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Publications associated with this talk

Joint work with my advisor Emilie Kaufmann 3 :

m “Analyse non asymptotique d'un test séquentiel de détection de ruptures
et application aux bandits non stationnaires”
by Lilian Besson & Emilie Kaufmann
— presented at GRETSI, in Lille (France), next August 2019
< perso.crans.org/besson/articles/BK__GRETSI_2019.pdf

m “The Generalized Likelihood Ratio Test meets kILICB: an Improved
Algorithm for Piece-Wise Non-Stationary Bandits”
by Lilian Besson & Emilie Kaufmann
Pre-print on HAL-02006471 and arXiv:1902.01575
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O (Stationary) Multi-armed bandits problems

@ Piece-wise stationary multi-armed bandits problems
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@ Numerical simulations
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1. (Stationary) Multi-armed bandits pr What is a bandit problem?

Multi-armed bandits

= Sequential decision making problems in uncertain environments :

Total Total
Reward Plays

14 24

&
&y

Am 1 Am 2 | Ams | Ama Am 5

Rewards: 6 2 2 2 2

Pulls: 8 4 4 4 4
Estimated Probs:  0.750 0.500 0.500 0.500 0.500
UCBs: 1.641 1.761 1.761 1.761 1.761

< Interactive demo perso.crans.org/besson/phd/MAB_interactive_demo/

Ref: [Bandits Algorithms, Lattimore & Szepesvari, 2019], on tor-lattimore.com/downloads/book/book.pdf
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1. (Stationary) Multi-armed bandits problems Mathematical model

Mathematical model

m Discrete time stepst =1,...,T
The horizon T is fixed and usually unknown
m At time ¢, an agent plays the arm A(t) € {1,..., K},
then she observes the iid random reward r(t) ~ vg, r(t) € R
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1. (Stationary) Multi-armed bandits problems Mathematical model

Mathematical model

m Discrete time stepst =1,...,T
The horizon T is fixed and usually unknown
m At time ¢, an agent plays the arm A(t) € {1,..., K},
then she observes the iid random reward r(t) ~ vg, r(t) € R

m Usually, we focus on Bernoulli arms vy, = Bernoulli(yy), of mean
pi € 10, 1], giving binary rewards r(t) € {0, 1}.
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1. (Stationary) Multi-armed bandits problems Mathematical model

Mathematical model

m Discrete time stepst =1,...,T
The horizon T is fixed and usually unknown

m At time ¢, an agent plays the arm A(t) € {1,..., K},
then she observes the iid random reward r(t) ~ vg, r(t) € R

m Usually, we focus on Bernoulli arms vy, = Bernoulli(yy), of mean
pi € 10, 1], giving binary rewards r(t) € {0, 1}.

T
m Goal : maximize the sum of rewards > r(¢)
t=1

T
m or maximize the sum of expected rewards E [Z r(t)]
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1. (Stationary) Multi-armed bandits problems Mathematical model

Mathematical model

m Discrete time stepst =1,...,T
The horizon T is fixed and usually unknown
m At time ¢, an agent plays the arm A(t) € {1,..., K},
then she observes the iid random reward r(t) ~ vg, r(t) € R

m Usually, we focus on Bernoulli arms vy, = Bernoulli(yy), of mean
pi € 10, 1], giving binary rewards r(t) € {0, 1}.

T
m Goal : maximize the sum of rewards > r(¢)
t=1

T
m or maximize the sum of expected rewards E [Z r(t)]

m Any efficient policy must balance between exploration and
exploitation: explore all arms to discover the best one, while
exploiting the arms known to be good so far.
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1. (Stationary) Multi-armed bandits problems Naive solutions

Two examples of bad solutions

i) Pure exploration &

m Play arm A(t) ~ U({1,..., K}) uniformly at random

T K
® — Mean expected rewards %]E r(t)| = % >k <K maxy (i
t=1 k=1
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1. (Stationary) Multi-armed bandits problems Naive solutions

Two examples of bad solutions

i) Pure exploration &

m Play arm A(t) ~ U({1,..., K}) uniformly at random

T K
® —> Mean expected rewards %]E lz r(t)] = % > g <K maxy [
=1 k=1

i1) Pure exploitation &

m Count the number of samples and the sum of rewards of each arm
Ni(t) = ;tﬂ(A(s) = k) and X (t) = ;tr(s)]l(A(s) = k)

m Estimate the unknown mean p, with z1x(¢) = Xy (t)/Nk(t)

m Play the arm of maximum empirical mean : A(t) = arg maxy, fi(t)

m Performance depends on the first draws, and can be very poor!

< Interactive demo perso.crans.org/besson/phd/MAB_interactive_demo/
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1. (Stationary) Multi-armed bandits problems The “Upper Confidence Bound” algorithm

A first solution: “Upper Confidence Bound” algorithm

m Compute UCBg(t) = Xy (t)/Ni(t) + /alog(t) /Ni(t)

= an upper conﬁdence bound on the unknown mean

m Play the arm of maximal UCB : A(t) = argmaxy UCB(t)
— Principle of “optimism under uncertainty”

m « balances between exploitation (o« — 0) and exploration (o — o0)
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1. (Stationary) Multi-armed bandits problems The “Upper Confidence Bound” algorithm

A first solution: “Upper Confidence Bound” algorithm

m Compute UCBg(t) = Xy (t)/Ni(t) + /alog(t) /Ni(t)

= an upper conﬁdence bound on the unknown mean

m Play the arm of maximal UCB : A(t) = argmaxy UCB(t)
— Principle of “optimism under uncertainty”

m « balances between exploitation (o« — 0) and exploration (o — o0)

m UCB is efficient: the best arm is identified correctly (with high
probability) if there are enough samples (for 7" large enough)

m — Expected rewards attains the maximum &

1 T
For T'— oo, TE Lz; r(t)] — max iy,
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1. (Stationary) Multi-armed bandits problems The “Upper Confidence Bound” algorithm

UCB algorithm converges to the best arm

We can prove that suboptimal arms & are sampled about o(7") times

== E[ir(t)] = wrxOM)+ > wpupxoT)®
t=1 T—o0 E:AR>0

But... at which speed do we have this convergence?

Elements of proof of convergence (for K Bernoulli arms)

m Suppose the first arm is the best: 1* = 11 > po > ... > pg
m UCBy(t) = Xi(t)/Ni(t) + /o log(t) /Ni(t)
m Hoeffding’s inequality gives P(UCB(t) < u(t)) < O(3=)

= the different UCBy(t) are true “Upper Confidence Bounds” on the

(unknown) p; (most of the times)

® And if a suboptimal arm & > 1 is sampled, it implies UCB(t) > UCB; (%),

but p;, < i1 Hoeffding’s inequality also proves that any “wrong
ordering” of the UCB(¢) is unlikely
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1. (Stationary) Multi-armed bandits problems Regret of a bandit algorithm

Measure the performance of algorithm 4 by its mean
regret R4(T)

m Difference in the accumulated rewards between an “oracle” and A

m The “oracle” algorithm always plays the (unknown) best arm
k* = arg maxy, 1, (we note the best mean i« = 1)

m Maximize the sum of expected rewards <= minimize the regret

T

T T
Ra(T) =E lz Tk (t)] =Y Elr@®)]=Tu" =Y _E[r(®)].
=1 t=1
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1. (Stationary) Multi-armed bandits problems Regret of a bandit algorithm

Measure the performance of algorithm 4 by its mean
regret R4(T)

m Difference in the accumulated rewards between an “oracle” and A

m The “oracle” algorithm always plays the (unknown) best arm
k* = arg maxy, 1, (we note the best mean i« = 1)

m Maximize the sum of expected rewards <= minimize the regret

T

T T
Ra(T) =E lz Tk (t)] =Y Elr@®)]=Tu" =Y _E[r(®)].
=1 t=1

t=1

Typical regime for stationary bandits (lower & upper bounds)

m No algorithm A can obtain a regret better than R 4(T") > Q(log(T))
m And an efficient algorithm .4 obtains RA(T) < O(log(T))
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1. (Stationary) Multi-armed bandits problems

Regret of two UCB algorithms

Regret of UCB and kl-UCB algorithms

For any problem with K arms following Bernoulli distributions, of

means pi, ..., px € [0,1], and optimal mean *, then
For the UCB algorithm
8
RYCE < ———log(T) + o(log(T)).
T k:;VK e — ) g(T) + o(log(T))
HE<p”
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1. (Stationary) Multi-armed bandits problems

Regret of two UCB algorithms

Regret of UCB and kI-UCB algorithms

For any problem with K arms following Bernoulli distributions, of

means pi, ..., px € [0,1], and optimal mean *, then
For the UCB algorithm
RYCE < Z — log( ) + o(log(T)).
.uk<;u

For the kl-UCB algorithm: a smaller regret upper-bound

RKFUCE < Z kl o 10g( )+o(log(T)) = O( C(pa,...,ux) log(T)).

—_———
. <H Difficulty of the problem

If kl(z,y) = zlog(x/y) + (1 — ) log((1 — z)/(1 — y)) is the binary relative entropy
(ie, Kullback-Leibler divergence of two Bernoulli of means = and y)

y
Lilian Besson
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2. Piece-wise stationary multi-armed bandits problems

Non stationary MAB problems

Stationary MAB problems

Arm k gives rewards sampled from the same distribution for any time

step: Vt, ry(t) Lg v, = Bernoulli(uy).
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2. Piece-wise stationary multi-armed bandits problems

Non stationary MAB problems

Stationary MAB problems

Arm k gives rewards sampled from the same distribution for any time

step: Vt, ry(t) Lg v, = Bernoulli(uy).

v

Non stationary MAB problems?

Arm k gives rewards sampled a (possibly) different distributions for any

time step: Vt, ri(t) S v (t) = Bernoulli(pg(t)).

v

—> @ harder problem! And very hard if y(t) can change at any step!
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2. Piece-wise stationary multi-armed bandits problems

Non stationary MAB problems

Stationary MAB problems
Arm k gives rewards sampled from the same distribution for any time

step: Vt, ry(t) o v = Bernoulli(ug).

v

Non stationary MAB problems?

Arm k gives rewards sampled a (possibly) different distributions for any

time step: Vt, ri(t) S v (t) = Bernoulli(pg(t)).

v

—> @ harder problem! And very hard if y(t) can change at any step!

Piece-wise stationary problems!

< we focus on the easier case when there are at most o(v/T) intervals
on which the means are all stationary (= sequence)
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2. Piece-wise stationary multi-armed bandits problems Definitions

Break-points and stationary sequences

Define

m The number of break-points
T-1
Tr= £ 1EkE (Lo K} ult) £ palt + 1)

m The i-th break-point
t=inf{t > 71 ke pup(t) # pe(t+ 1)} (with 70 = 0)
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2. Piece-wise stationary multi-armed bandits problems Definitions

Break-points and stationary sequences

Define

m The number of break-points
T-1
Tr= £ 1EkE (Lo K} ult) £ palt + 1)

m The i-th break-point
t=inf{t > 71 ke pup(t) # pe(t+ 1)} (with 70 = 0)

Hypotheses on piece-wise stationary problems

m The rewards 74 (t) generated by each arm £ are iid on each interval
[7¢ 4+ 1, 7071 (the i-th sequence)

m There are Y1 = o(/T) break-points

m And Y7 can be known before-hand

m All sequences are “long enough”
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Example of a piece-wise stationary MAB problem

We plots the means 11 (), /15(%), p3(t) of K = 3 arms. There are Y7 = 4
break-points and 5 sequences betweent = 1 and ¢t = T = 5000:

History of means for Non-Stationary MAB, Bernoulli with 4 break-points

&= Am #0
Arm #1
Arm #2

3arms
o
®

0.6

0.4

Successive means of the K

0 1000 2000 3000 4000 5000
Time steps t=1...T, horizon 7= 5000



2. Piece-wise stationary multi-armed bandits problems Extending the definition of regret

Regret for piece-wise stationary bandits?

The “oracle” algorithm know plays the (unknown) best arm
k*(t) = argmax g (t) (Which changes between stationary sequences)

T T

T T
Ra(T) =E lz The (1) (t)] e IIGOIE <Z max w(ﬂ) > E[®)].
t=1 t=1 "

t=1 t=1
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2. Piece-wise stationary multi-armed bandits problems Extending the definition of regret

Regret for piece-wise stationary bandits?

The “oracle” algorithm know plays the (unknown) best arm
k*(t) = argmax g (t) (Which changes between stationary sequences)

T T

T T
Ra(T) =E lz The (1) (t)] e IIGOIE <Z max w(ﬂ) > E[®)].
t=1 t=1 "

t=1 t=1

Typical regimes for piece-wise stationary bandits

m The lower-bound is RA(T) > Q(vKTYr)
m Currently, state-of-the-art algorithms .4 obtain
o RA(T) < O(K+/TYrlog(T)) if T and Y1 are known
o RA(T) < O(KYr+/Tlog(T)) if T and Y7 are unknown
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3. The BGLR test and its finite time properties

3. The BGLR test and its finite time properties

O (Stationary) Multi-armed bandits problems

@ Piece-wise stationary multi-armed bandits problems
© The BGLR test and its finite time properties

@ The BGLR-T + kIUCB algorithm

@ Regret analysis

@ Numerical simulations

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6t of June, 2019



3. The BGLR test and its finite time properties Break-point detection

The break-point detection problem

Imagine the following problem...

® You observe data X1, Xo, -+, Xy, -+ € [0,1] sequentially...

m You know that X; is generated by a certain unknown
distribution. ..
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3. The BGLR test and its finite time properties Break-point detection

The break-point detection problem

Imagine the following problem...

® You observe data X1, Xo, -+, Xy, -+ € [0,1] sequentially...

m You know that X; is generated by a certain unknown

distribution. ..
m Your goal is to distinguish between two hypotheses:
Ho The distributions all have the same mean (“no break-point”)
H;LO,E[Xﬂ == E[XQ] — = E[Xt] = Mo
H1 The distributions have changed mean at a break-point at time 7
Jpo, p1, 7, E[X1] = -+ = E[X;] = po, o # p1, E[ X411 =
E[X, 2] = - =

® You stop at time 7, as soon as you detect a change
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3. The BGLR test and its finite time properties Break-point detection

The break-point detection problem

Imagine the following problem...

® You observe data X1, Xo, -+, Xy, -+ € [0,1] sequentially...

m You know that X; is generated by a certain unknown

distribution. ..
m Your goal is to distinguish between two hypotheses:
Ho The distributions all have the same mean (“no break-point”)
o, E[X ] = E[X3] = -+ = E[X¢{] = o

H1 The distributions have changed mean at a break-point at time 7
Juo, p1, T, E[Xq] = - = E[X] = po, po # w1, E[Xr44] =
E[Xrio] = =m

® You stop at time 7, as soon as you detect a change

A sequential break-point detection is a stopping time 7, measurable for
Fi = o(Xy,- -+, Xt), which rejects hypothesis #, when 7 < co.
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3. The BGLR test and its finite time properties Likelihood ratio test for Bernoulli observations

Bernoulli likelihood ratio test

Hypothesis: all distributions are Bernoulli (v, = B(ux))

The problem boils down to distinguishing
Ho: (Bpo : Vi € N* X i B (10)), against the alternative
iid. iid.
Hli (3/10 7& n1, T > 1: Xl, s .XT mgi B(/l,()) et XTJFL, A B(/ll))
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3. The BGLR test and its finite time properties Likelihood ratio test for Bernoulli observations

Bernoulli likelihood ratio test

Hypothesis: all distributions are Bernoulli (v, = B(ux))

The problem boils down to distinguishing

Ho: (Bpo : Vi € N* X i B (10)), against the alternative

Hli (3/10 7& n1, T > 1: Xl, s .XT 11;1 B(/l,()) et XTJFL, ce 1}\‘/1 B(/ll))
The Likelihood Ratio statistic for this hypothesis test, after observing
Xi,-, Xy, ds

sup  A(X1, -+ Xnj o, 01, 7)

o, 1, T<N
sup £(X1, -+, Xnj ko)

Ho

L(n) =

where (X1, -+, Xy; 1o) (resp. (X1, -+, Xn; 1o 01, 7)) is the likelihood
of the observations under a model in # (resp. 71).
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3. The BGLR test and its finite time properties Likelihood ratio test for Bernoulli observations

Bernoulli likelihood ratio test

Hypothesis: all distributions are Bernoulli (v, = B(ux))

The problem boils down to distinguishing

Ho: (Bpo : Vi € N* X i B (10)), against the alternative

Hli (3/10 7& n1, T > 1: Xl, s .XT 11;1 B(/l,()) et XTJFL, ce 1}\‘/1 B(/ll))
The Likelihood Ratio statistic for this hypothesis test, after observing
Xi,-, Xy, ds

sup  A(X1, -+ Xnj o, 01, 7)

o, 1, T<N
sup £(X1, -+, Xnj ko)

Ho

L(n) =

where (X1, -+, Xy; 1o) (resp. (X1, -+, Xn; 1o 01, 7)) is the likelihood
of the observations under a model in # (resp. 71).

— High values of this statistic £(n) tends to reject o over ;.
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3. The BGLR test and its finite time properties Likelihood ratio test for Bernoulli observations

Expression of the (log) Bernoulli Likelihood ratio

sup  A(X1,, Xnjp0,01,7)

We can rewrite this statistic £(n) = “““’S";:'Z( X , by using
El e O]

Ko

k‘/
Bernoulli likelihood, and shifting means fiy.,y = k,%kﬂ > X
s=k

~—

logL(n) = max [sxkl( fi1s , fin
s€{2,- ,n—1} ~—~ —~—
before change all data

+(7’L - S) X kl( ﬁerl:n ’ ﬁl:n )]
—_——
after change all data

Where kl(z,y) = xIn(%) + (1 — ) In(1=%) is the binary relative entropy
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3. The BGLR test and its finite time properties The BGLR-T

The Bernoulli Generalized likelihood ratio test (BGLR)

m We can extend the Bernoulli likelihood ratio test if the observations
are sub-Bernoulli.

® And any bounded distributions on [0, 1] is sub-Bernoulli !
m — the BGLR test can be applied for any bounded observations ©
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3. The BGLR test and its finite time properties The BGLR-T

The Bernoulli Generalized likelihood ratio test (BGLR)

m We can extend the Bernoulli likelihood ratio test if the observations
are sub-Bernoulli.

® And any bounded distributions on [0, 1] is sub-Bernoulli !
m — the BGLR test can be applied for any bounded observations ©

The BGRL-T sequential break-point detection test

The BGLR-T is the stopping time defined by

?5 = lnf{n € N*: €{2H_1_E_1X71} [3 kl (ﬁl:sa ﬁl:n)“‘(n_s) kl (ﬁs+1:na ﬁl:n)] > /6(77/7 5)
m with a threshold function 5(n, §) specified later,
m n is the number of observations,
m I is the confidence level.
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3. The BGLR test and its finite time properties False alarm

Probability of false alarm

A good test should not detect any break-point if there is no break-point
to detect. ..
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3. The BGLR test and its finite time properties

False alarm

Probability of false alarm

A good test should not detect any break-point if there is no break-point
to detect. ..

Definition: False alarm

The stopping time is 75, and a break-point is detected if 75 < oo.

Let IP,,, be a probability model under which the observations are Vt, X; €
[0,1] and V¢, E[X;] = wo.

The false alarm probability is P,,, (75 < 00).

— Goal: controlling the false alarm event! (in high probability)
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3. The BGLR test and its finite time properties

False alarm

First result for the BGLR test @

Controlling the false alarm probability

For any confidence level 0 < § < 1, the BGLR test satisfies
P (Ts <o0) <9

with the threshold function

B(n,6)=2T <W> +6In(l +1n(n)) ~1n <3n\/ﬁ> =0 (log (%)) .

2 0

Where T (z) verifies 7 () >~ = + In(x) for = large enough
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3. The BGLR test and its finite time properties False alarm

First result for the BGLR test @

Controlling the false alarm probability

For any confidence level 0 < § < 1, the BGLR test satisfies
P, (Ts <o00) <6

with the threshold function

B(n,d6) =2T <W> +61n(1 +1n(n)) ~In <3n5\/5> =@ (log (%)) )

I

Where T (z) verifies T (z) ~ = + In(z) for z large enough

Proof ?

Hard to explain in a short time. ..
< see the article, on HAL-02006471 and arXiv:1902.01575

| A\

\
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3. The BGLR test and its finite time properties Delay of detection

Delay of detection

A good test should detect a break-point “fast enough” if there is a
break-point to detect, with enough samples before the break-point...
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3. The BGLR test and its finite time properties Delay of detection

Delay of detection

A good test should detect a break-point “fast enough” if there is a
break-point to detect, with enough samples before the break-point...

Definition: Delay of detection

LetP,, ,, - be a probability model under which V¢, X; € [0,1] and V¢ <
7, E[X¢] = po and Vt > 7 4+ 1, E[Xy] = pq, with pg # pq.

The gap of this break-point is A = |pg — p1].

The delay of detectionisu =75 — 7 € N.

= Goal: controlling the delay of detection! (in high probability)
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3. The BGLR test and its finite time properties Delay of detection

Second result for the BGLR test @

Controlling the delay of detection

On a break-point of amplitude A = |1 — o, the BGLRT test satisfies

))

T+ u
O,A\/QTU /8(’ +u»6)

CETy 27U
IP, T u € — | ma
po,p1,T\T6 = T = €xp p - X

= O(decreasing exponential of u) = O(exp \, (u)).
with the same threshold function 5(n, ) ~ In(3n+/n/0).

| \

Consequence

In high probability, the delay 75 of BGLR is bounded by O(A~21n(1/6))
if enough samples are observed before the break-point at time 7.

.
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3. The BGLR test and its finite time properties Summary of results for BGLR-T

BGLR is an efficient break-point detection test = !

m We just saw that by choosing

e a confidence level 6,
e and a good threshold function 8(n, §) ~ In(3n\/n/d§) = O(log(n/9J))

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6t of June, 2019 26 /47



3. The BGLR test and its finite time properties Summary of results for BGLR-T

BGLR is an efficient break-point detection test = !

m We just saw that by choosing

e a confidence level 6,

e and a good threshold function 8(n, §) ~ In(3n\/n/d§) = O(log(n/9J))
m we can control the two properties of the BGLR test:

e its false alarm probability: P, (75 < c0) < 6
e its detection delay: P, ,,, -(75 > 7 + u) decreases exponentially fast
wrt u (if there are enough samples before and after the break-point)

m —> The BGLR is an efficient break-point detection test ©
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3. The BGLR test and its finite time properties Summary of results for BGLR-T

BGLR is an efficient break-point detection test = !

m We just saw that by choosing

e a confidence level 6,

e and a good threshold function 8(n, §) ~ In(3n\/n/d§) = O(log(n/9J))
m we can control the two properties of the BGLR test:

e its false alarm probability: P, (75 < c0) < 6
e its detection delay: P, ,,, -(75 > 7 + u) decreases exponentially fast
wrt u (if there are enough samples before and after the break-point)

m —> The BGLR is an efficient break-point detection test ©

Finite time guarantees <
Such finite time (non asymptotic) guarantees are recent results!
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4. The BGLR-T + kIUCB algorithm

4. The BGLR-T + kIUCB algorithm

O (Stationary) Multi-armed bandits problems

@ Piece-wise stationary multi-armed bandits problems
© The BGLR test and its finite time properties

O The BGLR-T + kIUCB algorithm

@ Regret analysis

@ Numerical simulations
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4. The BGLR-T + kIUCB algorithm BGRL test + klI-UCB index

Our algorithm combines BGRL test + kl-UCB index

m We compute a UCB index on each arm &
m Most of the times, we select A(¢) = arg  max  kI-UCBg(¢)
ke{l,...K}

geeey

m We use a BGLR test to detect changes on the played arm A(t)

m If a break-point is detected, we reset the memories of all arms
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4. The BGLR-T + kIUCB algorithm BGRL test + kI-UCB index

Our algorithm combines BGRL test + kl-UCB index

Main ideas

m We compute a UCB index on each arm &

m Most of the times, we select A(¢) = arg  max  kI-UCBg(¢)
ke{l,...K}

m We use a BGLR test to detect changes on the played arm A(t)

m If a break-point is detected, we reset the memories of all arms

The kI-UCB indexes

m 75(t) is the time of last reset of arm k before time ¢,

m ny(t) counts the selections and fix(¢) is the empirical means of
observations of arm k since 74 (t),

m Let kI-UCB,(t) = max{q € [0,1] : nx(t) x kl (i (t), q) < f(t — 7(t))}
® f(t) =In(t) + 3In(In(¢)) controls the width of the UCB.

N
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4. The BGLR-T + kIUCB algorithm BGRL test + klI-UCB index

Two details of our algorithm

i) How do we use the BGLR test? (parameter 6)

From observations 71, - - - , Z,, we use the BGLR test to detect a break-
point with confidence level § when

sup [s x kl (21;8, Zl:n) + (n—s) x kl (Zs_,_l;n, 21;,1)} > B(n,d)

2<s<n—1
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4. The BGLR-T + kIUCB algorithm BGRL test + kI-UCB index

Two details of our algorithm

i) How do we use the BGLR test? (parameter 6)

From observations 71, - - - , Z,, we use the BGLR test to detect a break-
point with confidence level § when

sup [s x kl (21;5, Zl:n) + (n—s) xkl (Zerlm, 21;,1)} > B(n,9)

2<s<n—1

i1) Forced exploration (parameter «)

m We use a forced exploration uniformly on all arms. ..
ie, in average, arm £k is forced to be sampled at least 7" x /K times

® —> so we can detect break-points on all the arms
m and not only on the arm played by the kl-UCB indexes
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4. The BGLR-T + kIUCB algorithm

BGRL test + kI-UCB index

The BGLR + kl-UCB algorithm

1

2

3

4

Data: Parameters of the problem : T € N*, K € N*
Data: Parameters of the algorithm : o € (0,1),6 > 0
Initialisation: Vk € {1,...,K}, 7 =0and nx =0

fort=1,2,...,7Tdo

// can use T and YTr
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4. The BGLR-T + kIUCB algorithm BGRL test + klI-UCB index

The BGLR + kl-UCB algorithm

1

2

3

4

Data: Parameters of the problem : T € N*, K € N*

Data: Parameters of the algorithm : o € (0,1),6 >0  // can use T and Tr
Initialisation: Vk € {1,...,K}, 7 =0and nx =0

fort=1,2,...,7Tdo

if t mod |£|€{1,...,K} then

‘ A(t) =t mod L%J // forced exploration

else

‘ A(t) = arg max kI-UCBg(t) // highest UCB index
ke{l,...K}
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4. The BGLR-T + kIUCB algorithm BGRL test + klI-UCB index

The BGLR + kl-UCB algorithm

1

2

3

4

10

Data: Parameters of the problem : T € N*, K € N*
Data: Parameters of the algorithm : o € (0,1),6 >0  // can use T and Tr
Initialisation: Vk € {1,...,K}, 7 =0and nx =0
fort=1,2,...,7Tdo
if t mod |£|€{1,...,K} then

‘ A(t) =t mod L%J // forced exploration
else

‘ A(t) = arg keglax }kl—UCBk(t) // highest UCB index

Play arm k = A(t), and update play count nq;) = nau) + 1
Observe a reward X 4(;),;, and store it ZA(t>anA(t) = Xaw)t
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4. The BGLR-T + kIUCB algorithm BGRL test + klI-UCB index

The BGLR + kl-UCB algorithm

1 Data: Parameters of the problem : T € N*, K € N*

2 Data: Parameters of the algorithm : o € (0,1),6 >0  // can use T and Yr
3 Initialisation: Vk € {1,..., K}, s =0and ny =0

4 fort=1,2,...,Tdo

10

11

12

13 end

if t mod |£|€{1,...,K} then

‘ A(t) =t mod L%J // forced exploration

else

‘ A(t) = arg {max }kl—UCBk(t) // highest UCB index
kef{l,

Play arm k = A(t), and update play count nq;) = nau) + 1
Observe a reward X 4(;),;, and store it ZA(t>anA(t) = Xaw)t
if BGLRTs5(Za¢),1," - "ZA<[>~”'A(f)> = True then
‘ Vk, 7. =tand ni =0 // reset memories of all arms
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5. Regret analysis

5. Regret analysis

O (Stationary) Multi-armed bandits problems

@ Piece-wise stationary multi-armed bandits problems
© The BGLR test and its finite time properties

@ The BGLR-T + kIUCB algorithm

© Regret analysis

@ Numerical simulations
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5. Regret analysis Hypotheses

Hypotheses of our theoretical analysis

m Denote 7 the position of break-point ¢ (19 =0)

m and y the mean of arm k on the segment [7°, 7/

m and b(i) € arg maxy, ui, (one of) the best arm(s) on the i-th segment
m and the largest gap at break-point i is A’ = max |k — it >0

=1l,...
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5. Regret analysis Hypotheses

Hypotheses of our theoretical analysis

m Denote 7 the position of break-point ¢ (19 =0)

m and y the mean of arm k on the segment [7°, 7/

m and b(i) € arg maxy, ui, (one of) the best arm(s) on the i-th segment
m and the largest gap at break-point i is A’ = max |k — it >0

=1l,...

Fix the parameters « and §, and let d' = d'(a, §) = [ 2ﬂ(T )+ £1.
We assume that all sequences are “long enough”:

Vie{l,...,Yr}, 7'—771>2max(d,d ).

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6™ of June, 2019 32/47



5. Regret analysis Hypotheses

Hypotheses of our theoretical analysis

m Denote 7 the position of break-point ¢ (19 =0)

m and y the mean of arm k on the segment [7°, 7/

m and b(i) € arg maxy, ui, (one of) the best arm(s) on the i-th segment
m and the largest gap at break-point i is A’ = max |k — it >0

=1l,...

Fix the parameters « and §, and let d' = d'(a, §) = [ 2ﬂ(T )+ £1.
We assume that all sequences are “long enough”:

Vie{l,...,Yr}, 7'—771>2max(d,d ).

— The minimum length of sequence i depends on the amplitude of the
changes at the beginning and the end of the sequence (A*~! and A").
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5. Regret analysis

Regret upper-bound

Theoretical result

Under this hypothesis, we obtained a finite time upper-bound on the
regret Ry, with explicit dependency from the problem difficulty.

The exact bound uses:

m the divergences kl(yj, 1}, ) account for the difficulty of the
stationary problem on sequence 4,

m the gaps A’ account for the difficulty of detecting break-point i,

as well as the two parameters

m o the probability of forced exploration,

m and 4 the confidence level of the break-point detection test.
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5. Regret analysis Regret upper-bound

Simplified form of the result for BGLR + kl-UCB

Regret upper bound for BGLR + kI-UCB €

m On a problem satisfying our assumption. ..

mleta=/YrIn(T)/Tand § =1/y/T Y7 (if T and Y1 are known),
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5. Regret analysis Regret upper-bound

Simplified form of the result for BGLR + kl-UCB

m On a problem satisfying our assumption. ..

mleta=/YrIn(T)/Tand § =1/y/T Y7 (if T and Y1 are known),
m then if BGLR + kI-UCB uses parameters o and ¢, its regret satisfies

Rr=0 ((Ach{(nge)Z TYrIn(T) + MTT ln(T)) ’

o with Ahange — the smallest detection gap between two stationary
segments = Difficulty of the break-point detection problems!

e and A°P' = the smallest value of sub-optimality gap on a stationary
segment = Difficulty of the stationary bandit problems!
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5. Regret analysis Regret upper-bound

Simplified form of the result for BGLR + kl-UCB

m On a problem satisfying our assumption. ..

mleta=/YrIn(T)/Tand § =1/y/T Y7 (if T and Y1 are known),
m then if BGLR + kI-UCB uses parameters o and ¢, its regret satisfies

K —— (K-1)

o with Ahange — the smallest detection gap between two stationary
segments = Difficulty of the break-point detection problems!

e and A°P' = the smallest value of sub-optimality gap on a stationary
segment = Difficulty of the stationary bandit problems!

V.

= Ry = O(K/TYrlog(T)) if we hide the dependency on the gaps.
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5. Regret analysis Comparison with other algorithms

Comparison with other state-of-the-art approaches

Our algorithm (BGLR + kI-UCB)

m Hypotheses: bounded rewards, known 7', known Y1 = o(v/T),
and “long enough” stationary sequences

m We obtain Ry = O(K /T Y1 log(T))

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6t of June, 2019 35 /47



5. Regret analysis Comparison with other algorithms

Comparison with other state-of-the-art approaches

Our algorithm (BGLR + kI-UCB)

m Hypotheses: bounded rewards, known 7', known Y1 = o(v/T),
and “long enough” stationary sequences

m We obtain Ry = O(K /T Y1 log(T))

Two recent competitors use a similar assumption but they both require
prior knowledge of a lower-bound on the gaps

m They obtain Ry = O(K /T Y1 log(T/Yr))

m They obtain Ry = O(K+/T Y7 log(T))
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6. Numerical simulations

6. Numerical simulations

O (Stationary) Multi-armed bandits problems

@ Piece-wise stationary multi-armed bandits problems
® The BGLR test and its finite time properties

@ The BGLR-T + klIUCB algorithm

O Regret analysis

@ Numerical simulations

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6t of June, 2019



6. Numerical simulations Setup of the experiments

Numerical simulations

We consider three problems with

m K = 3 arms, Bernoulli distributed
m 7T = 5000 time steps (fixed horizon)

m Y1 = 4 break-points (= 5 stationary sequences)
Algorithms can use this prior knowledge of 7" and Y7

m 1000 independent runs, we plot the average regret

Lilian Besson BGLR test and Non-Stationary MAB
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6. Numerical simulations Setup of the experiments

Numerical simulations

We consider three problems with

m K = 3 arms, Bernoulli distributed
m 7' = 5000 time steps (fixed horizon)

m Y1 = 4 break-points (= 5 stationary sequences)
Algorithms can use this prior knowledge of 7" and Y7

m 1000 independent runs, we plot the average regret

v
Reference

m We used my open-source Python library for simulations of
multi-armed bandits problems, SMPyBandits
— Published online at SMPyBandits.GitHub.io

m More experiments are included in the long version of the paper!
— pre-print on HAL-02006471 and arXiv:1902.01575

A
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Problem 1: only local changes

History of means for Non-Stationary MAB, Bernoulli with 4 break-points
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0 1000 2000 3000 4000 5000
Time steps t=1...T, horizon T'= 5000

We plots the means: 11 (), /12(1), pa(t).



Results on problem 1

Cumulated regrets for different bandit algorithms, averaged 1000 times
3 arms: Non-Stationary MAB, Bernoulli with T =4 break-points
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— BGLR achieves the best performance among non-oracle
algorithms & !



Problem 2: only global changes

History of means for Non-Stationary MAB, Bernoulli with 4 break-points
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Time steps t=1...7, horizon T'= 5000



Results on problem 2

Cumulated regrets for different bandit algorithms, averaged 1000 times
3 arms: Non-Stationary MAB, Bernoulli with T =4 break-points
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— BGLR again achieves the best performance ® !



Pb 3: non-uniform lenghts of stationary sequences

History of means for Non-Stationary MAB, Bernoulli with 4 break-points
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Results on problem 3

Cumulated regrets for different bandit algorithms, averaged 1000 times
3 arms: Non-Stationary MAB, Bernoulli with T =4 break-points
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—> BGLR achieves the best performance among non-oracle
algorithms & !



6. Numerical simulations Conclusions from the simulations

Interpretation of the simulations (1/2)

Conclusions in terms of regret

m Empirically we can check that the BGLR test is efficient @ :

e it has a low false alarm probability,
e it has a small delay if the stationary sequences are long enough.

And this is true even outside of the hypotheses of our analysis
m Using the kI-UCB indexes policy gives good performance ©

— Our algorithm (BGLR test + kI-UCB) is efficient
—> We verified that it obtains state-of-the-art performance!
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6. Numerical simulations

Conclusions from the simulations

Interpretation of the simulations (2/2)

What about the efficiency in terms of memory and time complexity?

Memory: efficient @

Our algorithm is as efficient as other state-of-the-art strategies!
Memory cost = O(K dpax) for K arms.

(dmax = max 7' — 771 = duration of the longer stationary sequence)
?
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6. Numerical simulations Conclusions from the simulations

Interpretation of the simulations (2/2)

What about the efficiency in terms of memory and time complexity?

Memory: efficient @

Our algorithm is as efficient as other state-of-the-art strategies!
Memory cost = O(K dpax) for K arms.

Time: slow & !

| A\

But it is too slow! Time cost = O(Kdmax X t) at every time step ¢, so
O(K dpmaxT?) in total.

— we proposed two numerical tweaks to speed it up

—> BGLR test + klI-UCB can be as fast as M-UCB or CUSUM-UCB

(dmax = max 7° — 701 = duration of the longer stationary sequence)
1
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Conclusion Summary

Summary

What we just presented. ..

m Stationary or piece-wise stationary Multi-Armed Bandits problems
m The efficient Bernoulli Generalized Likelihood Ratio test ®

o to detect break-points with no false alarm and low delay

o for Bernoulli data, and can also be used for sub-Bernoulli data (any
bounded distributions),

o and does not need to know the amplitude of the break-point

m We can combine it with an efficient MAB policy: BGLR + kI-UCB &
m Its regret bound is Ry = O(K+/TYrlog(T')) ® (state-of-the-art)

m Our algorithm outperforms other efficient policies on numerical
simulations @
and BGLR + kl-UCB can be as fast as its best competitors.
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Conclusion Thanks

Conclusion

Thanks for your attention.

Questions & Discussion ?
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