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1. (Stationary) Multi-armed bandits problems What is a bandit problem?

Multi-armed bandits

= Sequential decision making problems in uncertain environments :

↪→ Interactive demo perso.crans.org/besson/phd/MAB_interactive_demo/

Ref: [Bandits Algorithms, Lattimore & Szepesvári, 2019], on tor-lattimore.com/downloads/book/book.pdf
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1. (Stationary) Multi-armed bandits problems Mathematical model

Mathematical model

Discrete time steps t = 1, . . . , T
The horizon T is fixed and usually unknown
At time t, an agent plays the arm A(t) ∈ {1, . . . ,K},
then she observes the iid random reward r(t) ∼ νk, r(t) ∈ R

Usually, we focus on Bernoulli arms νk = Bernoulli(µk), of mean
µk ∈ [0, 1], giving binary rewards r(t) ∈ {0, 1}.

Goal : maximize the sum of rewards
T∑
t=1

r(t)

or maximize the sum of expected rewards E
[
T∑
t=1

r(t)
]

Any efficient policy must balance between exploration and
exploitation: explore all arms to discover the best one, while
exploiting the arms known to be good so far.
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1. (Stationary) Multi-armed bandits problems Naive solutions

Two examples of bad solutions

i) Pure exploration

Play arm A(t) ∼ U({1, . . . ,K}) uniformly at random

=⇒ Mean expected rewards 1
T E

[
T∑
t=1

r(t)
]

= 1
K

K∑
k=1

µk � maxk µk

ii) Pure exploitation

Count the number of samples and the sum of rewards of each arm
Nk(t) =

∑
s<t

1(A(s) = k) and Xk(t) =
∑
s<t

r(s)1(A(s) = k)

Estimate the unknown mean µk with µ̂k(t) = Xk(t)/Nk(t)
Play the arm of maximum empirical mean : A(t) = arg maxk µ̂k(t)
Performance depends on the first draws, and can be very poor!

↪→ Interactive demo perso.crans.org/besson/phd/MAB_interactive_demo/
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1. (Stationary) Multi-armed bandits problems The “Upper Confidence Bound” algorithm

A first solution: “Upper Confidence Bound” algorithm

Compute UCBk(t) = Xk(t)/Nk(t) +
√
α log(t)/Nk(t)

= an upper confidence bound on the unknown mean µk
Play the arm of maximal UCB : A(t) = arg maxk UCBk(t)
↪→ Principle of “optimism under uncertainty”
α balances between exploitation (α→ 0) and exploration (α→∞)

UCB is efficient: the best arm is identified correctly (with high
probability) if there are enough samples (for T large enough)
=⇒ Expected rewards attains the maximum

For T →∞, 1
T
E
[
T∑
t=1

r(t)
]
→ max

k
µk

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6th of June, 2019 8 / 47



1. (Stationary) Multi-armed bandits problems The “Upper Confidence Bound” algorithm

A first solution: “Upper Confidence Bound” algorithm

Compute UCBk(t) = Xk(t)/Nk(t) +
√
α log(t)/Nk(t)

= an upper confidence bound on the unknown mean µk
Play the arm of maximal UCB : A(t) = arg maxk UCBk(t)
↪→ Principle of “optimism under uncertainty”
α balances between exploitation (α→ 0) and exploration (α→∞)
UCB is efficient: the best arm is identified correctly (with high
probability) if there are enough samples (for T large enough)
=⇒ Expected rewards attains the maximum

For T →∞, 1
T
E
[
T∑
t=1

r(t)
]
→ max

k
µk

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6th of June, 2019 8 / 47



1. (Stationary) Multi-armed bandits problems The “Upper Confidence Bound” algorithm

UCB algorithm converges to the best arm

We can prove that suboptimal arms k are sampled about o(T ) times

=⇒ E
[
T∑
t=1

r(t)
]
→

T→∞
µ∗ ×O(T ) +

∑
k:∆k>0

µk × o(T )

But. . . at which speed do we have this convergence?

Elements of proof of convergence (for K Bernoulli arms)

Suppose the first arm is the best: µ∗ = µ1 > µ2 ≥ . . . ≥ µK

UCBk(t) = Xk(t)/Nk(t) +
√
α log(t)/Nk(t)

Hoeffding’s inequality gives P(UCBk(t) < µk(t)) ≤ O( 1
t2α )

=⇒ the different UCBk(t) are true “Upper Confidence Bounds” on the
(unknown) µk (most of the times)

And if a suboptimal arm k > 1 is sampled, it implies UCBk(t) > UCB1(t),
but µk < µ1: Hoeffding’s inequality also proves that any “wrong
ordering” of the UCBk(t) is unlikely
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1. (Stationary) Multi-armed bandits problems Regret of a bandit algorithm

Measure the performance of algorithm A by its mean
regret RA(T )

Difference in the accumulated rewards between an “oracle” and A
The “oracle” algorithm always plays the (unknown) best arm
k∗ = arg maxk µk (we note the best mean µk∗ = µ∗)
Maximize the sum of expected rewards⇐⇒minimize the regret

RA(T ) = E
[
T∑
t=1

rk∗(t)
]
−

T∑
t=1

E [r(t)] = Tµ∗ −
T∑
t=1

E [r(t)] .

Typical regime for stationary bandits (lower & upper bounds)

No algorithm A can obtain a regret better than RA(T ) ≥ Ω(log(T ))
And an efficient algorithm A obtains RA(T ) ≤ O(log(T ))
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1. (Stationary) Multi-armed bandits problems Regret of two UCB algorithms

Regret of UCB and kl-UCB algorithms

For any problem with K arms following Bernoulli distributions, of
means µ1, . . . , µK ∈ [0, 1], and optimal mean µ∗, then

For the UCB algorithm

RUCB
T ≤

∑
k=1,...,K
µk<µ

∗

8
(µk − µ∗)

log(T ) + o(log(T )).

For the kl-UCB algorithm: a smaller regret upper-bound

Rkl-UCB
T ≤

∑
k=1,...,K
µk<µ

∗

(µk − µ∗)
kl(µ∗, µk) log(T )+o(log(T )) = O( C(µ1, . . . , µK)︸ ︷︷ ︸

Difficulty of the problem

log(T )).

If kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) is the binary relative entropy
(ie, Kullback-Leibler divergence of two Bernoulli of means x and y)
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2. Piece-wise stationary multi-armed bandits problems

Non stationary MAB problems

Stationary MAB problems

Arm k gives rewards sampled from the same distribution for any time

step: ∀t, rk(t)
iid∼ νk = Bernoulli(µk).

Non stationary MAB problems?

Arm k gives rewards sampled a (possibly) different distributions for any

time step: ∀t, rk(t)
iid∼ νk(t) = Bernoulli(µk(t)).

=⇒ harder problem! And very hard if µk(t) can change at any step!

Piece-wise stationary problems!

↪→ we focus on the easier case when there are at most o(
√
T ) intervals

on which the means are all stationary (= sequence)
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2. Piece-wise stationary multi-armed bandits problems Definitions

Break-points and stationary sequences

Define

The number of break-points

ΥT =
T−1∑
t=1

1(∃k ∈ {1, . . . ,K} : µk(t) 6= µk(t+ 1))

The i-th break-point
τ i = inf{t > τ i−1 : ∃k : µk(t) 6= µk(t+ 1)} (with τ0 = 0)

Hypotheses on piece-wise stationary problems

The rewards rk(t) generated by each arm k are iid on each interval
[τ i + 1, τ i+1] (the i-th sequence)
There are ΥT = o(

√
T ) break-points

And ΥT can be known before-hand
All sequences are “long enough”
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Example of a piece-wise stationary MAB problem
We plots the means µ1(t), µ2(t), µ3(t) of K = 3 arms. There are ΥT = 4
break-points and 5 sequences between t = 1 and t = T = 5000:

0 1000 2000 3000 4000 5000
Time steps t= 1. . . T, horizon T= 5000
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History of means for Non-Stationary MAB, Bernoulli with 4 break-points
Arm #0
Arm #1
Arm #2



2. Piece-wise stationary multi-armed bandits problems Extending the definition of regret

Regret for piece-wise stationary bandits?

The “oracle” algorithm know plays the (unknown) best arm
k∗(t) = arg max µk(t) (which changes between stationary sequences)

RA(T ) = E
[
T∑
t=1

rk∗(t)(t)
]
−

T∑
t=1

E [r(t)] =
(

T∑
t=1

max
k

µk(t)
)
−

T∑
t=1

E [r(t)] .

Typical regimes for piece-wise stationary bandits

The lower-bound is RA(T ) ≥ Ω(
√
KTΥT )

Currently, state-of-the-art algorithms A obtain
RA(T ) ≤ O(K

√
TΥT log(T )) if T and ΥT are known

RA(T ) ≤ O(KΥT

√
T log(T )) if T and ΥT are unknown
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3. The BGLR test and its finite time properties Break-point detection

The break-point detection problem

Imagine the following problem. . .

You observe data X1, X2, · · · , Xt, · · · ∈ [0, 1] sequentially. . .
You know that Xt is generated by a certain unknown
distribution. . .

Your goal is to distinguish between two hypotheses:
H0 The distributions all have the same mean (“no break-point”)
∃µ0,E[X1] = E[X2] = · · · = E[Xt] = µ0

H1 The distributions have changed mean at a break-point at time τ
∃µ0, µ1, τ,E[X1] = · · · = E[Xτ ] = µ0, µ0 6= µ1, E[Xτ+1] =
E[Xτ+2] = · · · = µ1

You stop at time τ̂ , as soon as you detect a change

A sequential break-point detection is a stopping time τ̂ , measurable for
Ft = σ(X1, · · · , Xt), which rejects hypothesisH0 when τ̂ <∞.
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3. The BGLR test and its finite time properties Likelihood ratio test for Bernoulli observations

Bernoulli likelihood ratio test

Hypothesis: all distributions are Bernoulli (νk = B(µk))

The problem boils down to distinguishing

H0: (∃µ0 : ∀i ∈ N∗, Xi
i.i.d.∼ B(µ0)), against the alternative

H1: (∃µ0 6= µ1, τ > 1 : X1, · · · , Xτ
i.i.d.∼ B(µ0) et Xτ+1, · · ·

i.i.d.∼ B(µ1)).

The Likelihood Ratio statistic for this hypothesis test, after observing
X1, · · · , Xn, is

L(n) =
sup

µ0,µ1,τ<n
`(X1, · · · , Xn;µ0, µ1, τ)

sup
µ0

`(X1, · · · , Xn;µ0) ,

where `(X1, · · · , Xn;µ0) (resp. `(X1, · · · , Xn;µ0, µ1, τ)) is the likelihood
of the observations under a model inH0 (resp. H1).

↪→ High values of this statistic L(n) tends to rejectH0 overH1.
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3. The BGLR test and its finite time properties Likelihood ratio test for Bernoulli observations

Expression of the (log) Bernoulli Likelihood ratio

We can rewrite this statistic L(n) =
sup

µ0,µ1,τ<n
`(X1,··· ,Xn;µ0,µ1,τ)

sup
µ0

`(X1,··· ,Xn;µ0) , by using

Bernoulli likelihood, and shifting means µ̂k:k′ = 1
k′−k+1

k′∑
s=k

Xs :

logL(n) = max
s∈{2,··· ,n−1}

[
s× kl( µ̂1:s︸︷︷︸

before change

, µ̂1:n︸︷︷︸
all data

)

+(n− s)× kl( µ̂s+1:n︸ ︷︷ ︸
after change

, µ̂1:n︸︷︷︸
all data

)
]
.

Where kl(x, y) = x ln
(
x
y

)
+ (1− x) ln

( 1−x
1−y

)
is the binary relative entropy
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3. The BGLR test and its finite time properties The BGLR-T

The Bernoulli Generalized likelihood ratio test (BGLR)

We can extend the Bernoulli likelihood ratio test if the observations
are sub-Bernoulli.
And any bounded distributions on [0, 1] is sub-Bernoulli !
=⇒ the BGLR test can be applied for any bounded observations

The BGRL-T sequential break-point detection test

The BGLR-T is the stopping time defined by

τ̂δ = inf
{
n ∈ N∗ : max

s∈{2,··· ,n−1}

[
s kl (µ̂1:s, µ̂1:n)+(n−s) kl (µ̂s+1:n, µ̂1:n)

]
≥ β(n, δ)

}
with a threshold function β(n, δ) specified later,
n is the number of observations,
δ is the confidence level.
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3. The BGLR test and its finite time properties False alarm

Probability of false alarm

A good test should not detect any break-point if there is no break-point
to detect. . .

Definition: False alarm
The stopping time is τ̂δ, and a break-point is detected if τ̂δ <∞.
Let Pµ0 be a probability model under which the observations are ∀t,Xt ∈
[0, 1] and ∀t,E[Xt] = µ0.
The false alarm probability is Pµ0(τ̂δ <∞).

=⇒ Goal: controlling the false alarm event! (in high probability)

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6th of June, 2019 22 / 47



3. The BGLR test and its finite time properties False alarm

Probability of false alarm

A good test should not detect any break-point if there is no break-point
to detect. . .

Definition: False alarm
The stopping time is τ̂δ, and a break-point is detected if τ̂δ <∞.
Let Pµ0 be a probability model under which the observations are ∀t,Xt ∈
[0, 1] and ∀t,E[Xt] = µ0.
The false alarm probability is Pµ0(τ̂δ <∞).

=⇒ Goal: controlling the false alarm event! (in high probability)

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6th of June, 2019 22 / 47



3. The BGLR test and its finite time properties False alarm

First result for the BGLR test

Controlling the false alarm probability

For any confidence level 0 < δ < 1, the BGLR test satisfies

Pµ0(τ̂δ <∞) ≤ δ

with the threshold function

β(n, δ) = 2 T
(

ln(3n
√
n/δ)

2

)
+ 6 ln(1 + ln(n)) ' ln

(
3n
√
n

δ

)
= O

(
log
(n
δ

))
.

Where T (x) verifies T (x) ' x+ ln(x) for x large enough

Proof ?
Hard to explain in a short time. . .
↪→ see the article, on HAL-02006471 and arXiv:1902.01575

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6th of June, 2019 23 / 47

https://hal.inria.fr/hal-02006471
https://arxiv.org/abs/1902.01575


3. The BGLR test and its finite time properties False alarm

First result for the BGLR test

Controlling the false alarm probability

For any confidence level 0 < δ < 1, the BGLR test satisfies

Pµ0(τ̂δ <∞) ≤ δ

with the threshold function

β(n, δ) = 2 T
(

ln(3n
√
n/δ)

2

)
+ 6 ln(1 + ln(n)) ' ln

(
3n
√
n

δ

)
= O

(
log
(n
δ

))
.

Where T (x) verifies T (x) ' x+ ln(x) for x large enough

Proof ?
Hard to explain in a short time. . .
↪→ see the article, on HAL-02006471 and arXiv:1902.01575

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6th of June, 2019 23 / 47

https://hal.inria.fr/hal-02006471
https://arxiv.org/abs/1902.01575


3. The BGLR test and its finite time properties Delay of detection

Delay of detection

A good test should detect a break-point “fast enough” if there is a
break-point to detect, with enough samples before the break-point. . .

Definition: Delay of detection

Let Pµ0,µ1,τ be a probability model under which ∀t,Xt ∈ [0, 1] and ∀t ≤
τ,E[Xt] = µ0 and ∀t ≥ τ + 1,E[Xt] = µ1, with µ0 6= µ1.
The gap of this break-point is ∆ = |µ0 − µ1|.
The delay of detection is u = τ̂δ − τ ∈ N.

=⇒ Goal: controlling the delay of detection! (in high probability)
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3. The BGLR test and its finite time properties Delay of detection

Second result for the BGLR test

Controlling the delay of detection

On a break-point of amplitude ∆ = |µ1 − µ0|, the BGLRT test satisfies

Pµ0,µ1,τ (τ̂δ ≥ τ + u) ≤ exp

− 2τu
τ + u

(
max

[
0,∆−

√
τ + u

2τu β(τ + u, δ)
])2


= O(decreasing exponential of u) = O(exp↘ (u)).

with the same threshold function β(n, δ) ' ln(3n
√
n/δ).

Consequence

In high probability, the delay τ̂δ of BGLR is bounded by O(∆−2 ln(1/δ))
if enough samples are observed before the break-point at time τ .
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3. The BGLR test and its finite time properties Summary of results for BGLR-T

BGLR is an efficient break-point detection test !

We just saw that by choosing
a confidence level δ,
and a good threshold function β(n, δ) ' ln(3n

√
n/δ) = O(log(n/δ))

we can control the two properties of the BGLR test:
its false alarm probability: Pµ0(τ̂δ <∞) ≤ δ
its detection delay: Pµ0,µ1,τ (τ̂δ ≥ τ + u) decreases exponentially fast
wrt u (if there are enough samples before and after the break-point)

=⇒ The BGLR is an efficient break-point detection test

Finite time guarantees [Maillard, ALT, 2019] [Lai & Xing, Sequential Analysis, 2010]

Such finite time (non asymptotic) guarantees are recent results!
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4. The BGLR-T + klUCB algorithm

4. The BGLR-T + klUCB algorithm

1 (Stationary) Multi-armed bandits problems

2 Piece-wise stationary multi-armed bandits problems

3 The BGLR test and its finite time properties

4 The BGLR-T + klUCB algorithm

5 Regret analysis

6 Numerical simulations
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4. The BGLR-T + klUCB algorithm BGRL test + kl-UCB index

Our algorithm combines BGRL test + kl-UCB index

Main ideas
We compute a UCB index on each arm k

Most of the times, we select A(t) = arg max
k∈{1,...,K}

kl-UCBk(t)

We use a BGLR test to detect changes on the played arm A(t)
If a break-point is detected, we reset the memories of all arms

The kl-UCB indexes
τk(t) is the time of last reset of arm k before time t,
nk(t) counts the selections and µ̂k(t) is the empirical means of
observations of arm k since τk(t),
Let kl-UCBk(t) = max

{
q ∈ [0, 1] : nk(t)× kl (µ̂k(t), q) ≤ f(t− τk(t))

}
f(t) = ln(t) + 3 ln(ln(t)) controls the width of the UCB.

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6th of June, 2019 28 / 47



4. The BGLR-T + klUCB algorithm BGRL test + kl-UCB index

Our algorithm combines BGRL test + kl-UCB index

Main ideas
We compute a UCB index on each arm k

Most of the times, we select A(t) = arg max
k∈{1,...,K}

kl-UCBk(t)

We use a BGLR test to detect changes on the played arm A(t)
If a break-point is detected, we reset the memories of all arms

The kl-UCB indexes
τk(t) is the time of last reset of arm k before time t,
nk(t) counts the selections and µ̂k(t) is the empirical means of
observations of arm k since τk(t),
Let kl-UCBk(t) = max

{
q ∈ [0, 1] : nk(t)× kl (µ̂k(t), q) ≤ f(t− τk(t))

}
f(t) = ln(t) + 3 ln(ln(t)) controls the width of the UCB.

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6th of June, 2019 28 / 47



4. The BGLR-T + klUCB algorithm BGRL test + kl-UCB index

Two details of our algorithm

i) How do we use the BGLR test? (parameter δ)

From observations Z1, · · · , Zn we use the BGLR test to detect a break-
point with confidence level δ when

sup
2≤s≤n−1

[
s× kl

(
Ẑ1:s, Ẑ1:n

)
+ (n− s)× kl

(
Ẑs+1:n, Ẑ1:n

)]
≥ β(n, δ)

ii) Forced exploration (parameter α)

We use a forced exploration uniformly on all arms. . .
ie, in average, arm k is forced to be sampled at least T × α/K times
=⇒ so we can detect break-points on all the arms

and not only on the arm played by the kl-UCB indexes
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4. The BGLR-T + klUCB algorithm BGRL test + kl-UCB index

The BGLR + kl-UCB algorithm

1 Data: Parameters of the problem : T ∈ N∗, K ∈ N∗

2 Data: Parameters of the algorithm : α ∈ (0, 1), δ > 0 // can use T and ΥT

3 Initialisation : ∀k ∈ {1, . . . ,K}, τk = 0 and nk = 0
4 for t = 1, 2, . . . , T do

5 if t mod
⌊
K
α

⌋
∈ {1, . . . ,K} then

6 A(t) = t mod
⌊
K
α

⌋
// forced exploration

7 else
8 A(t) = arg max

k∈{1,...,K}
kl-UCBk(t) // highest UCB index

9 Play arm k = A(t), and update play count nA(t) = nA(t) + 1
10 Observe a reward XA(t),t, and store it ZA(t),nA(t) = XA(t),t

11 if BGLRTδ(ZA(t),1, · · · , ZA(t),nA(t) ) = True then
12 ∀k, τk = t and nk = 0 // reset memories of all arms

13 end
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5. Regret analysis
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5. Regret analysis Hypotheses

Hypotheses of our theoretical analysis

Denote τ i the position of break-point i (τ0 = 0)
and µik the mean of arm k on the segment [τ i, τ i+1]
and b(i) ∈ arg maxk µik (one of) the best arm(s) on the i-th segment
and the largest gap at break-point i is ∆i = max

k=1,...,K
|µik − µ

i−1
k | > 0

Assumption

Fix the parameters α and δ, and let di = di(α, δ) = d 4K
α(∆i)2β(T, δ) + K

α e.
We assume that all sequences are “long enough”:

∀i ∈ {1, . . . ,ΥT }, τ i − τ i−1 ≥ 2 max(di, di−1).

↪→ The minimum length of sequence i depends on the amplitude of the
changes at the beginning and the end of the sequence (∆i−1 and ∆i).
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5. Regret analysis Regret upper-bound

Theoretical result

Under this hypothesis, we obtained a finite time upper-bound on the
regret RT , with explicit dependency from the problem difficulty.

The exact bound uses:

the divergences kl(µik, µib(i)) account for the difficulty of the
stationary problem on sequence i,
the gaps ∆i account for the difficulty of detecting break-point i,

as well as the two parameters

α the probability of forced exploration,
and δ the confidence level of the break-point detection test.
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5. Regret analysis Regret upper-bound

Simplified form of the result for BGLR + kl-UCB

Regret upper bound for BGLR + kl-UCB

On a problem satisfying our assumption. . .
let α =

√
ΥT ln(T )/T and δ = 1/

√
TΥT (if T and ΥT are known),

then if BGLR + kl-UCB uses parameters α and δ, its regret satisfies

RT = O
(

K(
∆change)2

√
TΥT ln(T ) + (K − 1)

∆opt ΥT ln(T )
)
,

with ∆change = the smallest detection gap between two stationary
segments = Difficulty of the break-point detection problems!
and ∆opt = the smallest value of sub-optimality gap on a stationary
segment = Difficulty of the stationary bandit problems!

=⇒ RT = O(K
√
TΥT log(T )) if we hide the dependency on the gaps.
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5. Regret analysis Comparison with other algorithms

Comparison with other state-of-the-art approaches

Our algorithm (BGLR + kl-UCB)

Hypotheses: bounded rewards, known T , known ΥT = o(
√
T ),

and “long enough” stationary sequences
We obtain RT = O(K

√
TΥT log(T ))

Two recent competitors use a similar assumption but they both require
prior knowledge of a lower-bound on the gaps

CUSUM-UCB [Liu & Lee & Shroff, AAAI 2018]

They obtain RT = O(K
√
TΥT log(T/ΥT ))

M-UCB [Cao & Zhen & Kveton & Xie, AISTATS 2019]

They obtain RT = O(K
√
TΥT log(T ))
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6. Numerical simulations

6. Numerical simulations

1 (Stationary) Multi-armed bandits problems

2 Piece-wise stationary multi-armed bandits problems

3 The BGLR test and its finite time properties

4 The BGLR-T + klUCB algorithm

5 Regret analysis

6 Numerical simulations
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6. Numerical simulations Setup of the experiments

Numerical simulations

We consider three problems with

K = 3 arms, Bernoulli distributed
T = 5000 time steps (fixed horizon)
ΥT = 4 break-points (= 5 stationary sequences)
Algorithms can use this prior knowledge of T and ΥT

1000 independent runs, we plot the average regret

Reference
We used my open-source Python library for simulations of
multi-armed bandits problems, SMPyBandits
↪→ Published online at SMPyBandits.GitHub.io
More experiments are included in the long version of the paper!
↪→ pre-print on HAL-02006471 and arXiv:1902.01575
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Problem 1: only local changes
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We plots the means: µ1(t), µ2(t), µ3(t).



Results on problem 1

=⇒ BGLR achieves the best performance among non-oracle
algorithms !



Problem 2: only global changes
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Results on problem 2
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=⇒ BGLR again achieves the best performance !



Pb 3: non-uniform lenghts of stationary sequences
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Results on problem 3
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6. Numerical simulations Conclusions from the simulations

Interpretation of the simulations (1/2)

Conclusions in terms of regret

Empirically we can check that the BGLR test is efficient :
it has a low false alarm probability,
it has a small delay if the stationary sequences are long enough.

And this is true even outside of the hypotheses of our analysis
Using the kl-UCB indexes policy gives good performance

=⇒ Our algorithm (BGLR test + kl-UCB) is efficient
=⇒ We verified that it obtains state-of-the-art performance!
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6. Numerical simulations Conclusions from the simulations

Interpretation of the simulations (2/2)

What about the efficiency in terms of memory and time complexity?

Memory: efficient

Our algorithm is as efficient as other state-of-the-art strategies!
Memory cost = O(Kdmax) for K arms.

Time: slow !
But it is too slow! Time cost = O(Kdmax × t) at every time step t, so
O(KdmaxT

2) in total.
↪→we proposed two numerical tweaks to speed it up
=⇒ BGLR test + kl-UCB can be as fast as M-UCB or CUSUM-UCB

(dmax = max
i
τ i − τ i+1 = duration of the longer stationary sequence)
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Conclusion Summary

Summary

What we just presented. . .

Stationary or piece-wise stationary Multi-Armed Bandits problems
The efficient Bernoulli Generalized Likelihood Ratio test

to detect break-points with no false alarm and low delay
for Bernoulli data, and can also be used for sub-Bernoulli data (any
bounded distributions),
and does not need to know the amplitude of the break-point

We can combine it with an efficient MAB policy: BGLR + kl-UCB
Its regret bound is RT = O(K

√
TΥT log(T )) (state-of-the-art)

Our algorithm outperforms other efficient policies on numerical
simulations
and BGLR + kl-UCB can be as fast as its best competitors.
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Conclusion Thanks

Conclusion

Thanks for your attention.

Questions & Discussion ?
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