(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*  Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt  *)
(*                                                                        *)
(*   Copyright 1996 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(**** Typing of type definitions ****)

open Misc
open Asttypes
open Parsetree
open Primitive
open Types
open Typetexp

module String = Misc.Stdlib.String

type native_repr_kind = Unboxed | Untagged

type error =
    Repeated_parameter
  | Duplicate_constructor of string
  | Too_many_constructors
  | Duplicate_label of string
  | Recursive_abbrev of string
  | Cycle_in_def of string * type_expr
  | Definition_mismatch of type_expr * Includecore.type_mismatch option
  | Constraint_failed of type_expr * type_expr
  | Inconsistent_constraint of Env.t * Ctype.Unification_trace.t
  | Type_clash of Env.t * Ctype.Unification_trace.t
  | Non_regular of {
      definition: Path.t;
      used_as: type_expr;
      defined_as: type_expr;
      expansions: (type_expr * type_expr) list;
    }
  | Null_arity_external
  | Missing_native_external
  | Unbound_type_var of type_expr * type_declaration
  | Cannot_extend_private_type of Path.t
  | Not_extensible_type of Path.t
  | Extension_mismatch of Path.t * Includecore.type_mismatch
  | Rebind_wrong_type of Longident.t * Env.t * Ctype.Unification_trace.t
  | Rebind_mismatch of Longident.t * Path.t * Path.t
  | Rebind_private of Longident.t
  | Variance of Typedecl_variance.error
  | Unavailable_type_constructor of Path.t
  | Bad_fixed_type of string
  | Unbound_type_var_ext of type_expr * extension_constructor
  | Val_in_structure
  | Multiple_native_repr_attributes
  | Cannot_unbox_or_untag_type of native_repr_kind
  | Deep_unbox_or_untag_attribute of native_repr_kind
  | Immediacy of Typedecl_immediacy.error
  | Separability of Typedecl_separability.error
  | Bad_unboxed_attribute of string
  | Boxed_and_unboxed
  | Nonrec_gadt

open Typedtree

exception Error of Location.t * error

(* Note: do not factor the branches in the following pattern-matching:
   the records must be constants for the compiler to do sharing on them.
*)
let get_unboxed_from_attributes sdecl =
  let unboxed = Builtin_attributes.has_unboxed sdecl.ptype_attributes in
  let boxed = Builtin_attributes.has_boxed sdecl.ptype_attributes in
  match boxed, unboxed, !Clflags.unboxed_types with
  | true, true, _ -> raise (Error(sdecl.ptype_loc, Boxed_and_unboxed))
  | true, false, _ -> unboxed_false_default_false
  | false, true, _ -> unboxed_true_default_false
  | false, false, false -> unboxed_false_default_true
  | false, false, true -> unboxed_true_default_true

(* Enter all declared types in the environment as abstract types *)

let add_type ~check id decl env =
  Builtin_attributes.warning_scope ~ppwarning:false decl.type_attributes
    (fun () -> Env.add_type ~check id decl env)

let enter_type rec_flag env sdecl (id, uid) =
  let needed =
    match rec_flag with
    | Asttypes.Nonrecursive ->
        begin match sdecl.ptype_kind with
        | Ptype_variant scds ->
            List.iter (fun cd ->
              if cd.pcd_res <> None then raise (Error(cd.pcd_loc, Nonrec_gadt)))
              scds
        | _ -> ()
        end;
        Btype.is_row_name (Ident.name id)
    | Asttypes.Recursive -> true
  in
  let arity = List.length sdecl.ptype_params in
  if not needed then env else
  let decl =
    { type_params =
        List.map (fun _ -> Btype.newgenvar ()) sdecl.ptype_params;
      type_arity = arity;
      type_kind = Type_abstract;
      type_private = sdecl.ptype_private;
      type_manifest =
        begin match sdecl.ptype_manifest with None -> None
        | Some _ -> Some(Ctype.newvar ()) end;
      type_variance = Variance.unknown_signature ~injective:false ~arity;
      type_separability = Types.Separability.default_signature ~arity;
      type_is_newtype = false;
      type_expansion_scope = Btype.lowest_level;
      type_loc = sdecl.ptype_loc;
      type_attributes = sdecl.ptype_attributes;
      type_immediate = Unknown;
      type_unboxed = unboxed_false_default_false;
      type_uid = uid;
    }
  in
  add_type ~check:true id decl env

let update_type temp_env env id loc =
  let path = Path.Pident id in
  let decl = Env.find_type path temp_env in
  match decl.type_manifest with None -> ()
  | Some ty ->
      let params = List.map (fun _ -> Ctype.newvar ()) decl.type_params in
      try Ctype.unify env (Ctype.newconstr path params) ty
      with Ctype.Unify trace ->
        raise (Error(loc, Type_clash (env, trace)))

let get_unboxed_type_representation env ty =
  match Typedecl_unboxed.get_unboxed_type_representation env ty with
  | Typedecl_unboxed.This x -> Some x
  | _ -> None

(* Determine if a type's values are represented by floats at run-time. *)
let is_float env ty =
  match get_unboxed_type_representation env ty with
    Some {desc = Tconstr(p, _, _); _} -> Path.same p Predef.path_float
  | _ -> false

(* Determine if a type definition defines a fixed type. (PW) *)
let is_fixed_type sd =
  let rec has_row_var sty =
    match sty.ptyp_desc with
      Ptyp_alias (sty, _) -> has_row_var sty
    | Ptyp_class _
    | Ptyp_object (_, Open)
    | Ptyp_variant (_, Open, _)
    | Ptyp_variant (_, Closed, Some _) -> true
    | _ -> false
  in
  match sd.ptype_manifest with
    None -> false
  | Some sty ->
      sd.ptype_kind = Ptype_abstract &&
      sd.ptype_private = Private &&
      has_row_var sty

(* Set the row variable in a fixed type *)
let set_fixed_row env loc p decl =
  let tm =
    match decl.type_manifest with
      None -> assert false
    | Some t -> Ctype.expand_head env t
  in
  let rv =
    match tm.desc with
      Tvariant row ->
        let row = Btype.row_repr row in
        Btype.set_type_desc tm
          (Tvariant {row with row_fixed = Some Fixed_private});
        if Btype.static_row row then Btype.newgenty Tnil
        else row.row_more
    | Tobject (ty, _) ->
        snd (Ctype.flatten_fields ty)
    | _ ->
        raise (Error (loc, Bad_fixed_type "is not an object or variant"))
  in
  if not (Btype.is_Tvar rv) then
    raise (Error (loc, Bad_fixed_type "has no row variable"));
  Btype.set_type_desc rv (Tconstr (p, decl.type_params, ref Mnil))

(* Translate one type declaration *)

let make_params env params =
  let make_param (sty, v) =
    try
      (transl_type_param env sty, v)
    with Already_bound ->
      raise(Error(sty.ptyp_loc, Repeated_parameter))
  in
    List.map make_param params

let transl_labels env closed lbls =
  assert (lbls <> []);
  let all_labels = ref String.Set.empty in
  List.iter
    (fun {pld_name = {txt=name; loc}} ->
       if String.Set.mem name !all_labels then
         raise(Error(loc, Duplicate_label name));
       all_labels := String.Set.add name !all_labels)
    lbls;
  let mk {pld_name=name;pld_mutable=mut;pld_type=arg;pld_loc=loc;
          pld_attributes=attrs} =
    Builtin_attributes.warning_scope attrs
      (fun () ->
         let arg = Ast_helper.Typ.force_poly arg in
         let cty = transl_simple_type env closed arg in
         {ld_id = Ident.create_local name.txt;
          ld_name = name; ld_mutable = mut;
          ld_type = cty; ld_loc = loc; ld_attributes = attrs}
      )
  in
  let lbls = List.map mk lbls in
  let lbls' =
    List.map
      (fun ld ->
         let ty = ld.ld_type.ctyp_type in
         let ty = match ty.desc with Tpoly(t,[]) -> t | _ -> ty in
         {Types.ld_id = ld.ld_id;
          ld_mutable = ld.ld_mutable;
          ld_type = ty;
          ld_loc = ld.ld_loc;
          ld_attributes = ld.ld_attributes;
          ld_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
         }
      )
      lbls in
  lbls, lbls'

let transl_constructor_arguments env closed = function
  | Pcstr_tuple l ->
      let l = List.map (transl_simple_type env closed) l in
      Types.Cstr_tuple (List.map (fun t -> t.ctyp_type) l),
      Cstr_tuple l
  | Pcstr_record l ->
      let lbls, lbls' = transl_labels env closed l in
      Types.Cstr_record lbls',
      Cstr_record lbls

let make_constructor env type_path type_params sargs sret_type =
  match sret_type with
  | None ->
      let args, targs =
        transl_constructor_arguments env true sargs
      in
        targs, None, args, None
  | Some sret_type ->
      (* if it's a generalized constructor we must first narrow and
         then widen so as to not introduce any new constraints *)
      let z = narrow () in
      reset_type_variables ();
      let args, targs =
        transl_constructor_arguments env false sargs
      in
      let tret_type = transl_simple_type env false sret_type in
      let ret_type = tret_type.ctyp_type in
      (* TODO add back type_path as a parameter ? *)
      begin match (Ctype.repr ret_type).desc with
        | Tconstr (p', _, _) when Path.same type_path p' -> ()
        | _ ->
            raise (Error (sret_type.ptyp_loc, Constraint_failed
                            (ret_type, Ctype.newconstr type_path type_params)))
      end;
      widen z;
      targs, Some tret_type, args, Some ret_type

let transl_declaration env sdecl (id, uid) =
  (* Bind type parameters *)
  reset_type_variables();
  Ctype.begin_def ();
  let tparams = make_params env sdecl.ptype_params in
  let params = List.map (fun (cty, _) -> cty.ctyp_type) tparams in
  let cstrs = List.map
    (fun (sty, sty', loc) ->
      transl_simple_type env false sty,
      transl_simple_type env false sty', loc)
    sdecl.ptype_cstrs
  in
  let raw_status = get_unboxed_from_attributes sdecl in
  if raw_status.unboxed && not raw_status.default then begin
    let bad msg = raise(Error(sdecl.ptype_loc, Bad_unboxed_attribute msg)) in
    match sdecl.ptype_kind with
    | Ptype_abstract    -> bad "it is abstract"
    | Ptype_open        -> bad "extensible variant types cannot be unboxed"
    | Ptype_record fields -> begin match fields with
        | [] -> bad "it has no fields"
        | _::_::_ -> bad "it has more than one field"
        | [{pld_mutable = Mutable}] -> bad "it is mutable"
        | [{pld_mutable = Immutable}] -> ()
      end
    | Ptype_variant constructors -> begin match constructors with
        | [] -> bad "it has no constructor"
        | (_::_::_) -> bad "it has more than one constructor"
        | [c] -> begin match c.pcd_args with
            | Pcstr_tuple [] ->
                bad "its constructor has no argument"
            | Pcstr_tuple (_::_::_) ->
                bad "its constructor has more than one argument"
            | Pcstr_tuple [_]  ->
                ()
            | Pcstr_record [] ->
                bad "its constructor has no fields"
            | Pcstr_record (_::_::_) ->
                bad "its constructor has more than one field"
            | Pcstr_record [{pld_mutable = Mutable}] ->
                bad "it is mutable"
            | Pcstr_record [{pld_mutable = Immutable}] ->
                ()
          end
      end
  end;
  let unboxed_status =
    match sdecl.ptype_kind with
    | Ptype_variant [{pcd_args = Pcstr_tuple [_]; _}]
    | Ptype_variant [{pcd_args = Pcstr_record [{pld_mutable=Immutable; _}]; _}]
    | Ptype_record [{pld_mutable=Immutable; _}] -> raw_status
    | _ -> unboxed_false_default_false (* Not unboxable, mark as boxed *)
  in
  let unbox = unboxed_status.unboxed in
  let (tkind, kind) =
    match sdecl.ptype_kind with
      | Ptype_abstract -> Ttype_abstract, Type_abstract
      | Ptype_variant scstrs ->
        if List.exists (fun cstr -> cstr.pcd_res <> None) scstrs then begin
          match cstrs with
            [] -> ()
          | (_,_,loc)::_ ->
              Location.prerr_warning loc Warnings.Constraint_on_gadt
        end;
        let all_constrs = ref String.Set.empty in
        List.iter
          (fun {pcd_name = {txt = name}} ->
            if String.Set.mem name !all_constrs then
              raise(Error(sdecl.ptype_loc, Duplicate_constructor name));
            all_constrs := String.Set.add name !all_constrs)
          scstrs;
        if List.length
            (List.filter (fun cd -> cd.pcd_args <> Pcstr_tuple []) scstrs)
           > (Config.max_tag + 1) then
          raise(Error(sdecl.ptype_loc, Too_many_constructors));
        let make_cstr scstr =
          let name = Ident.create_local scstr.pcd_name.txt in
          let targs, tret_type, args, ret_type =
            make_constructor env (Path.Pident id) params
                             scstr.pcd_args scstr.pcd_res
          in
          let tcstr =
            { cd_id = name;
              cd_name = scstr.pcd_name;
              cd_args = targs;
              cd_res = tret_type;
              cd_loc = scstr.pcd_loc;
              cd_attributes = scstr.pcd_attributes }
          in
          let cstr =
            { Types.cd_id = name;
              cd_args = args;
              cd_res = ret_type;
              cd_loc = scstr.pcd_loc;
              cd_attributes = scstr.pcd_attributes;
              cd_uid = Uid.mk ~current_unit:(Env.get_unit_name ()) }
          in
            tcstr, cstr
        in
        let make_cstr scstr =
          Builtin_attributes.warning_scope scstr.pcd_attributes
            (fun () -> make_cstr scstr)
        in
        let tcstrs, cstrs = List.split (List.map make_cstr scstrs) in
          Ttype_variant tcstrs, Type_variant cstrs
      | Ptype_record lbls ->
          let lbls, lbls' = transl_labels env true lbls in
          let rep =
            if unbox then Record_unboxed false
            else if List.for_all (fun l -> is_float env l.Types.ld_type) lbls'
            then Record_float
            else Record_regular
          in
          Ttype_record lbls, Type_record(lbls', rep)
      | Ptype_open -> Ttype_open, Type_open
      in
    let (tman, man) = match sdecl.ptype_manifest with
        None -> None, None
      | Some sty ->
        let no_row = not (is_fixed_type sdecl) in
        let cty = transl_simple_type env no_row sty in
        Some cty, Some cty.ctyp_type
    in
    let arity = List.length params in
    let decl =
      { type_params = params;
        type_arity = arity;
        type_kind = kind;
        type_private = sdecl.ptype_private;
        type_manifest = man;
        type_variance = Variance.unknown_signature ~injective:false ~arity;
        type_separability = Types.Separability.default_signature ~arity;
        type_is_newtype = false;
        type_expansion_scope = Btype.lowest_level;
        type_loc = sdecl.ptype_loc;
        type_attributes = sdecl.ptype_attributes;
        type_immediate = Unknown;
        type_unboxed = unboxed_status;
        type_uid = uid;
      } in

  (* Check constraints *)
    List.iter
      (fun (cty, cty', loc) ->
        let ty = cty.ctyp_type in
        let ty' = cty'.ctyp_type in
        try Ctype.unify env ty ty' with Ctype.Unify tr ->
          raise(Error(loc, Inconsistent_constraint (env, tr))))
      cstrs;
    Ctype.end_def ();
  (* Add abstract row *)
    if is_fixed_type sdecl then begin
      let p, _ =
        try Env.find_type_by_name
              (Longident.Lident(Ident.name id ^ "#row")) env
        with Not_found -> assert false
      in
      set_fixed_row env sdecl.ptype_loc p decl
    end;
  (* Check for cyclic abbreviations *)
    begin match decl.type_manifest with None -> ()
      | Some ty ->
        if Ctype.cyclic_abbrev env id ty then
          raise(Error(sdecl.ptype_loc, Recursive_abbrev sdecl.ptype_name.txt));
    end;
    {
      typ_id = id;
      typ_name = sdecl.ptype_name;
      typ_params = tparams;
      typ_type = decl;
      typ_cstrs = cstrs;
      typ_loc = sdecl.ptype_loc;
      typ_manifest = tman;
      typ_kind = tkind;
      typ_private = sdecl.ptype_private;
      typ_attributes = sdecl.ptype_attributes;
    }

(* Generalize a type declaration *)

let generalize_decl decl =
  List.iter Ctype.generalize decl.type_params;
  Btype.iter_type_expr_kind Ctype.generalize decl.type_kind;
  begin match decl.type_manifest with
  | None    -> ()
  | Some ty -> Ctype.generalize ty
  end

(* Check that all constraints are enforced *)

module TypeSet = Btype.TypeSet
module TypeMap = Btype.TypeMap

let rec check_constraints_rec env loc visited ty =
  let ty = Ctype.repr ty in
  if TypeSet.mem ty !visited then () else begin
  visited := TypeSet.add ty !visited;
  match ty.desc with
  | Tconstr (path, args, _) ->
      let args' = List.map (fun _ -> Ctype.newvar ()) args in
      let ty' = Ctype.newconstr path args' in
      begin try Ctype.enforce_constraints env ty'
      with Ctype.Unify _ -> assert false
      | Not_found -> raise (Error(loc, Unavailable_type_constructor path))
      end;
      if not (Ctype.matches env ty ty') then
        raise (Error(loc, Constraint_failed (ty, ty')));
      List.iter (check_constraints_rec env loc visited) args
  | Tpoly (ty, tl) ->
      let _, ty = Ctype.instance_poly false tl ty in
      check_constraints_rec env loc visited ty
  | _ ->
      Btype.iter_type_expr (check_constraints_rec env loc visited) ty
  end

let check_constraints_labels env visited l pl =
  let rec get_loc name = function
      [] -> assert false
    | pld :: tl ->
        if name = pld.pld_name.txt then pld.pld_type.ptyp_loc
        else get_loc name tl
  in
  List.iter
    (fun {Types.ld_id=name; ld_type=ty} ->
       check_constraints_rec env (get_loc (Ident.name name) pl) visited ty)
    l

let check_constraints env sdecl (_, decl) =
  let visited = ref TypeSet.empty in
  List.iter2
    (fun (sty, _) ty -> check_constraints_rec env sty.ptyp_loc visited ty)
    sdecl.ptype_params decl.type_params;
  begin match decl.type_kind with
  | Type_abstract -> ()
  | Type_variant l ->
      let find_pl = function
          Ptype_variant pl -> pl
        | Ptype_record _ | Ptype_abstract | Ptype_open -> assert false
      in
      let pl = find_pl sdecl.ptype_kind in
      let pl_index =
        let foldf acc x =
          String.Map.add x.pcd_name.txt x acc
        in
        List.fold_left foldf String.Map.empty pl
      in
      List.iter
        (fun {Types.cd_id=name; cd_args; cd_res} ->
          let {pcd_args; pcd_res; _} =
            try String.Map.find (Ident.name name) pl_index
            with Not_found -> assert false in
          begin match cd_args, pcd_args with
          | Cstr_tuple tyl, Pcstr_tuple styl ->
              List.iter2
                (fun sty ty ->
                   check_constraints_rec env sty.ptyp_loc visited ty)
                styl tyl
          | Cstr_record tyl, Pcstr_record styl ->
              check_constraints_labels env visited tyl styl
          | _ -> assert false
          end;
          match pcd_res, cd_res with
          | Some sr, Some r ->
              check_constraints_rec env sr.ptyp_loc visited r
          | _ ->
              () )
        l
  | Type_record (l, _) ->
      let find_pl = function
          Ptype_record pl -> pl
        | Ptype_variant _ | Ptype_abstract | Ptype_open -> assert false
      in
      let pl = find_pl sdecl.ptype_kind in
      check_constraints_labels env visited l pl
  | Type_open -> ()
  end;
  begin match decl.type_manifest with
  | None -> ()
  | Some ty ->
      let sty =
        match sdecl.ptype_manifest with Some sty -> sty | _ -> assert false
      in
      check_constraints_rec env sty.ptyp_loc visited ty
  end

(*
   If both a variant/record definition and a type equation are given,
   need to check that the equation refers to a type of the same kind
   with the same constructors and labels.
*)
let check_coherence env loc dpath decl =
  match decl with
    { type_kind = (Type_variant _ | Type_record _| Type_open);
      type_manifest = Some ty } ->
      begin match (Ctype.repr ty).desc with
        Tconstr(path, args, _) ->
          begin try
            let decl' = Env.find_type path env in
            let err =
              if List.length args <> List.length decl.type_params
              then Some Includecore.Arity
              else if not (Ctype.equal env false args decl.type_params)
              then Some Includecore.Constraint
              else
                Includecore.type_declarations ~loc ~equality:true env
                  ~mark:true
                  (Path.last path)
                  decl'
                  dpath
                  (Subst.type_declaration
                     (Subst.add_type_path dpath path Subst.identity) decl)
            in
            if err <> None then
              raise(Error(loc, Definition_mismatch (ty, err)))
          with Not_found ->
            raise(Error(loc, Unavailable_type_constructor path))
          end
      | _ -> raise(Error(loc, Definition_mismatch (ty, None)))
      end
  | _ -> ()

let check_abbrev env sdecl (id, decl) =
  check_coherence env sdecl.ptype_loc (Path.Pident id) decl

(* Check that recursion is well-founded *)

let check_well_founded env loc path to_check ty =
  let visited = ref TypeMap.empty in
  let rec check ty0 parents ty =
    let ty = Btype.repr ty in
    if TypeSet.mem ty parents then begin
      (*Format.eprintf "@[%a@]@." Printtyp.raw_type_expr ty;*)
      if match ty0.desc with
      | Tconstr (p, _, _) -> Path.same p path
      | _ -> false
      then raise (Error (loc, Recursive_abbrev (Path.name path)))
      else raise (Error (loc, Cycle_in_def (Path.name path, ty0)))
    end;
    let (fini, parents) =
      try
        let prev = TypeMap.find ty !visited in
        if TypeSet.subset parents prev then (true, parents) else
        (false, TypeSet.union parents prev)
      with Not_found ->
        (false, parents)
    in
    if fini then () else
    let rec_ok =
      match ty.desc with
        Tconstr(p,_,_) ->
          !Clflags.recursive_types && Ctype.is_contractive env p
      | Tobject _ | Tvariant _ -> true
      | _ -> !Clflags.recursive_types
    in
    let visited' = TypeMap.add ty parents !visited in
    let arg_exn =
      try
        visited := visited';
        let parents =
          if rec_ok then TypeSet.empty else TypeSet.add ty parents in
        Btype.iter_type_expr (check ty0 parents) ty;
        None
      with e ->
        visited := visited'; Some e
    in
    match ty.desc with
    | Tconstr(p, _, _) when arg_exn <> None || to_check p ->
        if to_check p then Option.iter raise arg_exn
        else Btype.iter_type_expr (check ty0 TypeSet.empty) ty;
        begin try
          let ty' = Ctype.try_expand_once_opt env ty in
          let ty0 = if TypeSet.is_empty parents then ty else ty0 in
          check ty0 (TypeSet.add ty parents) ty'
        with
          Ctype.Cannot_expand -> Option.iter raise arg_exn
        end
    | _ -> Option.iter raise arg_exn
  in
  let snap = Btype.snapshot () in
  try Ctype.wrap_trace_gadt_instances env (check ty TypeSet.empty) ty
  with Ctype.Unify _ ->
    (* Will be detected by check_recursion *)
    Btype.backtrack snap

let check_well_founded_manifest env loc path decl =
  if decl.type_manifest = None then () else
  let args = List.map (fun _ -> Ctype.newvar()) decl.type_params in
  check_well_founded env loc path (Path.same path) (Ctype.newconstr path args)

let check_well_founded_decl env loc path decl to_check =
  let open Btype in
  let it =
    {type_iterators with
     it_type_expr = (fun _ -> check_well_founded env loc path to_check)} in
  it.it_type_declaration it (Ctype.generic_instance_declaration decl)

(* Check for ill-defined abbrevs *)

let check_recursion ~orig_env env loc path decl to_check =
  (* to_check is true for potentially mutually recursive paths.
     (path, decl) is the type declaration to be checked. *)

  if decl.type_params = [] then () else

  let visited = ref [] in

  let rec check_regular cpath args prev_exp prev_expansions ty =
    let ty = Ctype.repr ty in
    if not (List.memq ty !visited) then begin
      visited := ty :: !visited;
      match ty.desc with
      | Tconstr(path', args', _) ->
          if Path.same path path' then begin
            if not (Ctype.equal orig_env false args args') then
              raise (Error(loc,
                     Non_regular {
                       definition=path;
                       used_as=ty;
                       defined_as=Ctype.newconstr path args;
                       expansions=List.rev prev_expansions;
                     }))
          end
          (* Attempt to expand a type abbreviation if:
              1- [to_check path'] holds
                 (otherwise the expansion cannot involve [path]);
              2- we haven't expanded this type constructor before
                 (otherwise we could loop if [path'] is itself
                 a non-regular abbreviation). *)
          else if to_check path' && not (List.mem path' prev_exp) then begin
            try
              (* Attempt expansion *)
              let (params0, body0, _) = Env.find_type_expansion path' env in
              let (params, body) =
                Ctype.instance_parameterized_type params0 body0 in
              begin
                try List.iter2 (Ctype.unify orig_env) params args'
                with Ctype.Unify _ ->
                  raise (Error(loc, Constraint_failed
                                 (ty, Ctype.newconstr path' params0)));
              end;
              check_regular path' args
                (path' :: prev_exp) ((ty,body) :: prev_expansions)
                body
            with Not_found -> ()
          end;
          List.iter (check_regular cpath args prev_exp prev_expansions) args'
      | Tpoly (ty, tl) ->
          let (_, ty) = Ctype.instance_poly ~keep_names:true false tl ty in
          check_regular cpath args prev_exp prev_expansions ty
      | _ ->
          Btype.iter_type_expr
            (check_regular cpath args prev_exp prev_expansions) ty
    end in

  Option.iter
    (fun body ->
      let (args, body) =
        Ctype.instance_parameterized_type
          ~keep_names:true decl.type_params body in
      List.iter (check_regular path args [] []) args;
      check_regular path args [] [] body)
    decl.type_manifest

let check_abbrev_recursion ~orig_env env id_loc_list to_check tdecl =
  let decl = tdecl.typ_type in
  let id = tdecl.typ_id in
  check_recursion ~orig_env env (List.assoc id id_loc_list) (Path.Pident id)
    decl to_check

let check_duplicates sdecl_list =
  let labels = Hashtbl.create 7 and constrs = Hashtbl.create 7 in
  List.iter
    (fun sdecl -> match sdecl.ptype_kind with
      Ptype_variant cl ->
        List.iter
          (fun pcd ->
            try
              let name' = Hashtbl.find constrs pcd.pcd_name.txt in
              Location.prerr_warning pcd.pcd_loc
                (Warnings.Duplicate_definitions
                   ("constructor", pcd.pcd_name.txt, name',
                    sdecl.ptype_name.txt))
            with Not_found ->
              Hashtbl.add constrs pcd.pcd_name.txt sdecl.ptype_name.txt)
          cl
    | Ptype_record fl ->
        List.iter
          (fun {pld_name=cname;pld_loc=loc} ->
            try
              let name' = Hashtbl.find labels cname.txt in
              Location.prerr_warning loc
                (Warnings.Duplicate_definitions
                   ("label", cname.txt, name', sdecl.ptype_name.txt))
            with Not_found -> Hashtbl.add labels cname.txt sdecl.ptype_name.txt)
          fl
    | Ptype_abstract -> ()
    | Ptype_open -> ())
    sdecl_list

(* Force recursion to go through id for private types*)
let name_recursion sdecl id decl =
  match decl with
  | { type_kind = Type_abstract;
      type_manifest = Some ty;
      type_private = Private; } when is_fixed_type sdecl ->
    let ty = Ctype.repr ty in
    let ty' = Btype.newty2 ty.level ty.desc in
    if Ctype.deep_occur ty ty' then
      let td = Tconstr(Path.Pident id, decl.type_params, ref Mnil) in
      Btype.link_type ty (Btype.newty2 ty.level td);
      {decl with type_manifest = Some ty'}
    else decl
  | _ -> decl

let name_recursion_decls sdecls decls =
  List.map2 (fun sdecl (id, decl) -> (id, name_recursion sdecl id decl))
    sdecls decls

(* Warn on definitions of type "type foo = ()" which redefine a different unit
   type and are likely a mistake. *)
let check_redefined_unit (td: Parsetree.type_declaration) =
  let open Parsetree in
  let is_unit_constructor cd = cd.pcd_name.txt = "()" in
  match td with
  | { ptype_name = { txt = name };
      ptype_manifest = None;
      ptype_kind = Ptype_variant [ cd ] }
    when is_unit_constructor cd ->
      Location.prerr_warning td.ptype_loc (Warnings.Redefining_unit name)
  | _ ->
      ()

let add_types_to_env decls env =
  List.fold_right
    (fun (id, decl) env -> add_type ~check:true id decl env)
    decls env

(* Translate a set of type declarations, mutually recursive or not *)
let transl_type_decl env rec_flag sdecl_list =
  List.iter check_redefined_unit sdecl_list;
  (* Add dummy types for fixed rows *)
  let fixed_types = List.filter is_fixed_type sdecl_list in
  let sdecl_list =
    List.map
      (fun sdecl ->
         let ptype_name =
           let loc = { sdecl.ptype_name.loc with Location.loc_ghost = true } in
           mkloc (sdecl.ptype_name.txt ^"#row") loc
         in
         let ptype_kind = Ptype_abstract in
         let ptype_manifest = None in
         let ptype_loc = { sdecl.ptype_loc with Location.loc_ghost = true } in
        {sdecl with
           ptype_name; ptype_kind; ptype_manifest; ptype_loc })
      fixed_types
    @ sdecl_list
  in

  (* Create identifiers. *)
  let scope = Ctype.create_scope () in
  let ids_list =
    List.map (fun sdecl ->
      Ident.create_scoped ~scope sdecl.ptype_name.txt,
      Uid.mk ~current_unit:(Env.get_unit_name ())
    ) sdecl_list
  in
  Ctype.begin_def();
  (* Enter types. *)
  let temp_env =
    List.fold_left2 (enter_type rec_flag) env sdecl_list ids_list in
  (* Translate each declaration. *)
  let current_slot = ref None in
  let warn_unused = Warnings.is_active (Warnings.Unused_type_declaration "") in
  let ids_slots (id, _uid as ids) =
    match rec_flag with
    | Asttypes.Recursive when warn_unused ->
        (* See typecore.ml for a description of the algorithm used
             to detect unused declarations in a set of recursive definitions. *)
        let slot = ref [] in
        let td = Env.find_type (Path.Pident id) temp_env in
        Env.set_type_used_callback
          td
          (fun old_callback ->
             match !current_slot with
             | Some slot -> slot := td.type_uid :: !slot
             | None ->
                 List.iter Env.mark_type_used (get_ref slot);
                 old_callback ()
          );
        ids, Some slot
    | Asttypes.Recursive | Asttypes.Nonrecursive ->
        ids, None
  in
  let transl_declaration name_sdecl (id, slot) =
    current_slot := slot;
    Builtin_attributes.warning_scope
      name_sdecl.ptype_attributes
      (fun () -> transl_declaration temp_env name_sdecl id)
  in
  let tdecls =
    List.map2 transl_declaration sdecl_list (List.map ids_slots ids_list) in
  let decls =
    List.map (fun tdecl -> (tdecl.typ_id, tdecl.typ_type)) tdecls in
  current_slot := None;
  (* Check for duplicates *)
  check_duplicates sdecl_list;
  (* Build the final env. *)
  let new_env = add_types_to_env decls env in
  (* Update stubs *)
  begin match rec_flag with
    | Asttypes.Nonrecursive -> ()
    | Asttypes.Recursive ->
      List.iter2
        (fun (id, _) sdecl -> update_type temp_env new_env id sdecl.ptype_loc)
        ids_list sdecl_list
  end;
  (* Generalize type declarations. *)
  Ctype.end_def();
  List.iter (fun (_, decl) -> generalize_decl decl) decls;
  (* Check for ill-formed abbrevs *)
  let id_loc_list =
    List.map2 (fun (id, _) sdecl -> (id, sdecl.ptype_loc))
      ids_list sdecl_list
  in
  List.iter (fun (id, decl) ->
    check_well_founded_manifest new_env (List.assoc id id_loc_list)
      (Path.Pident id) decl)
    decls;
  let to_check =
    function Path.Pident id -> List.mem_assoc id id_loc_list | _ -> false in
  List.iter (fun (id, decl) ->
    check_well_founded_decl new_env (List.assoc id id_loc_list) (Path.Pident id)
      decl to_check)
    decls;
  List.iter
    (check_abbrev_recursion ~orig_env:env new_env id_loc_list to_check) tdecls;
  (* Check that all type variables are closed *)
  List.iter2
    (fun sdecl tdecl ->
      let decl = tdecl.typ_type in
       match Ctype.closed_type_decl decl with
         Some ty -> raise(Error(sdecl.ptype_loc, Unbound_type_var(ty,decl)))
       | None   -> ())
    sdecl_list tdecls;
  (* Check that constraints are enforced *)
  List.iter2 (check_constraints new_env) sdecl_list decls;
  (* Add type properties to declarations *)
  let decls =
    try
      decls
      |> name_recursion_decls sdecl_list
      |> Typedecl_variance.update_decls env sdecl_list
      |> Typedecl_immediacy.update_decls env
      |> Typedecl_separability.update_decls env
    with
    | Typedecl_variance.Error (loc, err) ->
        raise (Error (loc, Variance err))
    | Typedecl_immediacy.Error (loc, err) ->
        raise (Error (loc, Immediacy err))
    | Typedecl_separability.Error (loc, err) ->
        raise (Error (loc, Separability err))
  in
  (* Compute the final environment with variance and immediacy *)
  let final_env = add_types_to_env decls env in
  (* Check re-exportation *)
  List.iter2 (check_abbrev final_env) sdecl_list decls;
  (* Keep original declaration *)
  let final_decls =
    List.map2
      (fun tdecl (_id2, decl) ->
        { tdecl with typ_type = decl }
      ) tdecls decls
  in
  (* Done *)
  (final_decls, final_env)

(* Translating type extensions *)

let transl_extension_constructor ~scope env type_path type_params
                                 typext_params priv sext =
  let id = Ident.create_scoped ~scope sext.pext_name.txt in
  let args, ret_type, kind =
    match sext.pext_kind with
      Pext_decl(sargs, sret_type) ->
        let targs, tret_type, args, ret_type =
          make_constructor env type_path typext_params
            sargs sret_type
        in
          args, ret_type, Text_decl(targs, tret_type)
    | Pext_rebind lid ->
        let usage = if priv = Public then Env.Positive else Env.Privatize in
        let cdescr = Env.lookup_constructor ~loc:lid.loc usage lid.txt env in
        let (args, cstr_res, _ex) = Ctype.instance_constructor cdescr in
        let res, ret_type =
          if cdescr.cstr_generalized then
            let params = Ctype.instance_list type_params in
            let res = Ctype.newconstr type_path params in
            let ret_type = Some (Ctype.newconstr type_path params) in
              res, ret_type
          else (Ctype.newconstr type_path typext_params), None
        in
        begin
          try
            Ctype.unify env cstr_res res
          with Ctype.Unify trace ->
            raise (Error(lid.loc,
                     Rebind_wrong_type(lid.txt, env, trace)))
        end;
        (* Remove "_" names from parameters used in the constructor *)
        if not cdescr.cstr_generalized then begin
          let vars =
            Ctype.free_variables (Btype.newgenty (Ttuple args))
          in
            List.iter
              (function {desc = Tvar (Some "_")} as ty
                  when List.memq ty vars ->
                    Btype.set_type_desc ty (Tvar None)
                | _ -> ())
              typext_params
        end;
        (* Ensure that constructor's type matches the type being extended *)
        let cstr_type_path, cstr_type_params =
          match cdescr.cstr_res.desc with
            Tconstr (p, _, _) ->
              let decl = Env.find_type p env in
                p, decl.type_params
          | _ -> assert false
        in
        let cstr_types =
          (Btype.newgenty
             (Tconstr(cstr_type_path, cstr_type_params, ref Mnil)))
          :: cstr_type_params
        in
        let ext_types =
          (Btype.newgenty
             (Tconstr(type_path, type_params, ref Mnil)))
          :: type_params
        in
        if not (Ctype.equal env true cstr_types ext_types) then
          raise (Error(lid.loc,
                       Rebind_mismatch(lid.txt, cstr_type_path, type_path)));
        (* Disallow rebinding private constructors to non-private *)
        begin
          match cdescr.cstr_private, priv with
            Private, Public ->
              raise (Error(lid.loc, Rebind_private lid.txt))
          | _ -> ()
        end;
        let path =
          match cdescr.cstr_tag with
            Cstr_extension(path, _) -> path
          | _ -> assert false
        in
        let args =
          match cdescr.cstr_inlined with
          | None ->
              Types.Cstr_tuple args
          | Some decl ->
              let tl =
                match args with
                | [ {desc=Tconstr(_, tl, _)} ] -> tl
                | _ -> assert false
              in
              let decl = Ctype.instance_declaration decl in
              assert (List.length decl.type_params = List.length tl);
              List.iter2 (Ctype.unify env) decl.type_params tl;
              let lbls =
                match decl.type_kind with
                | Type_record (lbls, Record_extension _) -> lbls
                | _ -> assert false
              in
              Types.Cstr_record lbls
        in
        args, ret_type, Text_rebind(path, lid)
  in
  let ext =
    { ext_type_path = type_path;
      ext_type_params = typext_params;
      ext_args = args;
      ext_ret_type = ret_type;
      ext_private = priv;
      Types.ext_loc = sext.pext_loc;
      Types.ext_attributes = sext.pext_attributes;
      ext_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
    }
  in
    { ext_id = id;
      ext_name = sext.pext_name;
      ext_type = ext;
      ext_kind = kind;
      Typedtree.ext_loc = sext.pext_loc;
      Typedtree.ext_attributes = sext.pext_attributes; }

let transl_extension_constructor ~scope env type_path type_params
    typext_params priv sext =
  Builtin_attributes.warning_scope sext.pext_attributes
    (fun () -> transl_extension_constructor ~scope env type_path type_params
        typext_params priv sext)

let is_rebind ext =
  match ext.ext_kind with
  | Text_rebind _ -> true
  | Text_decl _ -> false

let transl_type_extension extend env loc styext =
  (* Note: it would be incorrect to call [create_scope] *after*
     [reset_type_variables] or after [begin_def] (see #10010). *)
  let scope = Ctype.create_scope () in
  reset_type_variables();
  Ctype.begin_def();
  let type_path, type_decl =
    let lid = styext.ptyext_path in
    Env.lookup_type ~loc:lid.loc lid.txt env
  in
  begin
    match type_decl.type_kind with
    | Type_open -> begin
        match type_decl.type_private with
        | Private when extend -> begin
            match
              List.find
                (function {pext_kind = Pext_decl _} -> true
                        | {pext_kind = Pext_rebind _} -> false)
                styext.ptyext_constructors
            with
            | {pext_loc} ->
                raise (Error(pext_loc, Cannot_extend_private_type type_path))
            | exception Not_found -> ()
          end
        | _ -> ()
      end
    | _ ->
        raise (Error(loc, Not_extensible_type type_path))
  end;
  let type_variance =
    List.map (fun v ->
                let (co, cn) = Variance.get_upper v in
                  (not cn, not co, false))
             type_decl.type_variance
  in
  let err =
    if type_decl.type_arity <> List.length styext.ptyext_params then
      Some Includecore.Arity
    else
      if List.for_all2
           (fun (c1, n1, _) (c2, n2, _) -> (not c2 || c1) && (not n2 || n1))
           type_variance
           (Typedecl_variance.variance_of_params styext.ptyext_params)
      then None else Some Includecore.Variance
  in
  begin match err with
  | None -> ()
  | Some err -> raise (Error(loc, Extension_mismatch (type_path, err)))
  end;
  let ttype_params = make_params env styext.ptyext_params in
  let type_params = List.map (fun (cty, _) -> cty.ctyp_type) ttype_params in
  List.iter2 (Ctype.unify_var env)
    (Ctype.instance_list type_decl.type_params)
    type_params;
  let constructors =
    List.map (transl_extension_constructor ~scope env type_path
               type_decl.type_params type_params styext.ptyext_private)
      styext.ptyext_constructors
  in
  Ctype.end_def();
  (* Generalize types *)
  List.iter Ctype.generalize type_params;
  List.iter
    (fun ext ->
       Btype.iter_type_expr_cstr_args Ctype.generalize ext.ext_type.ext_args;
       Option.iter Ctype.generalize ext.ext_type.ext_ret_type)
    constructors;
  (* Check that all type variables are closed *)
  List.iter
    (fun ext ->
       match Ctype.closed_extension_constructor ext.ext_type with
         Some ty ->
           raise(Error(ext.ext_loc, Unbound_type_var_ext(ty, ext.ext_type)))
       | None -> ())
    constructors;
  (* Check variances are correct *)
  List.iter
    (fun ext->
       (* Note that [loc] here is distinct from [type_decl.type_loc], which
          makes the [loc] parameter to this function useful. [loc] is the
          location of the extension, while [type_decl] points to the original
          type declaration being extended. *)
       try Typedecl_variance.check_variance_extension
             env type_decl ext (type_variance, loc)
       with Typedecl_variance.Error (loc, err) ->
         raise (Error (loc, Variance err)))
    constructors;
  (* Add extension constructors to the environment *)
  let newenv =
    List.fold_left
      (fun env ext ->
         let rebind = is_rebind ext in
         Env.add_extension ~check:true ~rebind ext.ext_id ext.ext_type env)
      env constructors
  in
  let tyext =
    { tyext_path = type_path;
      tyext_txt = styext.ptyext_path;
      tyext_params = ttype_params;
      tyext_constructors = constructors;
      tyext_private = styext.ptyext_private;
      tyext_loc = styext.ptyext_loc;
      tyext_attributes = styext.ptyext_attributes; }
  in
    (tyext, newenv)

let transl_type_extension extend env loc styext =
  Builtin_attributes.warning_scope styext.ptyext_attributes
    (fun () -> transl_type_extension extend env loc styext)

let transl_exception env sext =
  let scope = Ctype.create_scope () in
  reset_type_variables();
  Ctype.begin_def();
  let ext =
    transl_extension_constructor ~scope env
      Predef.path_exn [] [] Asttypes.Public sext
  in
  Ctype.end_def();
  (* Generalize types *)
  Btype.iter_type_expr_cstr_args Ctype.generalize ext.ext_type.ext_args;
  Option.iter Ctype.generalize ext.ext_type.ext_ret_type;
  (* Check that all type variables are closed *)
  begin match Ctype.closed_extension_constructor ext.ext_type with
    Some ty ->
      raise (Error(ext.ext_loc, Unbound_type_var_ext(ty, ext.ext_type)))
  | None -> ()
  end;
  let rebind = is_rebind ext in
  let newenv =
    Env.add_extension ~check:true ~rebind ext.ext_id ext.ext_type env
  in
  ext, newenv

let transl_type_exception env t =
  Builtin_attributes.check_no_alert t.ptyexn_attributes;
  let contructor, newenv =
    Builtin_attributes.warning_scope t.ptyexn_attributes
      (fun () ->
         transl_exception env t.ptyexn_constructor
      )
  in
  {tyexn_constructor = contructor;
   tyexn_loc = t.ptyexn_loc;
   tyexn_attributes = t.ptyexn_attributes}, newenv


type native_repr_attribute =
  | Native_repr_attr_absent
  | Native_repr_attr_present of native_repr_kind

let get_native_repr_attribute attrs ~global_repr =
  match
    Attr_helper.get_no_payload_attribute ["unboxed"; "ocaml.unboxed"]  attrs,
    Attr_helper.get_no_payload_attribute ["untagged"; "ocaml.untagged"] attrs,
    global_repr
  with
  | None, None, None -> Native_repr_attr_absent
  | None, None, Some repr -> Native_repr_attr_present repr
  | Some _, None, None -> Native_repr_attr_present Unboxed
  | None, Some _, None -> Native_repr_attr_present Untagged
  | Some { Location.loc }, _, _
  | _, Some { Location.loc }, _ ->
    raise (Error (loc, Multiple_native_repr_attributes))

let native_repr_of_type env kind ty =
  match kind, (Ctype.expand_head_opt env ty).desc with
  | Untagged, Tconstr (path, _, _) when Path.same path Predef.path_int ->
    Some Untagged_int
  | Unboxed, Tconstr (path, _, _) when Path.same path Predef.path_float ->
    Some Unboxed_float
  | Unboxed, Tconstr (path, _, _) when Path.same path Predef.path_int32 ->
    Some (Unboxed_integer Pint32)
  | Unboxed, Tconstr (path, _, _) when Path.same path Predef.path_int64 ->
    Some (Unboxed_integer Pint64)
  | Unboxed, Tconstr (path, _, _) when Path.same path Predef.path_nativeint ->
    Some (Unboxed_integer Pnativeint)
  | _ ->
    None

(* Raises an error when [core_type] contains an [@unboxed] or [@untagged]
   attribute in a strict sub-term. *)
let error_if_has_deep_native_repr_attributes core_type =
  let open Ast_iterator in
  let this_iterator =
    { default_iterator with typ = fun iterator core_type ->
      begin
        match
          get_native_repr_attribute core_type.ptyp_attributes ~global_repr:None
        with
        | Native_repr_attr_present kind ->
           raise (Error (core_type.ptyp_loc,
                         Deep_unbox_or_untag_attribute kind))
        | Native_repr_attr_absent -> ()
      end;
      default_iterator.typ iterator core_type }
  in
  default_iterator.typ this_iterator core_type

let make_native_repr env core_type ty ~global_repr =
  error_if_has_deep_native_repr_attributes core_type;
  match get_native_repr_attribute core_type.ptyp_attributes ~global_repr with
  | Native_repr_attr_absent ->
    Same_as_ocaml_repr
  | Native_repr_attr_present kind ->
    begin match native_repr_of_type env kind ty with
    | None ->
      raise (Error (core_type.ptyp_loc, Cannot_unbox_or_untag_type kind))
    | Some repr -> repr
    end

let rec parse_native_repr_attributes env core_type ty ~global_repr =
  match core_type.ptyp_desc, (Ctype.repr ty).desc,
    get_native_repr_attribute core_type.ptyp_attributes ~global_repr:None
  with
  | Ptyp_arrow _, Tarrow _, Native_repr_attr_present kind  ->
    raise (Error (core_type.ptyp_loc, Cannot_unbox_or_untag_type kind))
  | Ptyp_arrow (_, ct1, ct2), Tarrow (_, t1, t2, _), _ ->
    let repr_arg = make_native_repr env ct1 t1 ~global_repr in
    let repr_args, repr_res =
      parse_native_repr_attributes env ct2 t2 ~global_repr
    in
    (repr_arg :: repr_args, repr_res)
  | Ptyp_arrow _, _, _ | _, Tarrow _, _ -> assert false
  | _ -> ([], make_native_repr env core_type ty ~global_repr)


let check_unboxable env loc ty =
  let check_type acc ty : Path.Set.t =
    let ty = Ctype.repr (Ctype.expand_head_opt env ty) in
    try match ty.desc with
      | Tconstr (p, _, _) ->
        let tydecl = Env.find_type p env in
        if tydecl.type_unboxed.default then
          Path.Set.add p acc
        else acc
      | _ -> acc
    with Not_found -> acc
  in
  let all_unboxable_types = Btype.fold_type_expr check_type Path.Set.empty ty in
  Path.Set.fold
    (fun p () ->
       Location.prerr_warning loc
         (Warnings.Unboxable_type_in_prim_decl (Path.name p))
    )
    all_unboxable_types
    ()

(* Translate a value declaration *)
let transl_value_decl env loc valdecl =
  let cty = Typetexp.transl_type_scheme env valdecl.pval_type in
  let ty = cty.ctyp_type in
  let v =
  match valdecl.pval_prim with
    [] when Env.is_in_signature env ->
      { val_type = ty; val_kind = Val_reg; Types.val_loc = loc;
        val_attributes = valdecl.pval_attributes;
        val_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
      }
  | [] ->
      raise (Error(valdecl.pval_loc, Val_in_structure))
  | _ ->
      let global_repr =
        match
          get_native_repr_attribute valdecl.pval_attributes ~global_repr:None
        with
        | Native_repr_attr_present repr -> Some repr
        | Native_repr_attr_absent -> None
      in
      let native_repr_args, native_repr_res =
        parse_native_repr_attributes env valdecl.pval_type ty ~global_repr
      in
      let prim =
        Primitive.parse_declaration valdecl
          ~native_repr_args
          ~native_repr_res
      in
      if prim.prim_arity = 0 &&
         (prim.prim_name = "" || prim.prim_name.[0] <> '%') then
        raise(Error(valdecl.pval_type.ptyp_loc, Null_arity_external));
      if !Clflags.native_code
      && prim.prim_arity > 5
      && prim.prim_native_name = ""
      then raise(Error(valdecl.pval_type.ptyp_loc, Missing_native_external));
      check_unboxable env loc ty;
      { val_type = ty; val_kind = Val_prim prim; Types.val_loc = loc;
        val_attributes = valdecl.pval_attributes;
        val_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
      }
  in
  let (id, newenv) =
    Env.enter_value valdecl.pval_name.txt v env
      ~check:(fun s -> Warnings.Unused_value_declaration s)
  in
  let desc =
    {
     val_id = id;
     val_name = valdecl.pval_name;
     val_desc = cty; val_val = v;
     val_prim = valdecl.pval_prim;
     val_loc = valdecl.pval_loc;
     val_attributes = valdecl.pval_attributes;
    }
  in
  desc, newenv

let transl_value_decl env loc valdecl =
  Builtin_attributes.warning_scope valdecl.pval_attributes
    (fun () -> transl_value_decl env loc valdecl)

(* Translate a "with" constraint -- much simplified version of
   transl_type_decl. For a constraint [Sig with t = sdecl],
   there are two declarations of interest in two environments:
   - [sig_decl] is the declaration of [t] in [Sig],
     in the environment [sig_env] (containing the declarations
     of [Sig] before [t])
   - [sdecl] is the new syntactic declaration, to be type-checked
     in the current, outer environment [with_env].

   In particular, note that [sig_env] is an extension of
   [outer_env].
*)
let transl_with_constraint id row_path ~sig_env ~sig_decl ~outer_env sdecl =
  Env.mark_type_used sig_decl.type_uid;
  reset_type_variables();
  Ctype.begin_def();
  (* In the first part of this function, we typecheck the syntactic
     declaration [sdecl] in the outer environment [outer_env]. *)
  let env = outer_env in
  let loc = sdecl.ptype_loc in
  let tparams = make_params env sdecl.ptype_params in
  let params = List.map (fun (cty, _) -> cty.ctyp_type) tparams in
  let arity = List.length params in
  let constraints =
    List.map (fun (ty, ty', loc) ->
      let cty = transl_simple_type env false ty in
      let cty' = transl_simple_type env false ty' in
      (* Note: We delay the unification of those constraints
         after the unification of parameters, so that clashing
         constraints report an error on the constraint location
         rather than the parameter location. *)
      (cty, cty', loc)
    ) sdecl.ptype_cstrs
  in
  let no_row = not (is_fixed_type sdecl) in
  let (tman, man) =  match sdecl.ptype_manifest with
      None -> None, None
    | Some sty ->
        let cty = transl_simple_type env no_row sty in
        Some cty, Some cty.ctyp_type
  in
  (* In the second part, we check the consistency between the two
     declarations and compute a "merged" declaration; we now need to
     work in the larger signature environment [sig_env], because
     [sig_decl.type_params] and [sig_decl.type_kind] are only valid
     there. *)
  let env = sig_env in
  let sig_decl = Ctype.instance_declaration sig_decl in
  let arity_ok = arity = sig_decl.type_arity in
  if arity_ok then
    List.iter2 (fun (cty, _) tparam ->
      try Ctype.unify_var env cty.ctyp_type tparam
      with Ctype.Unify tr ->
        raise(Error(cty.ctyp_loc, Inconsistent_constraint (env, tr)))
    ) tparams sig_decl.type_params;
  List.iter (fun (cty, cty', loc) ->
    (* Note: constraints must also be enforced in [sig_env] because
       they may contain parameter variables from [tparams]
       that have now be unified in [sig_env]. *)
    try Ctype.unify env cty.ctyp_type cty'.ctyp_type
    with Ctype.Unify tr ->
      raise(Error(loc, Inconsistent_constraint (env, tr)))
  ) constraints;
  let priv =
    if sdecl.ptype_private = Private then Private else
    if arity_ok && sig_decl.type_kind <> Type_abstract
    then sig_decl.type_private else sdecl.ptype_private
  in
  if arity_ok && sig_decl.type_kind <> Type_abstract
  && sdecl.ptype_private = Private then
    Location.deprecated loc "spurious use of private";
  let type_kind, type_unboxed =
    if arity_ok && man <> None then
      sig_decl.type_kind, sig_decl.type_unboxed
    else
      Type_abstract, unboxed_false_default_false
  in
  let new_sig_decl =
    { type_params = params;
      type_arity = arity;
      type_kind;
      type_private = priv;
      type_manifest = man;
      type_variance = [];
      type_separability = Types.Separability.default_signature ~arity;
      type_is_newtype = false;
      type_expansion_scope = Btype.lowest_level;
      type_loc = loc;
      type_attributes = sdecl.ptype_attributes;
      type_immediate = Unknown;
      type_unboxed;
      type_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
    }
  in
  begin match row_path with None -> ()
  | Some p -> set_fixed_row env loc p new_sig_decl
  end;
  begin match Ctype.closed_type_decl new_sig_decl with None -> ()
  | Some ty -> raise(Error(loc, Unbound_type_var(ty, new_sig_decl)))
  end;
  let new_sig_decl = name_recursion sdecl id new_sig_decl in
  let new_type_variance =
    let required = Typedecl_variance.variance_of_sdecl sdecl in
    try
      Typedecl_variance.compute_decl env ~check:true new_sig_decl required
    with Typedecl_variance.Error (loc, err) ->
      raise (Error (loc, Variance err)) in
  let new_type_immediate =
    (* Typedecl_immediacy.compute_decl never raises *)
    Typedecl_immediacy.compute_decl env new_sig_decl in
  let new_type_separability =
    try Typedecl_separability.compute_decl env new_sig_decl
    with Typedecl_separability.Error (loc, err) ->
      raise (Error (loc, Separability err)) in
  let new_sig_decl =
    (* we intentionally write this without a fragile { decl with ... }
       to ensure that people adding new fields to type declarations
       consider whether they need to recompute it here; for an example
       of bug caused by the previous approach, see #9607 *)
    {
      type_params = new_sig_decl.type_params;
      type_arity = new_sig_decl.type_arity;
      type_kind = new_sig_decl.type_kind;
      type_private = new_sig_decl.type_private;
      type_manifest = new_sig_decl.type_manifest;
      type_unboxed = new_sig_decl.type_unboxed;
      type_is_newtype = new_sig_decl.type_is_newtype;
      type_expansion_scope = new_sig_decl.type_expansion_scope;
      type_loc = new_sig_decl.type_loc;
      type_attributes = new_sig_decl.type_attributes;
      type_uid = new_sig_decl.type_uid;

      type_variance = new_type_variance;
      type_immediate = new_type_immediate;
      type_separability = new_type_separability;
    } in
  Ctype.end_def();
  generalize_decl new_sig_decl;
  {
    typ_id = id;
    typ_name = sdecl.ptype_name;
    typ_params = tparams;
    typ_type = new_sig_decl;
    typ_cstrs = constraints;
    typ_loc = loc;
    typ_manifest = tman;
    typ_kind = Ttype_abstract;
    typ_private = sdecl.ptype_private;
    typ_attributes = sdecl.ptype_attributes;
  }

(* Approximate a type declaration: just make all types abstract *)

let abstract_type_decl ~injective arity =
  let rec make_params n =
    if n <= 0 then [] else Ctype.newvar() :: make_params (n-1) in
  Ctype.begin_def();
  let decl =
    { type_params = make_params arity;
      type_arity = arity;
      type_kind = Type_abstract;
      type_private = Public;
      type_manifest = None;
      type_variance = Variance.unknown_signature ~injective ~arity;
      type_separability = Types.Separability.default_signature ~arity;
      type_is_newtype = false;
      type_expansion_scope = Btype.lowest_level;
      type_loc = Location.none;
      type_attributes = [];
      type_immediate = Unknown;
      type_unboxed = unboxed_false_default_false;
      type_uid = Uid.internal_not_actually_unique;
     } in
  Ctype.end_def();
  generalize_decl decl;
  decl

let approx_type_decl sdecl_list =
  let scope = Ctype.create_scope () in
  List.map
    (fun sdecl ->
      let injective = sdecl.ptype_kind <> Ptype_abstract in
      (Ident.create_scoped ~scope sdecl.ptype_name.txt,
       abstract_type_decl ~injective (List.length sdecl.ptype_params)))
    sdecl_list

(* Variant of check_abbrev_recursion to check the well-formedness
   conditions on type abbreviations defined within recursive modules. *)

let check_recmod_typedecl env loc recmod_ids path decl =
  (* recmod_ids is the list of recursively-defined module idents.
     (path, decl) is the type declaration to be checked. *)
  let to_check path = Path.exists_free recmod_ids path in
  check_well_founded_decl env loc path decl to_check;
  check_recursion ~orig_env:env env loc path decl to_check;
  (* additionally check coherece, as one might build an incoherent signature,
     and use it to build an incoherent module, cf. #7851 *)
  check_coherence env loc path decl


(**** Error report ****)

open Format

let explain_unbound_gen ppf tv tl typ kwd pr =
  try
    let ti = List.find (fun ti -> Ctype.deep_occur tv (typ ti)) tl in
    let ty0 = (* Hack to force aliasing when needed *)
      Btype.newgenty (Tobject(tv, ref None)) in
    Printtyp.reset_and_mark_loops_list [typ ti; ty0];
    fprintf ppf
      ".@.@[<hov2>In %s@ %a@;<1 -2>the variable %a is unbound@]"
      kwd pr ti Printtyp.marked_type_expr tv
  with Not_found -> ()

let explain_unbound ppf tv tl typ kwd lab =
  explain_unbound_gen ppf tv tl typ kwd
    (fun ppf ti ->
       fprintf ppf "%s%a" (lab ti) Printtyp.marked_type_expr (typ ti)
    )

let explain_unbound_single ppf tv ty =
  let trivial ty =
    explain_unbound ppf tv [ty] (fun t -> t) "type" (fun _ -> "") in
  match (Ctype.repr ty).desc with
    Tobject(fi,_) ->
      let (tl, rv) = Ctype.flatten_fields fi in
      if rv == tv then trivial ty else
      explain_unbound ppf tv tl (fun (_,_,t) -> t)
        "method" (fun (lab,_,_) -> lab ^ ": ")
  | Tvariant row ->
      let row = Btype.row_repr row in
      if row.row_more == tv then trivial ty else
      explain_unbound ppf tv row.row_fields
        (fun (_l,f) -> match Btype.row_field_repr f with
          Rpresent (Some t) -> t
        | Reither (_,[t],_,_) -> t
        | Reither (_,tl,_,_) -> Btype.newgenty (Ttuple tl)
        | _ -> Btype.newgenty (Ttuple[]))
        "case" (fun (lab,_) -> "`" ^ lab ^ " of ")
  | _ -> trivial ty


let tys_of_constr_args = function
  | Types.Cstr_tuple tl -> tl
  | Types.Cstr_record lbls -> List.map (fun l -> l.Types.ld_type) lbls

let report_error ppf = function
  | Repeated_parameter ->
      fprintf ppf "A type parameter occurs several times"
  | Duplicate_constructor s ->
      fprintf ppf "Two constructors are named %s" s
  | Too_many_constructors ->
      fprintf ppf
        "@[Too many non-constant constructors@ -- maximum is %i %s@]"
        (Config.max_tag + 1) "non-constant constructors"
  | Duplicate_label s ->
      fprintf ppf "Two labels are named %s" s
  | Recursive_abbrev s ->
      fprintf ppf "The type abbreviation %s is cyclic" s
  | Cycle_in_def (s, ty) ->
      fprintf ppf "@[<v>The definition of %s contains a cycle:@ %a@]"
        s Printtyp.type_expr ty
  | Definition_mismatch (ty, None) ->
      fprintf ppf "@[<v>@[<hov>%s@ %s@;<1 2>%a@]@]"
        "This variant or record definition" "does not match that of type"
        Printtyp.type_expr ty
  | Definition_mismatch (ty, Some err) ->
      fprintf ppf "@[<v>@[<hov>%s@ %s@;<1 2>%a@]%a@]"
        "This variant or record definition" "does not match that of type"
        Printtyp.type_expr ty
        (Includecore.report_type_mismatch "the original" "this" "definition")
        err
  | Constraint_failed (ty, ty') ->
      Printtyp.reset_and_mark_loops ty;
      Printtyp.mark_loops ty';
      Printtyp.Naming_context.reset ();
      fprintf ppf "@[%s@ @[<hv>Type@ %a@ should be an instance of@ %a@]@]"
        "Constraints are not satisfied in this type."
        !Oprint.out_type (Printtyp.tree_of_typexp false ty)
        !Oprint.out_type (Printtyp.tree_of_typexp false ty')
  | Non_regular { definition; used_as; defined_as; expansions } ->
      let pp_expansion ppf (ty,body) =
        Format.fprintf ppf "%a = %a"
          Printtyp.type_expr ty
          Printtyp.type_expr body in
      let comma ppf () = Format.fprintf ppf ",@;<1 2>" in
      let pp_expansions ppf expansions =
        Format.(pp_print_list ~pp_sep:comma pp_expansion) ppf expansions in
      Printtyp.reset_and_mark_loops used_as;
      Printtyp.mark_loops defined_as;
      Printtyp.Naming_context.reset ();
      begin match expansions with
      | [] ->
          fprintf ppf
            "@[<hv>This recursive type is not regular.@ \
             The type constructor %s is defined as@;<1 2>type %a@ \
             but it is used as@;<1 2>%a.@ \
             All uses need to match the definition for the recursive type \
             to be regular.@]"
            (Path.name definition)
            !Oprint.out_type (Printtyp.tree_of_typexp false defined_as)
            !Oprint.out_type (Printtyp.tree_of_typexp false used_as)
      | _ :: _ ->
          fprintf ppf
            "@[<hv>This recursive type is not regular.@ \
             The type constructor %s is defined as@;<1 2>type %a@ \
             but it is used as@;<1 2>%a@ \
             after the following expansion(s):@;<1 2>%a@ \
             All uses need to match the definition for the recursive type \
             to be regular.@]"
            (Path.name definition)
            !Oprint.out_type (Printtyp.tree_of_typexp false defined_as)
            !Oprint.out_type (Printtyp.tree_of_typexp false used_as)
            pp_expansions expansions
      end
  | Inconsistent_constraint (env, trace) ->
      fprintf ppf "The type constraints are not consistent.@.";
      Printtyp.report_unification_error ppf env trace
        (fun ppf -> fprintf ppf "Type")
        (fun ppf -> fprintf ppf "is not compatible with type")
  | Type_clash (env, trace) ->
      Printtyp.report_unification_error ppf env trace
        (function ppf ->
           fprintf ppf "This type constructor expands to type")
        (function ppf ->
           fprintf ppf "but is used here with type")
  | Null_arity_external ->
      fprintf ppf "External identifiers must be functions"
  | Missing_native_external ->
      fprintf ppf "@[<hv>An external function with more than 5 arguments \
                   requires a second stub function@ \
                   for native-code compilation@]"
  | Unbound_type_var (ty, decl) ->
      fprintf ppf "A type variable is unbound in this type declaration";
      let ty = Ctype.repr ty in
      begin match decl.type_kind, decl.type_manifest with
      | Type_variant tl, _ ->
          explain_unbound_gen ppf ty tl (fun c ->
              let tl = tys_of_constr_args c.Types.cd_args in
              Btype.newgenty (Ttuple tl)
            )
            "case" (fun ppf c ->
                fprintf ppf
                  "%a of %a" Printtyp.ident c.Types.cd_id
                  Printtyp.constructor_arguments c.Types.cd_args)
      | Type_record (tl, _), _ ->
          explain_unbound ppf ty tl (fun l -> l.Types.ld_type)
            "field" (fun l -> Ident.name l.Types.ld_id ^ ": ")
      | Type_abstract, Some ty' ->
          explain_unbound_single ppf ty ty'
      | _ -> ()
      end
  | Unbound_type_var_ext (ty, ext) ->
      fprintf ppf "A type variable is unbound in this extension constructor";
      let args = tys_of_constr_args ext.ext_args in
      explain_unbound ppf ty args (fun c -> c) "type" (fun _ -> "")
  | Cannot_extend_private_type path ->
      fprintf ppf "@[%s@ %a@]"
        "Cannot extend private type definition"
        Printtyp.path path
  | Not_extensible_type path ->
      fprintf ppf "@[%s@ %a@ %s@]"
        "Type definition"
        Printtyp.path path
        "is not extensible"
  | Extension_mismatch (path, err) ->
      fprintf ppf "@[<v>@[<hov>%s@ %s@;<1 2>%s@]%a@]"
        "This extension" "does not match the definition of type"
        (Path.name path)
        (Includecore.report_type_mismatch
           "the type" "this extension" "definition")
        err
  | Rebind_wrong_type (lid, env, trace) ->
      Printtyp.report_unification_error ppf env trace
        (function ppf ->
           fprintf ppf "The constructor %a@ has type"
             Printtyp.longident lid)
        (function ppf ->
           fprintf ppf "but was expected to be of type")
  | Rebind_mismatch (lid, p, p') ->
      fprintf ppf
        "@[%s@ %a@ %s@ %s@ %s@ %s@ %s@]"
        "The constructor" Printtyp.longident lid
        "extends type" (Path.name p)
        "whose declaration does not match"
        "the declaration of type" (Path.name p')
  | Rebind_private lid ->
      fprintf ppf "@[%s@ %a@ %s@]"
        "The constructor"
        Printtyp.longident lid
        "is private"
  | Variance (Typedecl_variance.Bad_variance (n, v1, v2)) ->
      let variance (p,n,i) =
        let inj = if i then "injective " else "" in
        match p, n with
          true,  true  -> inj ^ "invariant"
        | true,  false -> inj ^ "covariant"
        | false, true  -> inj ^ "contravariant"
        | false, false -> if inj = "" then "unrestricted" else inj
      in
      let suffix n =
        let teen = (n mod 100)/10 = 1 in
        match n mod 10 with
        | 1 when not teen -> "st"
        | 2 when not teen -> "nd"
        | 3 when not teen -> "rd"
        | _ -> "th"
      in
      (match n with
       | Variance_not_reflected ->
           fprintf ppf "@[%s@ %s@ It"
             "In this definition, a type variable has a variance that"
             "is not reflected by its occurrence in type parameters."
       | No_variable ->
           fprintf ppf "@[%s@ %s@]"
             "In this definition, a type variable cannot be deduced"
             "from the type parameters."
       | Variance_not_deducible ->
           fprintf ppf "@[%s@ %s@ It"
             "In this definition, a type variable has a variance that"
             "cannot be deduced from the type parameters."
       | Variance_not_satisfied n ->
           fprintf ppf "@[%s@ %s@ The %d%s type parameter"
             "In this definition, expected parameter"
             "variances are not satisfied."
             n (suffix n));
      (match n with
       | No_variable -> ()
       | _ ->
           fprintf ppf " was expected to be %s,@ but it is %s.@]"
             (variance v2) (variance v1))
  | Unavailable_type_constructor p ->
      fprintf ppf "The definition of type %a@ is unavailable" Printtyp.path p
  | Bad_fixed_type r ->
      fprintf ppf "This fixed type %s" r
  | Variance Typedecl_variance.Varying_anonymous ->
      fprintf ppf "@[%s@ %s@ %s@]"
        "In this GADT definition," "the variance of some parameter"
        "cannot be checked"
  | Val_in_structure ->
      fprintf ppf "Value declarations are only allowed in signatures"
  | Multiple_native_repr_attributes ->
      fprintf ppf "Too many [@@unboxed]/[@@untagged] attributes"
  | Cannot_unbox_or_untag_type Unboxed ->
      fprintf ppf "@[Don't know how to unbox this type.@ \
                   Only float, int32, int64 and nativeint can be unboxed.@]"
  | Cannot_unbox_or_untag_type Untagged ->
      fprintf ppf "@[Don't know how to untag this type.@ \
                   Only int can be untagged.@]"
  | Deep_unbox_or_untag_attribute kind ->
      fprintf ppf
        "@[The attribute '%s' should be attached to@ \
         a direct argument or result of the primitive,@ \
         it should not occur deeply into its type.@]"
        (match kind with Unboxed -> "@unboxed" | Untagged -> "@untagged")
  | Immediacy (Typedecl_immediacy.Bad_immediacy_attribute violation) ->
      fprintf ppf "@[%a@]" Format.pp_print_text
        (match violation with
         | Type_immediacy.Violation.Not_always_immediate ->
             "Types marked with the immediate attribute must be \
              non-pointer types like int or bool."
         | Type_immediacy.Violation.Not_always_immediate_on_64bits ->
             "Types marked with the immediate64 attribute must be \
              produced using the Stdlib.Sys.Immediate64.Make functor.")
  | Bad_unboxed_attribute msg ->
      fprintf ppf "@[This type cannot be unboxed because@ %s.@]" msg
  | Separability (Typedecl_separability.Non_separable_evar evar) ->
      let pp_evar ppf = function
        | None ->
            fprintf ppf "an unnamed existential variable"
        | Some str ->
            fprintf ppf "the existential variable %a"
              Pprintast.tyvar str in
      fprintf ppf "@[This type cannot be unboxed because@ \
                   it might contain both float and non-float values,@ \
                   depending on the instantiation of %a.@ \
                   You should annotate it with [%@%@ocaml.boxed].@]"
        pp_evar evar
  | Boxed_and_unboxed ->
      fprintf ppf "@[A type cannot be boxed and unboxed at the same time.@]"
  | Nonrec_gadt ->
      fprintf ppf
        "@[GADT case syntax cannot be used in a 'nonrec' block.@]"

let () =
  Location.register_error_of_exn
    (function
      | Error (loc, err) ->
        Some (Location.error_of_printer ~loc report_error err)
      | _ ->
        None
    )