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1. Introduction and motivation 1.a. Objective

We want

A lot of IoT devices want to access to a gateway of base station.

m Insert them in a crowded wireless network.
m With a protocol slotted in time and frequency.
m Each device has a low duty cycle (a few messages per day).
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Maintain a good Quality of Service.
Without centralized supervision!
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m Maintain a good Quality of Service.
m Without centralized supervision!
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How?

m Use learning algorithms: devices will learn on which frequency they should
talk!
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1. Introduction and motivation 1.b. Outline

Outline

Introduction and motivation

Model and hypotheses

Baseline algorithms : to compare against naive and efficient centralized
approaches

Multi-Armed Bandit algorithms : UCB

Experimental results

Perspectives and future works

Conclusion
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2. Model and hypotheses 2.a. Model

Model

m Discrete time ¢ > 1 and N, radio channels (e.g., 10) (known)

Frequency (channels)

B
Time-frequency slot ime

Uplink Packet

Ack
Offset Ack Delay [ (gownlink)

Figure 1: Protocol in time and frequency, with an Acknowledgement.

m D dynamic devices try to access the network independently
m S =05+ -+ Sy, static devices occupy the network :
S, ..., SN, in each channel (unknown).
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2. Model and hypotheses 2.b. Hypotheses

Hypotheses I

m Each device has the same low emission probability:
each step, each device sends a packet with probability p.
(this gives a duty cycle proportional to 1/p)

Background traffic

m Each static device uses only one channel.
m Their repartition is fixed in time.

= Background traffic, bothering the dynamic devices!
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2. Model and hypotheses 2.b. Hypotheses

Hypotheses 11

Dynamic radio reconfiguration

m Each dynamic device decides the channel it uses to send every packet.
m It has memory and computational capacity to implement basic decision
algorithm.

m Goal : maximize packet loss ratio (= number of received Ack) in a finite-space
discrete-time Decision Making Problem.

m Solution ? Multi-Armed Bandit algorithms, decentralized and used
independently by each device.
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3. Baseline algorithms 3.a. A naive strategy : uniformly random access

A naive strategy : uniformly random access

m Uniformly random access: dynamic devices choose uniformly their channel
in the pull of N, channels.
m Natural strategy, dead simple to implement.
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A naive strategy : uniformly random access

m Uniformly random access: dynamic devices choose uniformly their channel
in the pull of N, channels.
m Natural strategy, dead simple to implement.

m Simple analysis, in term of successful transmission probability (for every
message from dynamic devices) :

N,
- _ 1
P(success|sent) = Z (1-p/N)P1 x (1-p)% x —.
i=1 — Ne
No other dynamic device  No static device
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A naive strategy : uniformly random access

m Uniformly random access: dynamic devices choose uniformly their channel
in the pull of N, channels.
m Natural strategy, dead simple to implement.

m Simple analysis, in term of successful transmission probability (for every
message from dynamic devices) :

N,
- _ 1
P(success|sent) = Z (1-p/N)P1 x (1-p)% x —.
i=1 — Ne
No other dynamic device  No static device

m Works fine only if all channels are similarly occupied,
but it cannot learn to exploit the best (more free) channels.
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3. Baseline algorithms 3.b. Optimal centralized strategy

Optimal centralized strategy 1

m If an oracle can decide to affect D; dynamic devices to channel 7, the
successful transmission probability is:

N
P(success|sent) = > (1 — pPilx (1-p% x DD
P — . .
D;—1 others No static device Sent in channel 7

m The oracle has to solve this optimization problem:

N, 4D, —
arg max >ie Di(1 — p)SitDi—1
Di,....Dy,

such that ZZN;I D;,=Dand D; >0, V1 <i<N,.

m We solved this quasi-convex optimization problem with Lagrange multipliers,
only numerically.
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3. Baseline algorithms 3.b. Optimal centralized strategy

Optimal centralized strategy II

m —> Very good performance, maximizing the transmission rate of all the D
dynamic devices

But unrealistic
But not achievable in practice: no centralized oracle!

Let see realistic decentralized approaches

— Machine Learning ?
— Reinforcement Learning ?
— Multi-Armed Bandit !
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4. Multi-Armed Bandit algorithm : UCB 4.1. Multi-Armed Bandit formulation

Multi-Armed Bandit formulation
A dynamic device tries to collect rewards when transmitting :

m it transmits following a Bernoulli process
(probability p of transmitting at each time step 7),

m chooses a channel A(7) € {1,..., N.},

m if Ack (no collision) == reward r4(,;) = 1,

m if collision (no Ack) = reward ;) = 0.
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Multi-Armed Bandit formulation
A dynamic device tries to collect rewards when transmitting :

m it transmits following a Bernoulli process
(probability p of transmitting at each time step 7),

m chooses a channel A(7) € {1,..., N.},

m if Ack (no collision) == reward r4(,;) = 1,

m if collision (no Ack) = reward ;) = 0.

Reinforcement Learning interpretation

Maximize transmission rate = maximize cumulated rewards

horizon

max TA(r)-
algorithm A 7; (r)
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4.2. Upper Confidence Bound algorithm : UCB

4. Multi-Armed Bandit algorithm : UCB

Upper Confidence Bound algorithm (UCB;)

A dynamic device keeps 7 number of sent packets, 7 (¢) selections of channel %,

Xk (t) successful transmission in channel k.
O For the first N, steps (r = 1,..., N,), try each channel once.
@ Then for the next stepst > N, :

e Compute the index gi(7) := ])\(]kE:; N 21?5((:))7
i k

——
Mean (i, (7)  Upper Confidence Bound

e Choose channel A(7) = argmax gi(7),

k
o Update T} (7 + 1) and Xy (7 + 1).

References: [Lai & Robbins, 1985], [Auer et al, 2002], [Bubeck & Cesa-Bianchi, 2012]
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5. Experimental results 5.1. Experiment setting

Experimental setting

Simulation parameters

m N, = 10 channels,

m S+ D = 10000 devices in total,

m p = 1072 probability of emission,

m horizon = 10° time slots (~ 100 messages / device),

m The proportion of dynamic devices D/(S + D) varies,

m Various settings for (51, ..., Sy,) static devices repartition.

What do we show

m After a short learning time, MAB algorithms are almost as efficient as the
oracle solution.

m Never worse than the naive solution.

m Thompson sampling is even more efficient than UCB.

Lilian Besson (CentraleSupélec & Inria) MARB Learning in IoT Networks CROWNCOM 2017 12 /18



5. Experimental results

10% of dynamic devices
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5. Experimental results
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5.2. First result: 30%

—*— Thompson-sampling | |

- - - -Good sub-optimal

Successful transmission rate

4 6
Number of slots

on (CentraleSupélec &

Figure 3: 30% of dynamic devices. 3% of gain but not much is possible.

n IoT Networks



5. Experimental results 5.3. Growing proportion of devices dynamic devices

Dependence on D /(S + D)
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Figure 4: Almost optimal, for any proportion of dynamic devices, after a short learning time.
Up-to 16% gain over the naive approach!
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6. Perspectives and future work 6.1. Perspectives

Perspectives

Theoretical results

m MAB algorithms have performance guarantees for stochastic settings,
m But here the collisions cancel the i.i.d. hypothesis,
m Not easy to obtain guarantees in this mixed setting

(i.i.d. emission process, game theoretic collisions).
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6. Perspectives and future work 6.1. Perspectives

Perspectives

Theoretical results

m MAB algorithms have performance guarantees for stochastic settings,
m But here the collisions cancel the i.i.d. hypothesis,
m Not easy to obtain guarantees in this mixed setting

(i.i.d. emission process, game theoretic collisions).

Real-world experimental validation ?

m Real-world radio experiments will help to validate this.
In progress. ..
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6. Perspectives and future work 6.2. Future work

Other direction of future work

m More realistic emission model: maybe driven by number of packets in a whole
day, instead of emission probability.

m Validate this on a larger experimental scale.
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7. Conclusion Thanks!

Conclusion

We showed numerically. ..

m After a learning period, MAB algorithms are as efficient as we could expect.

m Never worse than the naive solution.

m Thompson sampling is even more efficient than UCB.

m Simple algorithms are up-to 16% more efficient than the naive approach, and
straightforward to apply.

But more work is still needed. ..

m Theoretical guarantees are still missing.
m Maybe study other emission models.
m And also implement this on real-world radio devices.

Thanks! Question?
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Appendix A.1. Thompson Sampling : Bayesian index policy

Thompson Sampling : Bayesian approach

A dynamic device assumes a stochastic hypothesis on the background traffic,
modeled as Bernoulli distributions.

m Rewards r4(7) are assumed to be i.i.d. samples from a Bernoulli distribution

Bern(p).

m A binomial Bayesian posterior is kept on the mean availability s :
Bin(1 + Xx(7), 1 + Ng(7) — Xi(7)).

m Starts with a uniform prior : Bin(1,1) ~ U([0, 1]).

© Each step 7 > 1, a sample is drawn from each posterior
ix(t) ~ Bin(ag(7), bi(1)),
@ Choose channel A(7) = argmax ix(7),
k

© Update the posterior after receiving Ack or if collision.

References: [Thompson, 1933], [Kaufmann et al, 2012]
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