_int64 (Int64.sub n1 n2) | Pmulbint Pint64 -> make_const_int64 (Int64.mul n1 n2) | Pdivbint {size=Pint64} when n2 <> 0L -> make_const_int64 (Int64.div n1 n2) | Pmodbint {size=Pint64} when n2 <> 0L -> make_const_int64 (Int64.rem n1 n2) | Pandbint Pint64 -> make_const_int64 (Int64.logand n1 n2) | Porbint Pint64 -> make_const_int64 (Int64.logor n1 n2) | Pxorbint Pint64 -> make_const_int64 (Int64.logxor n1 n2) | Pbintcomp(Pint64, c) -> make_integer_comparison c n1 n2 | _ -> default end (* int64, int *) | [Value_const(Uconst_ref(_, Some (Uconst_int64 n1))); Value_const(Uconst_int n2)] -> begin match p with | Plslbint Pint64 when 0 <= n2 && n2 < 64 -> make_const_int64 (Int64.shift_left n1 n2) | Plsrbint Pint64 when 0 <= n2 && n2 < 64 -> make_const_int64 (Int64.shift_right_logical n1 n2) | Pasrbint Pint64 when 0 <= n2 && n2 < 64 -> make_const_int64 (Int64.shift_right n1 n2) | _ -> default end (* TODO: Pbbswap *) (* Catch-all *) | _ -> default let field_approx n = function | Value_tuple a when n < Array.length a -> a.(n) | Value_const (Uconst_ref(_, Some (Uconst_block(_, l)))) when n < List.length l -> Value_const (List.nth l n) | _ -> Value_unknown let simplif_prim_pure ~backend fpc p (args, approxs) dbg = let open Clambda_primitives in match p, args, approxs with (* Block construction *) | Pmakeblock(tag, Immutable, _kind), _, _ -> let field = function | Value_const c -> c | _ -> raise Exit in begin try let cst = Uconst_block (tag, List.map field approxs) in let name = Compilenv.new_structured_constant cst ~shared:true in make_const (Uconst_ref (name, Some cst)) with Exit -> (Uprim(p, args, dbg), Value_tuple (Array.of_list approxs)) end (* Field access *) | Pfield n, _, [ Value_const(Uconst_ref(_, Some (Uconst_block(_, l)))) ] when n < List.length l -> make_const (List.nth l n) | Pfield n, [ Uprim(P.Pmakeblock _, ul, _) ], [approx] when n < List.length ul -> (List.nth ul n, field_approx n approx) (* Strings *) | (Pstringlength | Pbyteslength), _, [ Value_const(Uconst_ref(_, Some (Uconst_string s))) ] -> make_const_int (String.length s) (* Kind test *) | Pisint, _, [a1] -> begin match a1 with | Value_const(Uconst_int _) -> make_const_bool true | Value_const(Uconst_ref _) -> make_const_bool false | Value_closure _ | Value_tuple _ -> make_const_bool false | _ -> (Uprim(p, args, dbg), Value_unknown) end (* Catch-all *) | _ -> simplif_arith_prim_pure ~backend fpc p (args, approxs) dbg let simplif_prim ~backend fpc p (args, approxs as args_approxs) dbg = if List.for_all is_pure args then simplif_prim_pure ~backend fpc p args_approxs dbg else (* XXX : always return the same approxs as simplif_prim_pure? *) let approx = match p with | P.Pmakeblock(_, Immutable, _kind) -> Value_tuple (Array.of_list approxs) | _ -> Value_unknown in (Uprim(p, args, dbg), approx) (* Substitute variables in a [ulambda] term (a body of an inlined function) and perform some more simplifications on integer primitives. Also perform alpha-conversion on let-bound identifiers to avoid clashes with locally-generated identifiers, and refresh raise counts in order to avoid clashes with inlined code from other modules. The variables must not be assigned in the term. This is used to substitute "trivial" arguments for parameters during inline expansion, and also for the translation of let rec over functions. *) let approx_ulam = function Uconst c -> Value_const c | _ -> Value_unknown let find_action idxs acts tag = if 0 <= tag && tag < Array.length idxs then begin let idx = idxs.(tag) in assert(0 <= idx && idx < Array.length acts); Some acts.(idx) end else (* Can this happen? *) None let subst_debuginfo loc dbg = if !Clflags.debug then Debuginfo.inline loc dbg else dbg let rec substitute loc ((backend, fpc) as st) sb rn ulam = match ulam with Uvar v -> begin try V.Map.find v sb with Not_found -> ulam end | Uconst _ -> ulam | Udirect_apply(lbl, args, dbg) -> let dbg = subst_debuginfo loc dbg in Udirect_apply(lbl, List.map (substitute loc st sb rn) args, dbg) | Ugeneric_apply(fn, args, dbg) -> let dbg = subst_debuginfo loc dbg in Ugeneric_apply(substitute loc st sb rn fn, List.map (substitute loc st sb rn) args, dbg) | Uclosure(defs, env) -> (* Question: should we rename function labels as well? Otherwise, there is a risk that function labels are not globally unique. This should not happen in the current system because: - Inlined function bodies contain no Uclosure nodes (cf. function [lambda_smaller]) - When we substitute offsets for idents bound by let rec in [close], case [Lletrec], we discard the original let rec body and use only the substituted term. *) Uclosure(defs, List.map (substitute loc st sb rn) env) | Uoffset(u, ofs) -> Uoffset(substitute loc st sb rn u, ofs) | Ulet(str, kind, id, u1, u2) -> let id' = VP.rename id in Ulet(str, kind, id', substitute loc st sb rn u1, substitute loc st (V.Map.add (VP.var id) (Uvar (VP.var id')) sb) rn u2) | Uphantom_let _ -> no_phantom_lets () | Uletrec(bindings, body) -> let bindings1 = List.map (fun (id, rhs) -> (VP.var id, VP.rename id, rhs)) bindings in let sb' = List.fold_right (fun (id, id', _) s -> V.Map.add id (Uvar (VP.var id')) s) bindings1 sb in Uletrec( List.map (fun (_id, id', rhs) -> (id', substitute loc st sb' rn rhs)) bindings1, substitute loc st sb' rn body) | Uprim(p, args, dbg) -> let sargs = List.map (substitute loc st sb rn) args in let dbg = subst_debuginfo loc dbg in let (res, _) = simplif_prim ~backend fpc p (sargs, List.map approx_ulam sargs) dbg in res | Uswitch(arg, sw, dbg) -> let sarg = substitute loc st sb rn arg in let action = (* Unfortunately, we cannot easily deal with the case of a constructed block (makeblock) bound to a local identifier. This would require to keep track of local let bindings (at least their approximations) in this substitute function. *) match sarg with | Uconst (Uconst_ref (_, Some (Uconst_block (tag, _)))) -> find_action sw.us_index_blocks sw.us_actions_blocks tag | Uconst (Uconst_int tag) -> find_action sw.us_index_consts sw.us_actions_consts tag | _ -> None in begin match action with | Some u -> substitute loc st sb rn u | None -> Uswitch(sarg, { sw with us_actions_consts = Array.map (substitute loc st sb rn) sw.us_actions_consts; us_actions_blocks = Array.map (substitute loc st sb rn) sw.us_actions_blocks; }, dbg) end | Ustringswitch(arg,sw,d) -> Ustringswitch (substitute loc st sb rn arg, List.map (fun (s,act) -> s,substitute loc st sb rn act) sw, Option.map (substitute loc st sb rn) d) | Ustaticfail (nfail, args) -> let nfail = match rn with | Some rn -> begin try Int.Map.find nfail rn with Not_found -> fatal_errorf "Closure.split_list: invalid nfail (%d)" nfail end | None -> nfail in Ustaticfail (nfail, List.map (substitute loc st sb rn) args) | Ucatch(nfail, ids, u1, u2) -> let nfail, rn = match rn with | Some rn -> let new_nfail = next_raise_count () in new_nfail, Some (Int.Map.add nfail new_nfail rn) | None -> nfail, rn in let ids' = List.map (fun (id, k) -> VP.rename id, k) ids in let sb' = List.fold_right2 (fun (id, _) (id', _) s -> V.Map.add (VP.var id) (Uvar (VP.var id')) s ) ids ids' sb in Ucatch(nfail, ids', substitute loc st sb rn u1, substitute loc st sb' rn u2) | Utrywith(u1, id, u2) -> let id' = VP.rename id in Utrywith(substitute loc st sb rn u1, id', substitute loc st (V.Map.add (VP.var id) (Uvar (VP.var id')) sb) rn u2) | Uifthenelse(u1, u2, u3) -> begin match substitute loc st sb rn u1 with Uconst (Uconst_int n) -> if n <> 0 then substitute loc st sb rn u2 else substitute loc st sb rn u3 | Uprim(P.Pmakeblock _, _, _) -> substitute loc st sb rn u2 | su1 -> Uifthenelse(su1, substitute loc st sb rn u2, substitute loc st sb rn u3) end | Usequence(u1, u2) -> Usequence(substitute loc st sb rn u1, substitute loc st sb rn u2) | Uwhile(u1, u2) -> Uwhile(substitute loc st sb rn u1, substitute loc st sb rn u2) | Ufor(id, u1, u2, dir, u3) -> let id' = VP.rename id in Ufor(id', substitute loc st sb rn u1, substitute loc st sb rn u2, dir, substitute loc st (V.Map.add (VP.var id) (Uvar (VP.var id')) sb) rn u3) | Uassign(id, u) -> let id' = try match V.Map.find id sb with Uvar i -> i | _ -> assert false with Not_found -> id in Uassign(id', substitute loc st sb rn u) | Usend(k, u1, u2, ul, dbg) -> let dbg = subst_debuginfo loc dbg in Usend(k, substitute loc st sb rn u1, substitute loc st sb rn u2, List.map (substitute loc st sb rn) ul, dbg) | Uunreachable -> Uunreachable type env = { backend : (module Backend_intf.S); cenv : ulambda V.Map.t; fenv : value_approximation V.Map.t; mutable_vars : V.Set.t; } (* Perform an inline expansion: If [f p = body], substitute [f a] by [let p = a in body]. Under certain conditions, further simplifications are possible (we use the terminology of [Semantics_of_primitives], applied to terms of the Clambda language): - [f a] is equivalent to [body[a/p]] if [a] has no effects and no coeffects. However, we only want to do this rewriting if [body[a/p]] does not increase the size of [body]. Since this is hard to decide in general, as an approximation, only consider the case when [a] is an immutable variable or a constant. - [f a] is equivalent to [body] if [p] does not occur in [body] and [a] has only generative effects. - In general [f a] is equivalent to [a; body] if [p] does not occur in [body]. *) (* Approximates "no effects and no coeffects" *) let is_substituable ~mutable_vars = function | Uvar v -> not (V.Set.mem v mutable_vars) | Uconst _ -> true | _ -> false (* Approximates "only generative effects" *) let is_erasable = function | Uclosure _ -> true | u -> is_pure u let bind_params { backend; mutable_vars; _ } loc fpc params args body = let rec aux subst pl al body = match (pl, al) with ([], []) -> substitute (Debuginfo.from_location loc) (backend, fpc) subst (Some Int.Map.empty) body | (p1 :: pl, a1 :: al) -> if is_substituable ~mutable_vars a1 then aux (V.Map.add (VP.var p1) a1 subst) pl al body else begin let p1' = VP.rename p1 in let u1, u2 = match VP.name p1, a1 with | "*opt*", Uprim(P.Pmakeblock(0, Immutable, kind), [a], dbg) -> a, Uprim(P.Pmakeblock(0, Immutable, kind), [Uvar (VP.var p1')], dbg) | _ -> a1, Uvar (VP.var p1') in let body' = aux (V.Map.add (VP.var p1) u2 subst) pl al body in if occurs_var (VP.var p1) body then Ulet(Immutable, Pgenval, p1', u1, body') else if is_erasable a1 then body' else Usequence(a1, body') end | (_, _) -> assert false in (* Reverse parameters and arguments to preserve right-to-left evaluation order (PR#2910). *) aux V.Map.empty (List.rev params) (List.rev args) body (* Check if a lambda term is ``pure'', that is without side-effects *and* not containing function definitions *) let warning_if_forced_inline ~loc ~attribute warning = if attribute = Always_inline then Location.prerr_warning (Debuginfo.Scoped_location.to_location loc) (Warnings.Inlining_impossible warning) (* Generate a direct application *) let direct_apply env fundesc ufunct uargs ~loc ~attribute = let app_args = if fundesc.fun_closed then uargs else uargs @ [ufunct] in let app = match fundesc.fun_inline, attribute with | _, Never_inline | None, _ -> let dbg = Debuginfo.from_location loc in warning_if_forced_inline ~loc ~attribute "Function information unavailable"; Udirect_apply(fundesc.fun_label, app_args, dbg) | Some(params, body), _ -> bind_params env loc fundesc.fun_float_const_prop params app_args body in (* If ufunct can contain side-effects or function definitions, we must make sure that it is evaluated exactly once. If the function is not closed, we evaluate ufunct as part of the arguments. If the function is closed, we force the evaluation of ufunct first. *) if not fundesc.fun_closed || is_pure ufunct then app else Usequence(ufunct, app) (* Add [Value_integer] info to the approximation of an application *) let strengthen_approx appl approx = match approx_ulam appl with (Value_const _) as intapprox -> intapprox | _ -> approx (* If a term has approximation Value_integer and is pure, replace it by an integer constant *) let check_constant_result ulam approx = match approx with Value_const c when is_pure ulam -> make_const c | Value_global_field (id, i) when is_pure ulam -> begin match ulam with | Uprim(P.Pfield _, [Uprim(P.Pread_symbol _, _, _)], _) -> (ulam, approx) | _ -> let glb = Uprim(P.Pread_symbol id, [], Debuginfo.none) in Uprim(P.Pfield i, [glb], Debuginfo.none), approx end | _ -> (ulam, approx) (* Evaluate an expression with known value for its side effects only, or discard it if it's pure *) let sequence_constant_expr ulam1 (ulam2, approx2 as res2) = if is_pure ulam1 then res2 else (Usequence(ulam1, ulam2), approx2) (* Maintain the approximation of the global structure being defined *) let global_approx = ref([||] : value_approximation array) (* Maintain the nesting depth for functions *) let function_nesting_depth = ref 0 let excessive_function_nesting_depth = 5 (* Uncurry an expression and explicitate closures. Also return the approximation of the expression. The approximation environment [fenv] maps idents to approximations. Idents not bound in [fenv] approximate to [Value_unknown]. The closure environment [cenv] maps idents to [ulambda] terms. It is used to substitute environment accesses for free identifiers. *) exception NotClosed let close_approx_var { fenv; cenv } id = let approx = try V.Map.find id fenv with Not_found -> Value_unknown in match approx with Value_const c -> make_const c | approx -> let subst = try V.Map.find id cenv with Not_found -> Uvar id in (subst, approx) let close_var env id = let (ulam, _app) = close_approx_var env id in ulam let rec close ({ backend; fenv; cenv ; mutable_vars } as env) lam = let module B = (val backend : Backend_intf.S) in match lam with | Lvar id -> close_approx_var env id | Lmutvar id -> (Uvar id, Value_unknown) | Lconst cst -> let str ?(shared = true) cst = let name = Compilenv.new_structured_constant cst ~shared in Uconst_ref (name, Some cst) in let rec transl = function | Const_base(Const_int n) -> Uconst_int n | Const_base(Const_char c) -> Uconst_int (Char.code c) | Const_block (tag, fields) -> str (Uconst_block (tag, List.map transl fields)) | Const_float_array sl -> (* constant float arrays are really immutable *) str (Uconst_float_array (List.map float_of_string sl)) | Const_immstring s -> str (Uconst_string s) | Const_base (Const_string (s, _, _)) -> (* Strings (even literal ones) must be assumed to be mutable... except when OCaml has been configured with -safe-string. Passing -safe-string at compilation time is not enough, since the unit could be linked with another one compiled without -safe-string, and that one could modify our string literal. *) str ~shared:Config.safe_string (Uconst_string s) | Const_base(Const_float x) -> str (Uconst_float (float_of_string x)) | Const_base(Const_int32 x) -> str (Uconst_int32 x) | Const_base(Const_int64 x) -> str (Uconst_int64 x) | Const_base(Const_nativeint x) -> str (Uconst_nativeint x) in make_const (transl cst) | Lfunction _ as funct -> close_one_function env (Ident.create_local "fun") funct (* We convert [f a] to [let a' = a in let f' = f in fun b c -> f' a' b c] when fun_arity > nargs *) | Lapply{ap_func = funct; ap_args = args; ap_loc = loc; ap_inlined = attribute} -> let nargs = List.length args in begin match (close env funct, close_list env args) with ((ufunct, Value_closure(fundesc, approx_res)), [Uprim(P.Pmakeblock _, uargs, _)]) when List.length uargs = - fundesc.fun_arity -> let app = direct_apply env ~loc ~attribute fundesc ufunct uargs in (app, strengthen_approx app approx_res) | ((ufunct, Value_closure(fundesc, approx_res)), uargs) when nargs = fundesc.fun_arity -> let app = direct_apply env ~loc ~attribute fundesc ufunct uargs in (app, strengthen_approx app approx_res) | ((ufunct, (Value_closure(fundesc, _) as fapprox)), uargs) when nargs < fundesc.fun_arity -> let first_args = List.map (fun arg -> (V.create_local "arg", arg) ) uargs in let final_args = Array.to_list (Array.init (fundesc.fun_arity - nargs) (fun _ -> V.create_local "arg")) in let rec iter args body = match args with [] -> body | (arg1, arg2) :: args -> iter args (Ulet (Immutable, Pgenval, VP.create arg1, arg2, body)) in let internal_args = (List.map (fun (arg1, _arg2) -> Lvar arg1) first_args) @ (List.map (fun arg -> Lvar arg ) final_args) in let funct_var = V.create_local "funct" in let fenv = V.Map.add funct_var fapprox fenv in let (new_fun, approx) = close { backend; fenv; cenv; mutable_vars } (Lfunction{ kind = Curried; return = Pgenval; params = List.map (fun v -> v, Pgenval) final_args; body = Lapply{ ap_loc=loc; ap_func=(Lvar funct_var); ap_args=internal_args; ap_tailcall=Default_tailcall; ap_inlined=Default_inline; ap_specialised=Default_specialise; }; loc; attr = default_function_attribute}) in let new_fun = iter first_args (Ulet (Immutable, Pgenval, VP.create funct_var, ufunct, new_fun)) in warning_if_forced_inline ~loc ~attribute "Partial application"; (new_fun, approx) | ((ufunct, Value_closure(fundesc, _approx_res)), uargs) when fundesc.fun_arity > 0 && nargs > fundesc.fun_arity -> let args = List.map (fun arg -> V.create_local "arg", arg) uargs in let (first_args, rem_args) = split_list fundesc.fun_arity args in let first_args = List.map (fun (id, _) -> Uvar id) first_args in let rem_args = List.map (fun (id, _) -> Uvar id) rem_args in let dbg = Debuginfo.from_location loc in warning_if_forced_inline ~loc ~attribute "Over-application"; let body = Ugeneric_apply(direct_apply env ~loc ~attribute fundesc ufunct first_args, rem_args, dbg) in let result = List.fold_left (fun body (id, defining_expr) -> Ulet (Immutable, Pgenval, VP.create id, defining_expr, body)) body args in result, Value_unknown | ((ufunct, _), uargs) -> let dbg = Debuginfo.from_location loc in warning_if_forced_inline ~loc ~attribute "Unknown function"; (Ugeneric_apply(ufunct, uargs, dbg), Value_unknown) end | Lsend(kind, met, obj, args, loc) -> let (umet, _) = close env met in let (uobj, _) = close env obj in let dbg = Debuginfo.from_location loc in (Usend(kind, umet, uobj, close_list env args, dbg), Value_unknown) | Llet(str, kind, id, lam, body) -> let (ulam, alam) = close_named env id lam in begin match alam with Value_const _ when str = Alias || is_pure ulam -> close { backend; fenv = (V.Map.add id alam fenv); cenv; mutable_vars } body | _ -> let (ubody, abody) = close { backend; fenv = (V.Map.add id alam fenv); cenv; mutable_vars } body in (Ulet(Immutable, kind, VP.create id, ulam, ubody), abody) end | Lmutlet(kind, id, lam, body) -> let (ulam, _) = close_named env id lam in let env = {env with mutable_vars = V.Set.add id env.mutable_vars} in let (ubody, abody) = close env body in (Ulet(Mutable, kind, VP.create id, ulam, ubody), abody) | Lletrec(defs, body) -> if List.for_all (function (_id, Lfunction _) -> true | _ -> false) defs then begin (* Simple case: only function definitions *) let (clos, infos) = close_functions env defs in let clos_ident = V.create_local "clos" in let fenv_body = List.fold_right (fun (id, _pos, approx) fenv -> V.Map.add id approx fenv) infos fenv in let (ubody, approx) = close { backend; fenv = fenv_body; cenv; mutable_vars } body in let sb = List.fold_right (fun (id, pos, _approx) sb -> V.Map.add id (Uoffset(Uvar clos_ident, pos)) sb) infos V.Map.empty in (Ulet(Immutable, Pgenval, VP.create clos_ident, clos, substitute Debuginfo.none (backend, !Clflags.float_const_prop) sb None ubody), approx) end else begin (* General case: recursive definition of values *) let rec clos_defs = function [] -> ([], fenv) | (id, lam) :: rem -> let (udefs, fenv_body) = clos_defs rem in let (ulam, approx) = close_named env id lam in ((VP.create id, ulam) :: udefs, V.Map.add id approx fenv_body) in let (udefs, fenv_body) = clos_defs defs in let (ubody, approx) = close { backend; fenv = fenv_body; cenv; mutable_vars } body in (Uletrec(udefs, ubody), approx) end (* Compile-time constants *) | Lprim(Pctconst c, [arg], _loc) -> let cst, approx = match c with | Big_endian -> make_const_bool B.big_endian | Word_size -> make_const_int (8*B.size_int) | Int_size -> make_const_int (8*B.size_int - 1) | Max_wosize -> make_const_int ((1 lsl ((8*B.size_int) - 10)) - 1 ) | Ostype_unix -> make_const_bool (Sys.os_type = "Unix") | Ostype_win32 -> make_const_bool (Sys.os_type = "Win32") | Ostype_cygwin -> make_const_bool (Sys.os_type = "Cygwin") | Backend_type -> make_const_int 0 (* tag 0 is the same as Native here *) in let arg, _approx = close env arg in let id = Ident.create_local "dummy" in Ulet(Immutable, Pgenval, VP.create id, arg, cst), approx | Lprim(Pignore, [arg], _loc) -> let expr, approx = make_const_int 0 in Usequence(fst (close env arg), expr), approx | Lprim((Pidentity | Pbytes_to_string | Pbytes_of_string), [arg], _loc) -> close env arg | Lprim(Pdirapply,[funct;arg], loc) | Lprim(Prevapply,[arg;funct], loc) -> close env (Lapply{ ap_loc=loc; ap_func=funct; ap_args=[arg]; ap_tailcall=Default_tailcall; ap_inlined=Default_inline; ap_specialised=Default_specialise; }) | Lprim(Pgetglobal id, [], loc) -> let dbg = Debuginfo.from_location loc in check_constant_result (getglobal dbg id) (Compilenv.global_approx id) | Lprim(Pfield n, [lam], loc) -> let (ulam, approx) = close env lam in let dbg = Debuginfo.from_location loc in check_constant_result (Uprim(P.Pfield n, [ulam], dbg)) (field_approx n approx) | Lprim(Psetfield(n, is_ptr, init), [Lprim(Pgetglobal id, [], _); lam], loc)-> let (ulam, approx) = close env lam in if approx <> Value_unknown then (!global_approx).(n) <- approx; let dbg = Debuginfo.from_location loc in (Uprim(P.Psetfield(n, is_ptr, init), [getglobal dbg id; ulam], dbg), Value_unknown) | Lprim(Praise k, [arg], loc) -> let (ulam, _approx) = close env arg in let dbg = Debuginfo.from_location loc in (Uprim(P.Praise k, [ulam], dbg), Value_unknown) | Lprim (Pmakearray _, [], _loc) -> make_const_ref (Uconst_block (0, [])) | Lprim(p, args, loc) -> let p = Convert_primitives.convert p in let dbg = Debuginfo.from_location loc in simplif_prim ~backend !Clflags.float_const_prop p (close_list_approx env args) dbg | Lswitch(arg, sw, dbg) -> let fn fail = let (uarg, _) = close env arg in let const_index, const_actions, fconst = close_switch env sw.sw_consts sw.sw_numconsts fail and block_index, block_actions, fblock = close_switch env sw.sw_blocks sw.sw_numblocks fail in let ulam = Uswitch (uarg, {us_index_consts = const_index; us_actions_consts = const_actions; us_index_blocks = block_index; us_actions_blocks = block_actions}, Debuginfo.from_location dbg) in (fconst (fblock ulam),Value_unknown) in (* NB: failaction might get copied, thus it should be some Lstaticraise *) let fail = sw.sw_failaction in begin match fail with | None|Some (Lstaticraise (_,_)) -> fn fail | Some lamfail -> if (sw.sw_numconsts - List.length sw.sw_consts) + (sw.sw_numblocks - List.length sw.sw_blocks) > 1 then let i = next_raise_count () in let ubody,_ = fn (Some (Lstaticraise (i,[]))) and uhandler,_ = close env lamfail in Ucatch (i,[],ubody,uhandler),Value_unknown else fn fail end | Lstringswitch(arg,sw,d,_) -> let uarg,_ = close env arg in let usw = List.map (fun (s,act) -> let uact,_ = close env act in s,uact) sw in let ud = Option.map (fun d -> let ud,_ = close env d in ud) d in Ustringswitch (uarg,usw,ud),Value_unknown | Lstaticraise (i, args) -> (Ustaticfail (i, close_list env args), Value_unknown) | Lstaticcatch(body, (i, vars), handler) -> let (ubody, _) = close env body in let (uhandler, _) = close env handler in let vars = List.map (fun (var, k) -> VP.create var, k) vars in (Ucatch(i, vars, ubody, uhandler), Value_unknown) | Ltrywith(body, id, handler) -> let (ubody, _) = close env body in let (uhandler, _) = close env handler in (Utrywith(ubody, VP.create id, uhandler), Value_unknown) | Lifthenelse(arg, ifso, ifnot) -> begin match close env arg with (uarg, Value_const (Uconst_int n)) -> sequence_constant_expr uarg (close env (if n = 0 then ifnot else ifso)) | (uarg, _ ) -> let (uifso, _) = close env ifso in let (uifnot, _) = close env ifnot in (Uifthenelse(uarg, uifso, uifnot), Value_unknown) end | Lsequence(lam1, lam2) -> let (ulam1, _) = close env lam1 in let (ulam2, approx) = close env lam2 in (Usequence(ulam1, ulam2), approx) | Lwhile(cond, body) -> let (ucond, _) = close env cond in let (ubody, _) = close env body in (Uwhile(ucond, ubody), Value_unknown) | Lfor(id, lo, hi, dir, body) -> let (ulo, _) = close env lo in let (uhi, _) = close env hi in let (ubody, _) = close env body in (Ufor(VP.create id, ulo, uhi, dir, ubody), Value_unknown) | Lassign(id, lam) -> let (ulam, _) = close env lam in (Uassign(id, ulam), Value_unknown) | Levent(lam, _) -> close env lam | Lifused _ -> assert false and close_list env = function [] -> [] | lam :: rem -> let (ulam, _) = close env lam in ulam :: close_list env rem and close_list_approx env = function [] -> ([], []) | lam :: rem -> let (ulam, approx) = close env lam in let (ulams, approxs) = close_list_approx env rem in (ulam :: ulams, approx :: approxs) and close_named env id = function Lfunction _ as funct -> close_one_function env id funct | lam -> close env lam (* Build a shared closure for a set of mutually recursive functions *) and close_functions { backend; fenv; cenv; mutable_vars } fun_defs = let fun_defs = List.flatten (List.map (function | (id, Lfunction{kind; params; return; body; attr; loc}) -> Simplif.split_default_wrapper ~id ~kind ~params ~body ~attr ~loc ~return | _ -> assert false ) fun_defs) in let inline_attribute = match fun_defs with | [_, Lfunction{attr = { inline; }}] -> inline | _ -> Default_inline (* recursive functions can't be inlined *) in (* Update and check nesting depth *) incr function_nesting_depth; let initially_closed = !function_nesting_depth < excessive_function_nesting_depth in (* Determine the free variables of the functions *) let fv = V.Set.elements (free_variables (Lletrec(fun_defs, lambda_unit))) in (* Build the function descriptors for the functions. Initially all functions are assumed not to need their environment parameter. *) let uncurried_defs = List.map (function (id, Lfunction{kind; params; return; body; loc}) -> let label = Compilenv.make_symbol (Some (V.unique_name id)) in let arity = List.length params in let fundesc = {fun_label = label; fun_arity = (if kind = Tupled then -arity else arity); fun_closed = initially_closed; fun_inline = None; fun_float_const_prop = !Clflags.float_const_prop } in let dbg = Debuginfo.from_location loc in (id, params, return, body, fundesc, dbg) | (_, _) -> fatal_error "Closure.close_functions") fun_defs in (* Build an approximate fenv for compiling the functions *) let fenv_rec = List.fold_right (fun (id, _params, _return, _body, fundesc, _dbg) fenv -> V.Map.add id (Value_closure(fundesc, Value_unknown)) fenv) uncurried_defs fenv in (* Determine the offsets of each function's closure in the shared block *) let env_pos = ref (-1) in let clos_offsets = List.map (fun (_id, _params, _return, _body, fundesc, _dbg) -> let pos = !env_pos + 1 in env_pos := !env_pos + 1 + (if fundesc.fun_arity <> 1 then 3 else 2); pos) uncurried_defs in let fv_pos = !env_pos in (* This reference will be set to false if the hypothesis that a function does not use its environment parameter is invalidated. *) let useless_env = ref initially_closed in (* Translate each function definition *) let clos_fundef (id, params, return, body, fundesc, dbg) env_pos = let env_param = V.create_local "env" in let cenv_fv = build_closure_env env_param (fv_pos - env_pos) fv in let cenv_body = List.fold_right2 (fun (id, _params, _return, _body, _fundesc, _dbg) pos env -> V.Map.add id (Uoffset(Uvar env_param, pos - env_pos)) env) uncurried_defs clos_offsets cenv_fv in let (ubody, approx) = close { backend; fenv = fenv_rec; cenv = cenv_body; mutable_vars } body in if !useless_env && occurs_var env_param ubody then raise NotClosed; let fun_params = if !useless_env then params else params @ [env_param, Pgenval] in let f = { label = fundesc.fun_label; arity = fundesc.fun_arity; params = List.map (fun (var, kind) -> VP.create var, kind) fun_params; return; body = ubody; dbg; env = Some env_param; } in (* give more chance of function with default parameters (i.e. their wrapper functions) to be inlined *) let n = List.fold_left (fun n (id, _) -> n + if V.name id = "*opt*" then 8 else 1) 0 fun_params in let threshold = match inline_attribute with | Default_inline -> let inline_threshold = Clflags.Float_arg_helper.get ~key:0 !Clflags.inline_threshold in let magic_scale_constant = 8. in int_of_float (inline_threshold *. magic_scale_constant) + n | Always_inline | Hint_inline -> max_int | Never_inline -> min_int | Unroll _ -> assert false in let fun_params = List.map (fun (var, _) -> VP.create var) fun_params in if lambda_smaller ubody threshold then fundesc.fun_inline <- Some(fun_params, ubody); (f, (id, env_pos, Value_closure(fundesc, approx))) in (* Translate all function definitions. *) let clos_info_list = if initially_closed then begin let snap = Compilenv.snapshot () in try List.map2 clos_fundef uncurried_defs clos_offsets with NotClosed -> (* If the hypothesis that the environment parameters are useless has been invalidated, then set [fun_closed] to false in all descriptions and recompile *) Compilenv.backtrack snap; (* PR#6337 *) List.iter (fun (_id, _params, _return, _body, fundesc, _dbg) -> fundesc.fun_closed <- false; fundesc.fun_inline <- None; ) uncurried_defs; useless_env := false; List.map2 clos_fundef uncurried_defs clos_offsets end else (* Excessive closure nesting: assume environment parameter is used *) List.map2 clos_fundef uncurried_defs clos_offsets in (* Update nesting depth *) decr function_nesting_depth; (* Return the Uclosure node and the list of all identifiers defined, with offsets and approximations. *) let (clos, infos) = List.split clos_info_list in let fv = if !useless_env then [] else fv in (Uclosure(clos, List.map (close_var { backend; fenv; cenv; mutable_vars }) fv), infos) (* Same, for one non-recursive function *) and close_one_function env id funct = match close_functions env [id, funct] with | (clos, (i, _, approx) :: _) when id = i -> (clos, approx) | _ -> fatal_error "Closure.close_one_function" (* Close a switch *) and close_switch env cases num_keys default = let ncases = List.length cases in let index = Array.make num_keys 0 and store = Storer.mk_store () in (* First default case *) begin match default with | Some def when ncases < num_keys -> assert (store.act_store () def = 0) | _ -> () end ; (* Then all other cases *) List.iter (fun (key,lam) -> index.(key) <- store.act_store () lam) cases ; (* Explicit sharing with catch/exit, as switcher compilation may later unshare *) let acts = store.act_get_shared () in let hs = ref (fun e -> e) in (* Compile actions *) let actions = Array.map (function | Single lam|Shared (Lstaticraise (_,[]) as lam) -> let ulam,_ = close env lam in ulam | Shared lam -> let ulam,_ = close env lam in let i = next_raise_count () in (* let string_of_lambda e = Printlambda.lambda Format.str_formatter e ; Format.flush_str_formatter () in Printf.eprintf "SHARE CLOSURE %i [%s]\n%s\n" i (string_of_lambda arg) (string_of_lambda lam) ; *) let ohs = !hs in hs := (fun e -> Ucatch (i,[],ohs e,ulam)) ; Ustaticfail (i,[])) acts in match actions with | [| |] -> [| |], [| |], !hs (* May happen when default is None *) | _ -> index, actions, !hs (* Collect exported symbols for structured constants *) let collect_exported_structured_constants a = let rec approx = function | Value_closure (fd, a) -> approx a; begin match fd.fun_inline with | Some (_, u) -> ulam u | None -> () end | Value_tuple a -> Array.iter approx a | Value_const c -> const c | Value_unknown | Value_global_field _ -> () and const = function | Uconst_ref (s, (Some c)) -> Compilenv.add_exported_constant s; structured_constant c | Uconst_ref (_s, None) -> assert false (* Cannot be generated *) | Uconst_int _ -> () and structured_constant = function | Uconst_block (_, ul) -> List.iter const ul | Uconst_float _ | Uconst_int32 _ | Uconst_int64 _ | Uconst_nativeint _ | Uconst_float_array _ | Uconst_string _ -> () | Uconst_closure _ -> assert false (* Cannot be generated *) and ulam = function | Uvar _ -> () | Uconst c -> const c | Udirect_apply (_, ul, _) -> List.iter ulam ul | Ugeneric_apply (u, ul, _) -> ulam u; List.iter ulam ul | Uclosure (fl, ul) -> List.iter (fun f -> ulam f.body) fl; List.iter ulam ul | Uoffset(u, _) -> ulam u | Ulet (_str, _kind, _, u1, u2) -> ulam u1; ulam u2 | Uphantom_let _ -> no_phantom_lets () | Uletrec (l, u) -> List.iter (fun (_, u) -> ulam u) l; ulam u | Uprim (_, ul, _) -> List.iter ulam ul | Uswitch (u, sl, _dbg) -> ulam u; Array.iter ulam sl.us_actions_consts; Array.iter ulam sl.us_actions_blocks | Ustringswitch (u,sw,d) -> ulam u ; List.iter (fun (_,act) -> ulam act) sw ; Option.iter ulam d | Ustaticfail (_, ul) -> List.iter ulam ul | Ucatch (_, _, u1, u2) | Utrywith (u1, _, u2) | Usequence (u1, u2) | Uwhile (u1, u2) -> ulam u1; ulam u2 | Uifthenelse (u1, u2, u3) | Ufor (_, u1, u2, _, u3) -> ulam u1; ulam u2; ulam u3 | Uassign (_, u) -> ulam u | Usend (_, u1, u2, ul, _) -> ulam u1; ulam u2; List.iter ulam ul | Uunreachable -> () in approx a let reset () = global_approx := [||]; function_nesting_depth := 0 (* The entry point *) let intro ~backend ~size lam = reset (); let id = Compilenv.make_symbol None in global_approx := Array.init size (fun i -> Value_global_field (id, i)); Compilenv.set_global_approx(Value_tuple !global_approx); let (ulam, _approx) = close { backend; fenv = V.Map.empty; cenv = V.Map.empty; mutable_vars = V.Set.empty } lam in let opaque = !Clflags.opaque || Env.is_imported_opaque (Compilenv.current_unit_name ()) in if opaque then Compilenv.set_global_approx(Value_unknown) else collect_exported_structured_constants (Value_tuple !global_approx); global_approx := [||]; ulam