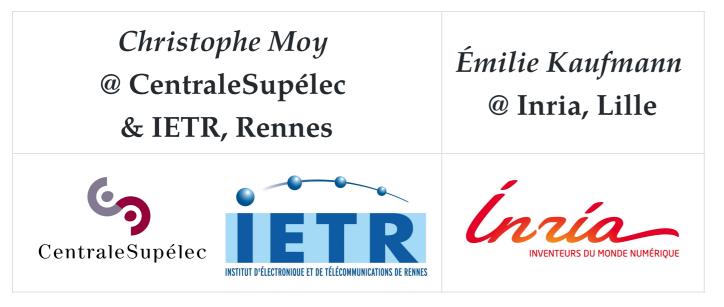
IEEE WCNC: « Aggregation of Multi-Armed Bandits Learning Algorithms for Opportunistic Spectrum Access »

- *Date* 21 : 16th of April 2018
- Who: Lilian Besson % , PhD Student in France, co-advised by



See our paper HAL.Inria.fr/hal-01705292

Introduction

- Cognitive Radio (CR) is known for being one of the possible solution to tackle the spectrum scarcity issue
- Opportunistic Spectrum Access (OSA) is a good model for CR problems in **licensed bands**
- Online learning strategies, mainly using multi-armed bandits (MAB) algorithms, were recently proved to be efficient [Jouini 2010]
- ***** But there is many different MAB algorithms... which one should you choose in practice?

 \implies we propose to use an online learning algorithm to also decide which algorithm to use, to be more robust and adaptive to unknown environments.

Outline [15 min]

1. Opportunistic Spectrum Access [3 min]

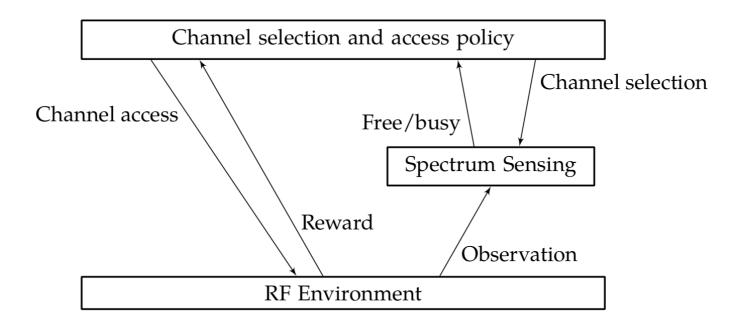
- 2. Multi-Armed Bandits [2 min]
- 3. MAB algorithms [3 min]
- 4. Aggregation of MAB algorithms [3 min]
- 5. Illustration [3 min]

Ask questions at the end if you want!

1. Opportunistic Spectrum Access [3 min]

- Spectrum scarcity is a well-known problem
- Different range of solutions...
- Cognitive Radio is one of them
- Opportunistic Spectrum Access is a kind of cognitive radio

Communication & interaction model



- **\Box** Primary users are occupying *K* radio channels
- Secondary users can sense and exploit free channels: want to **explore** the channels, and learn to **exploit** the best one
- Discrete time for everything $t \geq 1, t \in \mathbb{N}$

2. Multi-Armed Bandits [2 min]

Model

- Again $K \geq 2$ resources (*e.g.*, channels), called **arms**
- Each time slot $t=1,\ldots,T$, you must choose one arm, denoted $A(t)\in\{1,\ldots,K\}$
- You receive some reward $r(t) \sim
 u_k$ when playing k = A(t)
- **Goal:** maximize your sum reward $\sum_{t=1}^{I} r(t)$
- Hypothesis: rewards are stochastic, of mean μ_k . *E.g.*, Bernoulli

Why is it famous?

Simple but good model for **exploration/exploitation** dilemma.

3. MAB algorithms [3 min]

- Main idea: index $I_k(t)$ to approximate the quality of each arm k
- First example: *UCB algorithm*
- Second example: *Thompson Sampling*

3.1 Multi-Armed Bandit algorithms

Often *index* based

- Keep index $I_k(t) \in \mathbb{R}$ for each arm $k = 1, \dots, K$
- Always play $A(t) = rg \max I_k(t)$
- $I_k(t)$ should represent our belief of the *quality* of arm k at time t

Example: "Follow the Leader"

•
$$X_k(t) := \sum\limits_{s < t} r(s) \mathbf{1}(A(s) = k)$$
 sum reward from arm k

• $N_k(t) := \sum_{s < t} \mathbf{1}(A(s) = k)$ number of samples of arm k

• And use
$$I_k(t) = \hat{\mu}_k(t) := \frac{X_k(t)}{N_k(t)}$$
.

3.2 First example of algorithm *Upper Confidence Bounds* **algorithm (UCB)**

• Instead of using
$$I_k(t) = rac{X_k(t)}{N_k(t)}$$
, add an exploration term

$$I_k(t) = rac{X_k(t)}{N_k(t)} + \sqrt{rac{lpha \log(t)}{2N_k(t)}}$$

Parameter α : tradeoff exploration vs exploitation

- Small *α*: focus more on **exploitation**
- Large *α*: focus more on **exploration**

X Problem: how to choose "the good α " for a certain problem?

3.3 Second example of algorithm *Thompson sampling* (TS)

- Choose an initial belief on μ_k (uniform) and a prior p^t (*e.g.*, a Beta prior on [0, 1])
- At each time, update the prior p^{t+1} from p^t using Bayes theorem
- And use $I_k(t) \sim p^t$ as *random* index

Example with Beta prior, for binary rewards

•
$$p^t = \text{Beta}(1 + \text{nb successes}, 1 + \text{nb failures}).$$

• Mean of $p^t = rac{1+X_k(t)}{2+N_k(t)} \simeq \hat{\mu}_k(t).$

***** How to choose "the good prior" for a certain problem?

4. Aggregation of MAB algorithms [3 min]

Problem

- How to choose which algorithm to use?
- But also... Why commit to one only algorithm?

Solutions

- Offline benchmarks?
- Or online selections from a pool of algorithms?

\hookrightarrow Aggregation?

Not a new idea, studied from the 90s in the ML community.

• Also use online learning to *select the best algorithm*!

4.1 Basic idea for online aggregation

If you have $\mathcal{A}_1, \ldots, \mathcal{A}_N$ different algorithms

• At time t = 0, start with a uniform distribution π^0 on $\{1, \ldots, N\}$ (to represent the **trust** in each algorithm)

- At time t, choose $a^t \sim \pi^t$, then play with \mathcal{A}_{a^t}
- Compute next distribution π^{t+1} from π^t :
 - \circ increase $\pi_{a^t}^{t+1}$ if choosing \mathcal{A}_{a^t} gave a good reward
 - $\circ~$ or decrease it otherwise

Problems

- 1. How to increase $\pi_{a^t}^{t+1}$?
- 2. What information should we give to which algorithms?

4.2 Overview of the *Exp4* aggregation algorithm

For rewards in $r(t) \in [-1,1]$.

- Use π^t to choose randomly the algorithm to trust, $a^t \sim \pi^t$
- Play its decision, $A_{
 m aggr}(t) = A_{a^t}(t)$, receive reward r(t)
- And give feedback of observed reward r(t) only to this one
- Increase or decrease $\pi_{a^t}^t$ using an exponential weight:

$$\pi^{t+1}_{a^t} := \pi^t_{a^t} imes \exp\left(\eta_t imes rac{r(t)}{\pi^t_{a^t}}
ight).$$

- Renormalize π^{t+1} to keep a distribution on $\{1,\ldots,N\}$
- Use a sequence of decreasing *learning rate* $\eta_t = rac{\log(N)}{t imes K}$ (cooling scheme, $\eta_t o 0$ for $t o \infty$)

Use an *unbiased* estimate of the rewards

Using directly r(t) to update trust probability yields a biased estimator

- So we use instead $\hat{r}(t) = r(t)/\pi_a^t$ if we trusted algorithm \mathcal{A}_a
- This way

$$\mathbb{E}[\hat{r}(t)] = \sum_{a=1}^N \mathbb{P}(a^t = a) \mathbb{E}[r(t)/\pi_a^t]$$

$$= \mathbb{E}[r(t)] \sum_{a=1}^{N} \frac{\mathbb{P}(a^t = a)}{\pi_a^t} = \mathbb{E}[r(t)]$$

4.3 Our Aggregator aggregation algorithm

Improves on *Exp4* by the following ideas:

• First let each algorithm vote for its decision A_1^t, \ldots, A_N^t

• Choose arm
$$A_{\mathrm{aggr}}(t) \sim p_j^{t+1} := \sum_{a=1}^N \pi_a^t \mathbf{1}(A_a^t = j)$$

• Update trust for each of the trusted algorithm, not only one (i.e., if $A_a^t = A_{\mathrm{aggr}}^t$)

 \hookrightarrow faster convergence

- Give feedback of reward r(t) to *each* algorithm!
 (and not only the one trusted at time t)
 (a) as a place it has a part of the trusted at the laser from the trusted at the trusted at the trusted at the laser from the trusted at the trust
 - \hookrightarrow each algorithm have more data to learn from

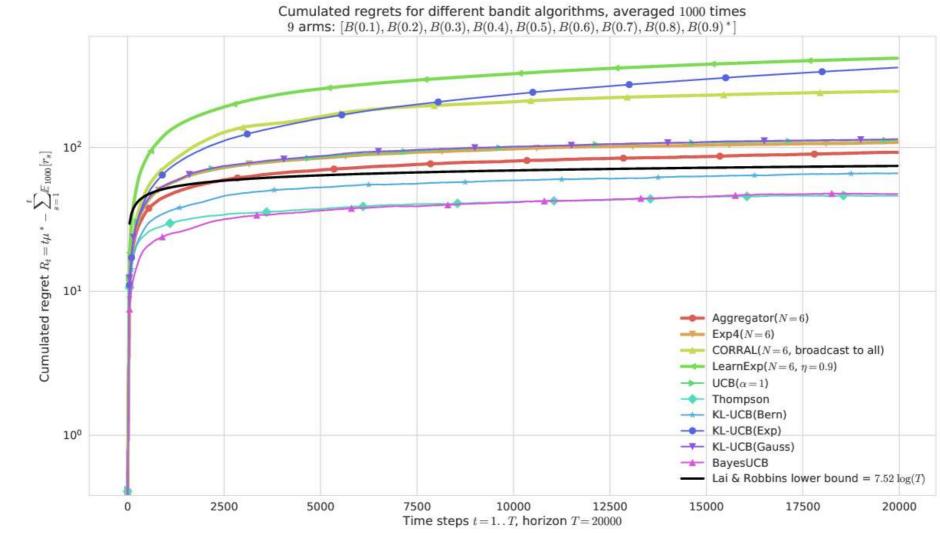
5. Some illustrations [3 min]

- Artificial simulations of stochastic bandit problems
- Bernoulli bandits but not only
- Pool of different algorithms (UCB, Thompson Sampling etc)
- Compared with other state-of-the-art algorithms for *expert aggregation* (Exp4, CORRAL, LearnExp)
- What is plotted it the *regret* for problem of means μ_1, \ldots, μ_K :

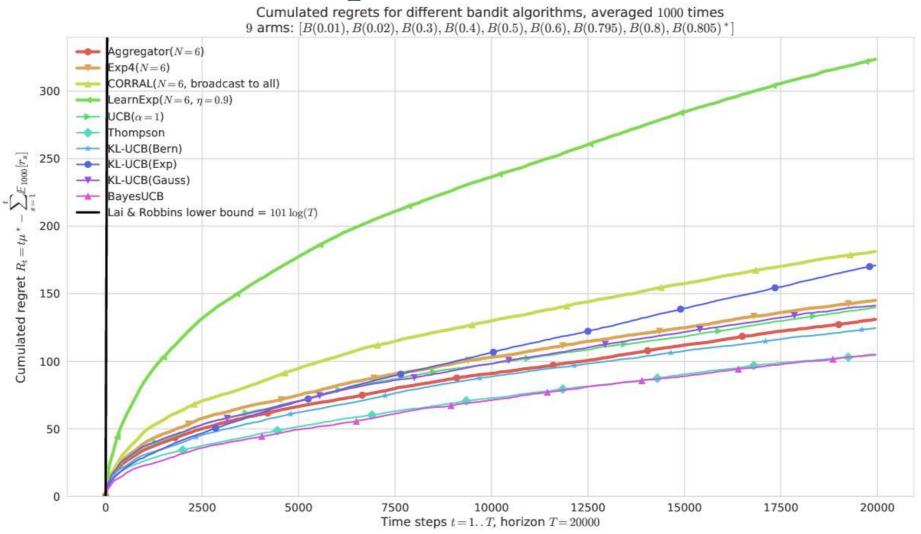
$$R^{\mu}_T(\mathcal{A}) = \max_k(T\mu_k) - \sum_{t=1}^T \mathbb{E}[r(t)]$$

- Regret is known to be lower-bounded by $C(\mu)\log(T)$
- and upper-bounded by $C'(\mu)\log(T)$ for efficient algorithms

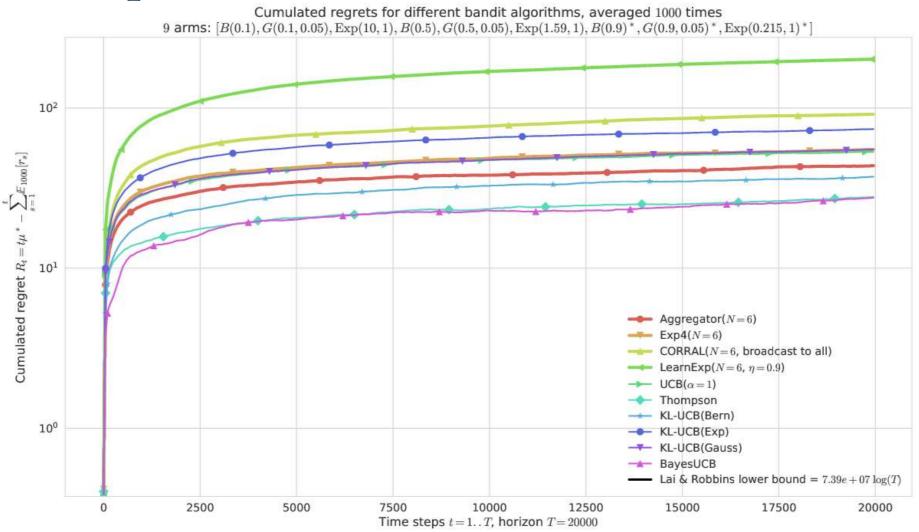
On a simple Bernoulli problem



On a "hard" Bernoulli problem



On a mixed problem



Conclusion (1/2)

- Online learning can be a powerful tool for Cognitive Radio, and many other real-world applications
- Many formulation exist, a simple one is the Multi-Armed Bandit
- Many algorithms exist, to tackle different situations
- It's hard to know before hand which algorithm is efficient for a certain problem...
- Online learning can also be used to select *on the run* which algorithm to prefer, for a specific situation!

Conclusion (2/2)

- Our algorithm **Aggregator** is efficient and easy to implement
- For N algorithms $\mathcal{A}_1, \ldots, \mathcal{A}_N$, it costs $\mathcal{O}(N)$ memory, and $\mathcal{O}(N)$ extra computation time at each time step
- For stochastic bandit problem, it outperforms empirically the other state-of-the-arts (Exp4, CORRAL, LearnExp).

See our paper

HAL.Inria.fr/hal-01705292

See our code for experimenting with bandit algorithms

Python library, open source at SMPyBandits.GitHub.io

Thanks for listening!