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1. Introduction and motivation 1.a. Objective

Motivation

We control some communicating devices, they want to use a wireless access point.
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Motivation

We control some communicating devices, they want to use a wireless access point.

m Insert them in a crowded wireless network.
m With a protocol slotted in both time and frequency.
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1. Introduction and motivation 1.a. Objective

Motivation

We control some communicating devices, they want to use a wireless access point.

m Insert them in a crowded wireless network.
m With a protocol slotted in both time and frequency.

® Maintain a good Quality of Service.
m With no centralized control as it costs network overhead.
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1. Introduction and motivation 1.a. Objective

Motivation

We control some communicating devices, they want to use a wireless access point.

Insert them in a crowded wireless network.
With a protocol slotted in both time and frequency.

Maintain a good Quality of Service.
With no centralized control as it costs network overhead.

Devices can choose a different radio channel at each time
— learn the best one with a sequential algorithm!
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1. Introduction and motivation 1.b. Outline and references

Outline

O Introduction
@ Our model: 3 different feedback levels
© Regret of the system, and our lower bound on regret
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1. Introduction and motivation 1.b. Outline and references

Outline

O Introduction
@ Our model: 3 different feedback levels
© Regret of the system, and our lower bound on regret

© Quick reminder on single-player MAB algorithms
© New multi-player non-coordinated decentralized algorithms
O Our upper bound on regret for MCTopM
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Introduction
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Quick reminder on single-player MAB algorithms
New multi-player non-coordinated decentralized algorithms
Our upper bound on regret for MCTopM

Experimental results
Review of two more recent articles
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Conclusion

Based on “Multi-Player Bandits Revisited”, by Lilian Besson & Emilie Kaufmann. arXiv:1711.02317,
presented at ALT 2018 (Lanzarote, Spain) in April.
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2. Our model: 3 different feedback levels

Our model

© Our communication model

@ With or without sensing

© Background traffic, and rewards
@ Different feedback levels

@ Goal
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2. Our model: 3 different feedback levels 2.a. Our communication model

Our communication model

K radio channels (e.g., 10). Discrete and synchronized time ¢ = 1.

Frequency Bands K

Time.

\op\ima\ frequency band

- Tow quality
D high quality
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2. Our model: 3 different feedback levels 2.a. Our communication model

Our communication model

K radio channels (e.g., 10). Discrete and synchronized time ¢ = 1.

Frequency Bands K
1 2 3 a 5 6
t=1 Free Free

Time.

- Tow quality

Q l:] high quality

Dynamic device = dynamic radio reconfiguration

m It decides each time the channel it uses to send each packet.
m [t can implement a simple decision algorithm.
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2. Our model: 3 different feedback levels 2.b. With or without sensing

Our model

m M < K devices always communicate and try to access the network, independently
without centralized supervision,
m Background traffic is i.i.d..
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2. Our model: 3 different feedback levels 2.b. With or without sensing

Our model

“Easy” case

m M < K devices always communicate and try to access the network, independently
without centralized supervision,
m Background traffic is i.i.d..

w
Two variants : with or without sensing

© With sensing: Device first senses for presence of Primary Users that have strict
priority (background traffic), then use Ack to detect collisions.
@ Without sensing: same background traffic, but cannot sense, so only Ack is used.
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2. Our model: 3 different feedback levels 2.c. Background traffic, and rewards

Background traffic, and rewards

ii.d. background traffic
m K channels, modeled as Bernoulli (0/1) distributions of mean . = background
traffic from Primary Users, bothering the dynamic devices,
m M devices, each uses channel A/ (t) € {1,...,K} at time t.
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2. Our model: 3 different feedback levels 2.c. Background traffic, and rewards

Background traffic, and rewards

ii.d. background traffic

m K channels, modeled as Bernoulli (0/1) distributions of mean pj = background
traffic from Primary Users, bothering the dynamic devices,
m M devices, each uses channel A/ (¢) € {1,..., K} at time ¢.

ri(8) 1= Yy, x L(CI (1)) = L(uplink & Ack)

m with sensing information Vk, Y, iid Bern(ug) € {0,1},
m collision for device j: C/(f) = 1(alone on arm A/ (?)).
— rJ(t) combined binary reward but not from two Bernoulli!
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2. Our model: 3 different feedback levels 2.d. Different feedback levels

3 feedback levels

rI(1) =Yy, x LCI(1)

Q@ “Full feedback”: observe both Y, ;, and C/(t) separately,
— Not realistic enough, we don’t focus on it.
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2. Our model: 3 different feedback levels 2.d. Different feedback levels

3 feedback levels

rI(1) =Y, x LCI(1)

@ “Full feedback”: observe both Y, , and C/(t) separately,
— Not realistic enough, we don’t focus on it.

@ “Sensing”: first observe Y;, ,, then C/(t) only if Yain: 20,
— Models licensed protocols (ex. ZigBee), our main focus.
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2. Our model: 3 different feedback levels 2.d. Different feedback levels

3 feedback levels

Pl (1) = Yy, x LCI(2)

@ “Full feedback”: observe both Y, , and C/(t) separately,
— Not realistic enough, we don’t focus on it.

@ “Sensing”: first observe Yj(, ,, then C/(t) only if Yaint 20,
— Models licensed protocols (ex. ZigBee), our main focus.

© “No sensing”: observe only the combined Y,;, , x 1(C/ (1)),
— Unlicensed protocols (ex. LoRaWAN), harder to analyze !
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2. Our model: 3 different feedback levels 2.d. Different feedback levels

3 feedback levels

(1) 1= Y, x L(CI(£))
@ “Full feedback”: observe both Y; , and C/ (1) separately,
— Not realistic enough, we don’t focus on it.

@ “Sensing”: first observe Y; ,, then CJ(t) only if Yaiin,e 70,
— Models licensed protocols (ex. ZigBee), our main focus.

© “No sensing”: observe only the combined Yy, , x 1(C/ (1)),
— Unlicensed protocols (ex. LoRaWAN), harder to analyze !

But all consider the same instantaneous reward 7/ (f).
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2. Our model: 3 different feedback levels 2.e. Goal

Goal

®m Minimize packet loss ratio
(= maximize nb of received Ack)
® in a finite-space discrete-time Decision Making Problem.
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2. Our model: 3 different feedback levels 2.e. Goal

Goal

®m Minimize packet loss ratio
(= maximize nb of received Ack)
® in a finite-space discrete-time Decision Making Problem.

Multi-Armed Bandit algorithms

m decentralized and
m used independently by each dynamic device.
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2. Our model: 3 different feedback levels 2.f. Centralized regret

Centralized regret

A measure of success

m Not the network throughput or collision probability,
m We study the centralized (expected) regret:

M T M
Rr(u,M,p):= | ) pp | T-Eu| ) ) 7 (®
k=1 t=1j=1

Notation: (. is the mean of the k-best arm (k-th largest in p):
® ] i=maxpu,

m sy i=maxp\ {ugl,
m etc.

Ref: [Lai & Robbins, 1985], [Liu & Zhao, 2009], [Anandkumar et al, 2010]
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2. Our model: 3 different feedback levels 2.f. Centralized regret

Centralized regret

A measure of success

m Not the network throughput or collision probability,
m We study the centralized (expected) regret:

M
Rr(p, M, p) := (

T M
y,j)T—[Eﬂ ZZr](t)].
k=1 1=1j=1

Two directions of analysis

®m How good a decentralized algorithm can be in this setting?
— Lower Bound on the regret, for any algorithm !

m How good is my decentralized algorithm in this setting?
— Upper Bound on the regret, for one algorithm !
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Lower bound

© Decomposition of the regret in 3 terms,
@ Asymptotic lower bound on one term,
© And for the regret,

@ Possibly wrong result, not sure yet!
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3. Lower bound 3.a. Lower bound on the regret

Decomposition on the regret

Decomposition

For any algorithm, decentralized or not, we have
Rr(w,M,p)= Y (U — s)Eul Te(T)]

ke M-worst

K
+ Y (= i) (T—EulTe(D]) + Y pxEul6r (D).
ke M-best k=1

Notations for an arm k€ {1,...,K}:
] T,g(T) = Zthl 1A/ (p) = k), counts selections by the player j €{1,..., M},
m T (T):= Z;‘i 1 Tlg (1), counts selections by all M players,

m 6 (T):= Zthl 13 # jz,Aj1 (t) = k = A%2(1)), counts collisions.
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3. Lower bound 3.a. Lower bound on the regret

Decomposition on the regret

Decomposition

For any algorithm, decentralized or not, we have
Rr(u,M,p)= Y (uyy— HidEu[Te(T)]

ke M-worst

K
+ Y (= i) (T—EulTe(D]) + Y pukEulGr (D).
ke M-best k=1

Small regret can be attained if...

© Devices can quickly identify the bad arms M-worst, and not play them too much
(number of sub-optimal selections),

A\
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3. Lower bound

Decomposition on the regret

Decomposition

For any algorithm, decentralized or not, we have
Rr(w,M,p)= Y (up— i)EulTe(D)]

ke M-worst

K
+ Y (ue— i) (T-EulTe(D]) + Z pkEu[Er(T).
ke M-best k=1

Small regret can be attained if...

© Devices can quickly identify the bad arms M-worst, and not play them too much

(number of sub-optimal selections),
@ Devices can quickly identify the best arms, and most surely play them (number of

optimal non-selections),
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3. Lower bound 3.a. Lower bound on the regret

Decomposition on the regret

Decomposition

For any algorithm, decentralized or not, we have
Rr(w,M,p)= Y (up— i)EulTe(D)]

ke M-worst
K
+ Y (- i) (T-EulTe(D]) + Z pkEp [ (D).
ke M-best k=1

Small regret can be attained if...

© Devices can quickly identify the bad arms M-worst, and not play them too much
(number of sub-optimal selections),

@ Devices can quickly identify the best arms, and most surely play them (number of
optimal non-selections),

© Devices can use orthogonal channels (number of collisions).
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3. Lower bound 3.a. Lower bound on the regret

Lower bound on the regret

Lower bound

For any algorithm, decentralized or not, we have
Rr(u,M,p) > > (uhy— i)EulTi(T)]

ke M-worst
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3. Lower bound 3.a. Lower bound on the regret

Asymptotic lower bound on the regret I

Sub-optimal arms selections are lower bounded asymptotically,

_ . EuT{(D) 1
Vplayer j,bad armk, liminf > —,
T—+00 logT Kl(u, py,)

Where kl(x, y) := & L(B(x), B(y)) = xlug(%) + (1 - x)log( %:7;) is the binary KL divergence.

Proof: using classical information theory tools (Kullback-Leibler divergence, change of
distributions). .. Ref: [Garivier et al, 2016]
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3. Lower bound 3.a. Lower bound on the regret

Asymptotic lower bound on the regret II

For any uniformly efficient decentralized policy, and any non-degenerated problem g,
Rr(p, M, p) 2MX( (IJM_Nk))'

ke M-worst kl(/‘tk’ “7\4)
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3. Lower bound 3.a. Lower bound on the regret

Asymptotic lower bound on the regret II

For any uniformly efficient decentralized policy, and any non-degenerated problem g,
Rr(p, M, p) ZMX( (.UM_H*k))'
ke M-worst k(e 'uM)

Remarks

m The centralized multiple-play lower bound is the same without the M
multiplicative factor... Ref: [Anantharam et al, 1987]
— “price of non-coordination” = M = nb of player?

m Improved state-of-the-art lower bound, but still not perfect: collisions should also
be controlled!

A\
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bound g result, not sure yet

Possibly wrong result, not sure yet?

m A recent article studied the same problem (arXiv:1809.08151).

SIC

MMARB: Synchronisation Involves Communication
in Multiplayer Multi-Armed Bandits

Etienne Boursier *' and Vianney Perchet 2
LCMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
2Criteo Al Lab, Paris

September 24, 2018

Abstract
We consider the stochastic multiplayer multi-armed bandit problem, where several
players pull arms simultancously and a collision oceurs if the same arm is pulled by
more than one player; this is a standard model of cognitive radio networks. We con-
struct a decentralized algorithm that achieves the same performances as a centralized
one, if players are synchronized and observe their collisions. We actually construct
& communication protocol between players by enforcing willingly collisions, allowing
them to share their exploration.
With a weaker feedback, when collisions are not observed, we

till maintain some
but at the cost of some extra multiplicative term in
the regret. We also prove that the logarithmic growth of the regret is still achievable in
the dynamic case where players are not synchronized with each other, thus preventing
communication,

Finally, we prove that if all players follow naively the celebrated Ucs algorithm, the
total regret grows linearly

communication between playe

CMAP Seminar
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3. Lower bound 3.b. Possibly wrong result, not sure yet

Possibly wrong result, not sure yet?

m A recent article studied the same problem (arXiv:1809.08151).
m They showed a regret upper bound for their SIC-MMAB algorithm which disproves
our regret lower bound:
they do not suffer from any “price of decentralization” ® !
2.3.5 Total regret
Theorem [T]finally provides an asymptotical upper bound of the regret:
Theorem 1. For any given set of parameters K, M and p:

1
fim T <, + KM

T—o0 log(T) ' kgj%l Bty — k)

where ¢y and ¢z are two problem independent constants

Proof. This is a direct consequence of Lemmans and and the regret decomposition
given by Equation . O
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3. Lower bound 3.b. Possibly wrong result, not sure yet

Possibly wrong result, not sure yet?

m A recent article studied the same problem (arXiv:1809.08151).

m They showed a regret upper bound for their SIC-MMAB algorithm which disproves
our regret lower bound:
they do not suffer from any “price of decentralization” © !

m Their algorithm works fine in practice, see later, and their proof seems fine, but the
point they indicate as wrong in our paper is not clear and we couldn’t find an error.
m — I will work on this more in the near future!

“SIC-MMAB: Synchronisation Involves Communication in Multiplayer Multi-Armed Bandits”, by Etienne
Boursier & Vianney Perchet, arXiv:1809.08151
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4. Single-player MAB algorithm: kl-UCB

Single-player MAB algorithms

© Upper Confidence Bound algorithm : UCB;,

@ Kullback-Leibler UCB algorithm : kl-UCB.
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4. Single-player MAB algorithm: kl-UCB 4.a. Upper Confidence Bound algorithm : UCB}

Upper Confidence Bound algorithm (UCB;)

O For the first K steps (£ = 1,..., K), try each channel once.
@ Then for the next steps ¢ > K :

° T,g (8):= Y 1(A/(s) = k) selections of channel k,
s=1

S]k(t) = 21 Yi(s)L(AJ(s) = k) sum of sensing information.
s=

. j Si(t) log(1)

o Compute the index UCBy () := - —,
T (1) 2T] (1)

N—— —_——

Empirical Mean fix(f)  Confide isnce Bonus

o Choose channel A/(f) = argmax UCB/ (),
k

Update T/ (¢+1) and S, (t+1).

Ref: [Auer et al, 2002], [Bubeck & Cesa-Bianchi, 2012]
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4. Single-player MAB algorithm: kl-UCB Kullback-Leibler UCB algorithm: kI-UCB

Kullback-Leibler UCB algorithm (kl-UCB)

O For the first K steps (£ =1,..., K), try each channel once.
@ Then for the next steps ¢ > K :

° T,g (1) := Y. 1(AJ(s) = k) selections of channel k,
s=1

. t .
Si(t) = g Yi(8)L(AY(s) = k) sum of sensing information.

Compute UCB;;(t), Upper Confidence Bound on mean p

- SHO) lo m}
UCB’(1):= Kkl <8t
e q?[fm{q (Tfm q) 1)

o Choose channel A/ (#) = argmax UCBi(t),
k

Update T,{(t+ 1) and S]l;(t+ 1).
Known result: kI-UCB is asymptotically optimal for 1-player Bernoulli stochastic bandit. ret (carivier

& Cappé, 2011], [Cappé et al, 2013]
CMAP Seminar — 31 Oct 2018 18 /45
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5. Multi-player decentralized algorithms

Multi-player decentralized algorithms

© Common building blocks of previous algorithms,

@ One of our proposal: the MCTopM algorithm.
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5. Multi-player decentralized algorithms 5.a. State-of-the-art MP algorithms

Algorithms for this easier model

Building blocks: separate the two aspects

© MAB policy to learn the best arms (use sensing Y,y ),
@ Orthogonalization scheme to avoid collisions (use collision indicators C J (1)).

4

Many different proposals for decentralized learning policies

m “State-of-the-art”: RhoRand Ref: [Anandkumar et al, 2011]
B Recent: MEGA and Musical Chair. Ref: [Avner & Mannor, 2015], [Shamir et al, 2016]

.
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5. Multi-player decentralized algorithms 5.a. State-of-the-art MP algorithms

Algorithms for this easier model

Building blocks: separate the two aspects

© MAB policy to learn the best arms (use sensing Y,y ),
@ Orthogonalization scheme to avoid collisions (use collision indicators C J (1)).

4

Many different proposals for decentralized learning policies

m “State-of-the-art”: RhoRand Ref: [Anandkumar et al, 2011]
B Recent: MEGA and Musical Chair. Ref: [Avner & Mannor, 2015], [Shamir et al, 2016]

Our contributions:

Two new orthogonalization scheme inspired by RhoRand and Musical Chair, combined
with the use of kI-UCB indices.
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5. Multi-player decentralized algorithms 5.b. MCTopM algorithm

Ideas for the MCTopM algorithm

m Based on sensing information, each user j keeps UCB{;(I) for each arm k,
m Use it to estimate the M best arms:

K/I\f(t) = {arms with M largest UCBi(t)}.

Two ideas:

m Always pick an arm Al (e Mi(p), Ref: [Anandkumar et al, 2011]
m Try not to switch arm too often.

Introduce a fixed state s/ (): Ref: [Shamir et a, 2016]
first non fixed, then fix when happy about an arm and no collision.
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MCTopM algorithm

1

2

3

4

Let A/(1) ~%({1,...,K}) and C/(1) = False and s/(1) = Non fixed
fort=1,...,T-1do

if AJ(t) ¢ MI (1) then
: i .UCB/ j
Ale+1) ~ (M0 n {k: UCBL(t-1) <UCBY,  (t-1})
s/ (t+1) = Non fixed

// transition (3) or (5)
// not empty

// go for arm with smaller index at r—1




MCTopM algorithm

1 Let A/(1) ~%({1,...,K}) and C/(1) = False and s/ (1) = Non fixed
2 fort=1,...,T—1do

3 if Aj(t)ex/ﬁ(t) then // transition (3) or (5)
j Vi UCR/ i

4 Ale+1) ~ (M0 n {k: UCBL(t-1) <UCBY,  (t-1}) // not empty

5 s/(t+1) = Non fixed // go for arm with smaller index at r—1

6 else if CJ(t) and s/ () = Non fixed then // collision and not fixed

, Aj(t+1)~%(Mf(t)) // transition (2)

8 s/ (£+1) = Non fixed




MCTopM algorithm

Let A/(1) ~%({1,...,K}) and C/(1) = False and s/(1) = Non fixed

1

2

fort=1,...,T-1do

if AJ(t)¢ MJ(t) then

Al(e+1) ~ (MI(0) 0 {k: UCBL(r-1) <UCB,
s/ (t+1) =Non fixed

else if CJ(t) and s/ () = Non fixed then

Al(t+1) ~%(W(r))

s/(t+1) = Non fixed

else ‘ _
Al(t+1)=Al(1)

s/ (t+1) = Fixed

end

)

// transition (3) or (5)
// not empty

// go for arm with smaller index at r—1
// collision and not fixed

// transition (2)

// transition (1) or (4)
// stay on the previous arm

// become or stay fixed on a “chair”



MCTopM algorithm

1 Let A/(1) ~%({1,...,K}) and C/(1) = False and s/ (1) = Non fixed
2 fort=1,...,T—1do

3

4

5

11

12

13

14

if Aj(t)ex/ﬁ(t) then // transition (3) or (5)
Al(t+1) ~%(K47(t)m{k:UCch(t—1) SUCBi‘jm(t—l)}) // not empty
s/ (t+1) =Non fixed // go for arm with smaller index at r-—1

elseif C/(t) and s/(f) = Non fixed then // collision and not fixed
Al(e+1) ~ (MI(0) // transition (2)
s/(t+1) = Non fixed

else . _ // transition (1) or (4)
Al(t+1)=Al (1) // stay on the previous arm
s/ (£ +1) = Fixed // become or stay fixed on a “chair”

end

Play arm A/ (¢ +1), get new observations (sensing and collision),

Compute the indices UCB]];(t +1) and set X/ﬁ(t +1) for next step.

15 end
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5. Multi-player decentralized algorithms 5.b. MCTopM algorithm

MCTopM algorithm illustrated, step by step

(0) Start t =0

(1) CI(0), AJ(1) € M (1) /

Fixed, s/ (1) Not fixed, s/ (£)

@) Al (1) e Mi() @) Cl (1), Al (p) e Mi(t)
(5) Al (1) & MI(2)

3) Al (1) ¢ MI(1)
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Regret upper bound

© Theorem,

@ Remarks.
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6. Regret upper bound 6.a. Theorem for MCTopM with kl-UCB

Regret upper bound for MCTopM

One term is controlled by the two others:

Y (- (T - EulTe(D))
ke M-best

s -pp)| Y EdTe(Mi+ ) EulCe(T)]
ke M-worst ke M-best

So only need to work on both sub-optimal selections and collisions.
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6. Regret upper bound 6.a. Theorem for MCTopM with kl-UCB

Regret upper bound for MCTopM

One term is controlled by the two others:

Yo (k=) (T —EulTe(D)])
ke M-best

s -w)| Y BT+ Y EulCk(T)]
ke M-worst ke M-best

Theorem 4
If all M players use MCTopM with kl-UCB:

Y, 3G, Rr(p, M, p) < Gagy, x log(T) + o(log T).
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6. Regret upper bound 6.a. Theorem for MCTopM with kl-UCB

Regret upper bound for MCTopM

Control both terms, both are logarithmic at finite horizon:

m Suboptimal selections with the “classical analysis” on kl-UCB indexes.
m Collisions are also controlled with inequalities on the kl-UCB indexes...
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6. Regret upper bound 6.a. Theorem for MCTopM with kI-UCB

Regret upper bound for MCTopM

Control both terms, both are logarithmic at finite horizon:

m Suboptimal selections with the “classical analysis” on klI-UCB indexes.
m Collisions are also controlled with inequalities on the kl-UCB indexes...

m The constant Gyy,,, scales as M?, way better than RhoRand'’s constant scaling as

2 2M-1
M2(%y ),
m We also minimize the number of channel switching: interesting as changing arm
costs energy in radio systems,

m For the suboptimal selections, we match our lower bound !
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A. Regret upper bound (more details) A.b. Sketch of the proof of the upper bound

Sketch of the proof

© Bound the expected number of collisions by M times the number of collisions for
non-fixed players,
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A. Regret upper bound (more details) A.b. Sketch of the proof of the upper bound

Sketch of the proof

© Bound the expected number of collisions by M times the number of collisions for
non-fixed players,

@ Bound the expected number of transitions of type (3) and (5), by @(log T) using the
kl-UCB indexes and the forced choice of the algonthm
UCB/(t-1) < UCB/, (¢~ 1), and UCBL(#) > UCBJ, (#) when switching from k' to k,
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Sketch of the proof

© Bound the expected number of collisions by M times the number of collisions for
non-fixed players,

@ Bound the expected number of transitions of type (3) and (5), by @(log T) using the
kI-UCB indexes and the forced choice of the algorithm:

UCB/(t-1) < UCB/, (¢~ 1), and UCBL(#) > UCBJ, (#) when switching from k' to k,

@ Bound the expected length of a sequence in the non-fixed state by a constant,
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A. Regret upper bound (more details) A.b. Sketch of the proof of the upper bound

Sketch of the proof

© Bound the expected number of collisions by M times the number of collisions for
non-fixed players,

@ Bound the expected number of transitions of type (3) and (5), by @(log T) using the
kI-UCB indexes and the forced choice of the algorithm:
UCB/(t-1) < UCB/, (¢~ 1), and UCBL(#) > UCBJ, (#) when switching from k' to k,

@ Bound the expected length of a sequence in the non-fixed state by a constant,

@ So most of the times (0(T —log T)), players are fixed, and no collision happens
when they are all fixed!

— See our paper for details!
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A. Regret upper bound (more details)

A.b. Illustration of the proof of the upper bound

[lustration of the proof

_ — (0) Start t =0
M) CiI(®), A1) e MI(1)

t fixed, s/ ()

(5) Al (1) ¢ MI (1)

@) Al (1) e MI (1) @ Clw, Al e M)

@) Al ()¢ Mi(p)

— Time in fixed state is ©(log T), and collisions are < M collisions in fixed state => €(logT)

collisions.

~ Suboptimal selections is @ (log T) also as A/ (¢ + 1) is always selected in M (1) which is M-best

atleast @(T —log T) (in average).

CentraleSupélec & Inria)

Bandits Revisited
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Experimental results

Experiments on Bernoulli problems p € [0, 1]X.

Lilian Besson (CentraleSupélec & Inria) er Bandits Revisited CMAP Seminar — 31 Oct 2018 29 / 45



[lustration of the regret lower bound

Multi-players M =6 : Cumulated centralized regret, averaged 1000 times
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4) *, B(0.5) *, B(0.6) ", B(0.T) ", B(0.8) *, B(0.9) "]

2500

2000

1500 ~e— Cumulated centralized regret
() term: Pulls of 3 suboptimal arms (lower-bounded)
(b) term: Non-pulls of 6 optimal arms
(¢) term: Weighted count of collisions

— Our lower-bound = 48.8 log(t)

rrrrr Anandkumar et al.'s lower-boun
Centralized lower-bound = 8.14

1000

Cumulative centralized regret &

0 2000

6000 8000 10000
Time steps t=1..7, horizon 7= 10000, 6 players: 6 x RhoRand-KLUCB

Figure 1: Any such lower bound is very asymptotic, usually not satisfied for small horizons. We can see
the importance of the collisions!



Constant regret if M = K

Multi-players A/=9 : Cumulated centralized regret, averaged 200 times
9arms: [B(0.1)*, B(0.2)", B(0.3)*, B(0.4)", B(0.5)", B(0.6)", B(0.7)*, B(0.8) ", B(0.9)"]

~e— 9x RandTopM-KLUCB
7000 9 MCTopM-KLUCB
9% Selfish-KLUCB
— 9 RhoRand-KLUCB
— Our lower-bound = 0 log(t)
rrrrr Anandkumar et al.'s lower-bound = 0 log(t)
Centralized lower-bound = 0 log(t)

2
g
8
8

T (0)

5000

'~ 4000

3 8
8 8
8 8

Cumulative centralized regret D s t— Y .
5
.
H

0 2000 4000 6000 8000 10000
Time steps ¢ =1..7, horizon T=10000,

Figure 2: Regret, M =9 players, K =9 arms, horizon T = 10000, 200 repetitions. Only RandTopM and
achieve constant regret in this saturated case (proved).



Illustration of the regret of different algorithms

Multi-players A/ 6 : Cumulated centralized regret, averaged 500 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]

—e— 6% RandTopM-KLUCB
6 MCTopM-KLUCB
6 Selfish-KLUCB
—~ 6% RhoRand-KLUCB

3500

g
8
g

&
g
S

£ 2000

&
g
g

1000

Cumulative centralized regret D s t — > Exo[Ti (1)

o
g
g

0 1000 2000 3000 4000 5000
Time steps t=1.., horizon T="5000,

Figure 3: Regret, M = 6 players, K =9 arms, horizon T = 5000, against 500 problems g uniformly
sampled in [0, 11X. Conclusion : RhoRand < RandTopM < Selfish < in most cases.



Logarithmic number of collisions

Multi-players A/ =6 : Cumulated number of collisions, averaged 500 times
arms: Bayesian MAB, Bernoulli with means on [0, 1

—e— 6 RandTopM-KLUCB

800 6% MCTopM-KLUCB
6 Selfish-KLUCB
—< 6 RhoRand-KLUCB
700

Cumulated number of collisions on all arms

100

4000 5000

0 1000 2000 3000
Time steps ¢ = 1.7, horizon T= 5000

Figure 4: Cumulated number of collisions. Also RhoRand < RandTopM < Selfish <



Logarithmic number of arm switches

Multi-players A/—6 : Total cumulated number of switches, averaged 500 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]

~e— 6x RandTopM-KLUCB
6% MCTopM-KLUCB
800 6 Selfish-KLUCB.
—~ 6% RhoRand-KLUCB

S )
8 8
H 8

N
S
g

Cumulated number of switches (changes of arms)

0 1000 2000 3000 4000 5000
Time steps t=1.., horizon T="5000,

Figure 5: Cumulated number of arm switches. Again RhoRand < RandTopM < Selfish < , but
no guarantee for RhoRand. Bonus result: logarithmic arm switches for our algorithms!



Fairness

Multi-players M/=6 : Centralized measure of fairness, averaged 500 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]
—e— 6 RandTopM-KLUCB
6 MCTopM-KLUCB
6x Selfish-KLUCB
10.0% — 6 RhoRand-KLUCB

8.0%

2.0%

Centralized measure of fairness for cumulative rewards (Std)

0 1000 2000 3000 4000 5000
Time steps t=1.., horizon T="5000,

Figure 6: Measure of fairness among player. All 4 algorithms seem fair in average, but none is fair on a
single run. It’s quite hard to achieve both efficiency and single-run fairness!



7. Experimental results 7.f. Comparison with SIC-MMAB and other approaches

A larger benchmark

Now I also want to compare more approaches.

RhoRand, with UCB; or kl-UCB,

RandTopM, with UCB; or kl-UCB,

MCTopM, with UCB; or kl-UCB,

Selfish, with UCB; or kl-UCB,

a centralized agent (not playing the same game, not fair to compare against it), with
UCB; or kl-UCB,

three hand-tuned Musical-Chair algorithms,

m three variants of the SIC-MMAB algorithm (from arXiv:1809.08151), with UCB;,
kl-UCB and their proposal with UCB-H.
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Comparison with other approaches (1/3)

Multi-players 1/ =6 : Cumulated centralized regret, averaged 40 times
9 arms: [B(0.01), B(0.01), B(0.01), B(0.1)*, B(0.12) *, B(0.14)*, B(0.16) ", B(0.18) *, B(0.2)*]

—@— SIC-MMAB(UCB-H, T; = 265)
SIC-MMAB(UCB, 7; = 265)
SIC-MMAB(KI-UCB, T; = 265)
RhoRand-UCB
RhoRand-kI-UCB
RandTopM-UCB.
RandTopM-kI-UCB

MCTopM-UCB
] MCTopM-kI-UCB
3 Selfish-UCB
2 —e— Selfish-kI-UCB
3 —o— CentralizedMultiplePlay(UCB)
= —¥— CentralizedMultiplePlay(kl-UCB)
£ —e— MusicalChair(T} = 150)
8 10 —<— MusicalChair(T; = 900)
¢ —=— MusicalChair(1} = 1350)
K] — Besson & Kaufmann lower-bound = 22.7 lox(t)
2 Anandkumar et al.'s lower-bound = 14.3 log(f)
5 Centralized lower-bound = 3.79 log(t)
10t

107 10° 104
Time steps ¢ =1...T, horizon T=50000,

Figure 7: For M = 6 objects, MCTopM and RandTopM largely outperform SIC-MMAB and RhoRand.



Comparison with other approaches (2/3)

Multi-players 1/=8 : Cumulated centralized regret, averaged 40 times
9 arms: [B(0.01), B(0.01)*, B(0.01)*, B0.1)", B(0.12)", B(0.14)*, B(0.16) *, B(0.18) ",
B(0.2)"

2

—o— SIC-MMAB(UCB-H,
SIC-MMAB(UCB, T,
SIC-MMAB(KI-UCB, T; = 265)
RhoRand-UCB
RhoRand-kI-UCB
RandTopM-UCB
RandTopM-kI-UCB
MCTopM-UCB
MCTopM-kI-UCB
Selfish-UCB

—e— Selfish-k-UCB

—&— CentralizedMultiplePlay(UCB)

—¥— CentralizedMultiplePlay(kl-UCB)

—e— MusicalChair(T, = 45

—— MusicalChair(T,

—=— MusicalChair(T)

1

i

2

1

i

3

Cumulative centralized regret Y, ¢ — Y [Ti(t)]

102 10° 10¢
Time steps ¢ = 1....T, horizon T= 50000,

Figure 8: For M = 8 objects, MCTopM still outperforms SIC-MMAB for short term regret, but the constant
in front of the log(T) term seems smaller for SIC-MMAB.



Comparison with other approaches (3/3)

Multi-players 1/=9 : Cumulated centralized regret, averaged 40 times
9 arms: [B(0.01)*, B(0.01)*, B0.01)*, B(0.1)*, B(0.12) ", B(0.14) ", B(0.16) *, B(0.18) ",
B(0.2)"]

10°

" ) —e— SIC-MMAB(UCB-H,
SIC-MMAB(UCB, T;
SIC-MMAB(KI-UCB

- 101 RhoRand-UCB
<AL RhoRand-kI-UCB
L RandTopM-UCB
Ky RandTopM-kI-UCB
BN 104 MCTopM-UCB
5 MCTopM-kI-UCB
S Selfish-UCB
2 —o— Selfish-kl-UCB
3 107 —#— CentralizedMultiplePlay(UCB)
2 —¥— CentralizedMultiplePlay(kl-UCB)
5 —e— MusicalChair(1} - 150)
g —< MusicalChair(T)
2 100 —m— MusicalChair(T, = 1350)
Z — Besson & Kaufmann lower-bound = 0 log(t)
El -=- Anandkumar et al.'s lower-bound = 0 log(t)
5 Centralized lower-bound = 0 log(t)

9
Time steps ¢ = 1...7, horizon T'= 50000,

Figure 9: For M =9 objects, MCTopM and RandTopM largely outperform all approaches, they have finite
regret when the other don’t. For our algorithm, M = K is the easiest case: just orthogonalize and it’s done!



7. Experimental results 7.f. Comparison with SIC-MMAB and other approaches

Short summary of these benchmarks

In such experiments, and many more not showed here, I did the following observations:

m For any algorithm, the kl-UCB variant is uniformly better than the UCB; and
UCB-Hvariant (obviously),

m Any decentralized approach is less efficient than the “cheating” centralized
multiple-play approach,

m And for a fixed index policy, the following ordering on decentralized approaches
can be observed (smaller means smaller regret, so a better algorithm):

MCTopM < RandTopM < SIC-MMAB < Selfish < RhoRand.
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ther recent related works

Other recent related works (1/2)

® Another recent article studied a similar problem.

14 /\ug 2018

b

.04875v1 [cs.LG

Multi-user Communication Networks:
A Coordinated Multi-armed Bandit Approach

Orly Avner, Student Member; IEEE, and Shie Mannor, Senior Member, IEEE

Abstraci—Communication networks shared by many users are

Known stochastic network characteristics, sharing resources with
other users while keeping coordination overhead to a minimum.
‘The proposed solution combines Multi-Armed Bandit learning
with a lightweight signalling-based_coordination scheme, and
ensures convergence to a stable allocation of resources. Our
ok conskdrs single-ssr levl aloriths or two scarios:
rm fixed mumber of wers, and 8 dynaimic umber of
performance guarantees, proving convergence (o
Sable martiuge coneurations are presented Tor both etupe
‘The algorithms are designed based on a sy. semide perspective,
rather than focusing on single user wel

‘maximization. Experiments are carried out over a wide range
of setups, demonstrating the advantages of our approach over
existing state-of-the-art methods.

1. INTRODUCTION.

HE world of modern multi-user communication networks
Tpum many challenges that serve as an inspiration for our
work. We focus on distributed setups such as cognitive radio
networks (CRNS) that consist of several users accessing a set
of communication channels. The users’ goal is to make the
best possible use of network resources.

Radios with enhanced capabilities such as spectrum sens-
ing. memory and computational power can ideniify and use
ps” in transmissions of licensed traditional radios, thus
reasing utilization. From an algorithmic point of view,
interesting questions due
1o its dynamic, stochastic, distibuted nature. Over the last
decade this challenging assortment of problems has gained
considerable attention from researchers and engineers 2], (3]
Both theoretical and practical issues have been addressed,
along with the necessary increase of regulatory support [4].

B. Multi-armed bandits

Multi-armed bandits (MABS) are a well-studied framework
from the world of machine leaming. They model a sequential
decision making problem in which a user repeatedly chooses
one of K actions in order to maximize her acquired reward
The characteristics of the actions (also known as arms) are
initially unknown, and learning to identify the best action
needs 1o be balanced with reward maximization, in what is
known as the exploration-exploitation dilemma. MABs have
attracted much interest due (o the wide range of applications
they capture, combined with their relative simplicity, from
both algorithmic and analytic points of view. Several papers

Stochactic MAR nrhlam 151171 in

nvevsen entutione fue th

nar

31 Oct 2018
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https://arxiv.org/abs/1808.04875
https://github.com/SMPyBandits/SMPyBandits/issues/139

8. Conclusion 8. Other recent related works

Other recent related works (1/2)

m Another recent article studied a similar problem.
m Implementing their algorithms should be easy, but their model is quite different:

o Objects can choose to not communicate, it is denoted by choosing arm 0 and not k in
{1,...,K},

e A\ But more importantly, objects can send some bits of data directly to each other...

e Soit’s a little bit more complicated than my (simple) model.

Twill try to code their model in my framework, see GitHub.com/SMPyBandits/SMPyBandits/issues/139
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8. Conclusion 8. Other recent related works

Other recent related works (1/2)

m Another recent article studied a similar problem.
m Implementing their algorithms should be easy, but their model is quite different:

o Objects can choose to not communicate, it is denoted by choosing arm 0 and not k in
{1,...,K},

e A\ But more importantly, objects can send some bits of data directly to each other...

e Soit’s a little bit more complicated than my (simple) model.

m — I will'l work on this more in the near future!

“Multi-user Communication Networks: A Coordinated Multi-armed Bandit Approach”, by Orly Avner &
Shie Mannor, arXiv:1808.04875

Twill try to code their model in my framework, see GitHub.com/SMPyBandits/SMPyBandits/issues/139
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related works

Other recent related works (2/2)

®m And another recent article also studied a similar problem.

Multiplayer bandits without observing
collision information

Gibor Lugosi#  Abbas Mehrabian®

a
] August 28, 2018

Z

"

o

o Abstract

Q

- We study multiplayer stochastic multi-armed bandit problems in which
@ the players cannot communicate, and if two or more players pull the same
& arm, a collision occurs and the involved players receive zero reward. We con-
- sider two feedback models: a model in which the players can observe whether

a collision has d,and setup when no collision informa-
tion is available. We give the first theoretical guarantees for the sccond model:
an algorithm with a logarithmic regret, and an algorithm with a square-root
regret type that does not depend on the gaps between the means. For the first
model, we g st square-rool regret bounds that do not depend on the
gaps. Building on these ideas, we also give an algorithm for reaching approx-
imate Nash equilibria quickly in stochastic anti-coordination games.

-

Introduction

The stochastic multi-armed bandit problem is a well-studied problem of machine
learning: consider an agent that has to choose among several actions in each round
of a game. To each action i i associated a real-valued parameter i Whenever the
player performs the i-th action, she receives a random reward with mean p;. If
the player knew the means associated to the actions before starting the game, she
would play an action with the highest mean during all rounds. The problem is to
design a strategy for the player to maximize her reward in the setting where she

CMAP Seminar



https://arxiv.org/abs/1808.08416
https://github.com/SMPyBandits/SMPyBandits/issues/141

8. Conclusion 8. Other recent related works

Other recent related works (2/2)

®m And another recent article also studied a similar problem.

m A very strong work from a theoretical point of view, but completely impractical
even for simulations.

m Their analysis says that their algorithm can be efficient only after at least 17, steps
of uniform exploration (i.e., linear regret).
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8. Conclusion 8. Other recent related works

Other recent related works (2/2)

®m And another recent article also studied a similar problem.
m A very strong work from a theoretical point of view, but completely impractical
even for simulations.
m Their analysis says that their algorithm can be efficient only after at least 17, steps
of uniform exploration (i.e., linear regret).
m On very easy problems with minimal gap between arms of A = 0.1 (rewards in
(0,1]), and very small horizons, small M and K, T2 is computed as:
e For M=2and K=2,and T =100, T; » = 198214307,
e For M=2and K=2,and T =1000, T2 =271897030,
e For M=2and K=3,and T =100, T7 2 = 307052623,
e For M=2and K=5,and T =100, T;» =532187397.
/\ That’s just unreasonable!
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8. Conclusion 8. Other recent related works

Other recent related works (2/2)

® And another recent article also studied a similar problem.

m A very strong work from a theoretical point of view, but completely impractical
even for simulations.

m After discussing with the author, I tried using a much smaller value for their
constant g (1 instead of 128), and their algorithm is still very much asymptotic in
practice, even on very simple problems!

m = I will® work on this more in the near future!

“Multiplayer Bandits Without Observing Collision Information”, by Gabor Lugosi & Abbas Mehrabian,
arXiv:1808.08416

2I already added their first algorithm in my framework, see GitHub.com/SMPyBandits/SMPyBandits/issues/141
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8. Conclusion 8.a. Conclusion

Sum up

m In a wireless network with an i.i.d. background traffic in K channels,
m M devices can use both sensing and acknowledgement feedback, to learn the most
free channels and to find orthogonal configurations.
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8. Conclusion 8.a. Conclusion

Sum up

m In a wireless network with an i.i.d. background traffic in K channels,
m M devices can use both sensing and acknowledgement feedback, to learn the most
free channels and to find orthogonal configurations.

We showed

m Decentralized bandit algorithms can solve this problem,

m We have a lower bound for any decentralized algorithm,

m And we proposed an order-optimal algorithm, based on kl-UCB and an improved
Musical Chair scheme, MCTopM.
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8. Conclusion 8.b. Future works

Future works

m Implement and test this on real-world radio devices?
— Yes!
Demo presented at the ICT 2018 conference! (Saint-Malo, France)
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8. Conclusion 8.b. Future works

Future works

m Implement and test this on real-world radio devices?
— Yes!
Demo presented at the ICT 2018 conference! (Saint-Malo, France)

m Remove hypothesis that objects know M? (easy)
m Allow arrival/departure of objects? (harder)
m Non-stationarity of background traffic? (much harder)
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8. Conclusion 8.b. Future works

Future works

m Implement and test this on real-world radio devices?
— Yes!
Demo presented at the ICT 2018 conference! (Saint-Malo, France)

m Remove hypothesis that objects know M? (easy)
m Allow arrival/departure of objects? (harder)
m Non-stationarity of background traffic? (much harder)

m Extend to more objects (i.e., when M > K) ?
“Large-scale” IoT model, with (e.g., ZigBee networks), or without sensing (e.g.,
LoRaWAN networks).
— objects should no longer communicate at every time step!
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8. Conclusion 8.b. Future works

Future works

m Implement and test this on real-world radio devices?
— Yes!
Demo presented at the ICT 2018 conference! (Saint-Malo, France)

m Remove hypothesis that objects know M? (easy)
m Allow arrival/departure of objects? (harder)
m Non-stationarity of background traffic? (much harder)

m Extend to more objects (i.e., when M > K) ?
“Large-scale” IoT model, with (e.g., ZigBee networks), or without sensing (e.g.,
LoRaWAN networks).
— objects should no longer communicate at every time step!
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8. Conclusion 8.c. Thanks!

Thanks!

TRhanha! ©

Anmny q,uue/utisf/n, ?
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Appendix

® An heuristic for the “IoT” case (no sensing): the Selfish algorithm,
m Success and failures case for Selfish.
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B. An heuristic, Selfish

An heuristic, Selfish

For the harder feedback model, without sensing.

@ An heuristic,

@ Problems with Selfish,

@ Illustration of failure cases.
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B. An heuristic, Selfish B.a. Problems with Selfish

Selfish heuristic |

Selfish decentralized approach = device don’t use sensing:

Selfish

Use UCB; (or K-UCB) indexes on the (non i.i.d.) rewards r/(¢) and not on the sensing
YA] (t) (t) . Ref: [Bonnefoi & Besson et al, 2017]

m More suited to model IoT networks,

m Use less information, and don’t know the value of M: we expect Selfish to not have
stronger guarantees.

m It works fine in practice!
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B. An heuristic, Selfish B.a. Problems with Selfish

Selfish heuristic II
But why would it work?

m Sensing feedback were i.i.d., so using UCB; to learn the u; makes sense,
m But collisions make the rewards not i.i.d. !

m Adversarial algorithms should be more appropriate here,

m But empirically, Selfish works much better with kI-UCB than, e.g., Exp3...

m Except... when it fails drastically! ®

m In small problems with M and K = 2 or 3, we found small probability of failures
(i.e., linear regret), and this prevents from having a generic upper bound on the
regret for Selfish.
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[llustration of failing cases for Selfish

Histogram of regrets for dlfferent multl players bandit algorithms
3 arms:

2 RandTopM-KLUCB 2 Selfish-KLUCB

[B(0.
L ‘ i
wo s oo 70

2 MCTopM-KLUCB 2 RhoRand-KLUCB.

Number of observations, 1000 repetitions

Regret value Ry at the end of simulation, for T'=5000

Figure 10: Regret for M =2, K =3, T = 5000, 1000 repetitions and p = [0.1,0.5,0.9]. Axis x is for regret
(different scale for each), and Selfish have a small probability of failure (17/1000 cases of Ry >>logT). The
regret for the three other algorithms is very small for this “easy” problem.
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