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Publications associated with this talk

Joint work with my advisor Emilie Kaufmann 3 :

m “Analyse non asymptotique d’un test séquentiel de détection de ruptures et application aux
bandits non stationnaires”
by Lilian Besson & Emilie Kaufmann
— presented at GRETSI, in Lille (France), next August 2019
— perso.crans.org/besson/articles/BK__ GRETSI_2019.pdf

m “The Generalized Likelihood Ratio Test meets kIUCB: an Improved Algorithm for Piece-Wise
Non-Stationary Bandits”
by Lilian Besson & Emilie Kaufmann
Pre-print on HAL-02006471 and arXiv:1902.01575
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Outline of the talk

O (Stationary) Multi-armed bandits problems

@ Piece-wise stationary multi-armed bandits problems
© The BGLR test and its finite time properties

@ The BGLR-T + kIUCB algorithm

@ Regret analysis

@ Numerical simulations
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. (Stationary) Multi-armed bandits problems

Multi-armed bandits

What is a bandit problem?

= Sequential decision making problems in uncertain environments :

Total Total
Reward Plays

14 24

Am 1 Am 2 Am3
Rewards: 6 2 2
Pulls: 8 4 4

Estimated Probs:  0.750 0.500 0.500

UCBs: 1.641 1.761 1.761

< Interactive demo perso.crans.org/besson/phd/MAB_interactive_demo/

Arm 4 Arm 5
2 2
4 4
0.500 0.500
1.761 1.761

Ref: [Bandits Algorithms, Lattimore & Szepesvéri, 2019], on tor—-lattimore.com/downloads/book/book.pdf
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1. (Stationary) Multi-armed bandits problems Mathematical model

Mathematical model

m Discrete time stepst =1,...,T
The horizon T is fixed and usually unknown
m At time ¢, an agent plays the arm A(t) € {1,..., K},
then she observes the iid random reward r(t) ~ v, r(t) € R
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Mathematical model

m Discrete time stepst =1,...,T
The horizon T is fixed and usually unknown

m At time ¢, an agent plays the arm A(t) € {1,..., K},
then she observes the iid random reward r(t) ~ v, r(t) € R

m Usually, we focus on Bernoulli arms v, = Bernoulli(xy), of mean py, € [0, 1], giving
binary rewards r(t) € {0,1}.
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1. (Stationary) Multi-armed bandits problems Mathematical model

Mathematical model

m Discrete time stepst =1,...,T
The horizon T is fixed and usually unknown

m At time ¢, an agent plays the arm A(t) € {1,..., K},
then she observes the iid random reward r(t) ~ v, r(t) € R

m Usually, we focus on Bernoulli arms v, = Bernoulli(xy), of mean py, € [0, 1], giving
binary rewards r(t) € {0,1}.

T
m Goal : maximize the sum of rewards >_ r(¢)
t=1

m or maximize the sum of expected rewards E [Z r(t)]
=1
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1. (Stationary) Multi-armed bandits problems Mathematical model

Mathematical model

m Discrete time stepst =1,...,T
The horizon T is fixed and usually unknown

m At time ¢, an agent plays the arm A(t) € {1,..., K},
then she observes the iid random reward r(t) ~ v, r(t) € R

m Usually, we focus on Bernoulli arms v, = Bernoulli(xy), of mean py, € [0, 1], giving
binary rewards r(t) € {0,1}.

T
m Goal : maximize the sum of rewards >_ r(¢)
t=1

T
m or maximize the sum of expected rewards E [Z r(t)]
=1

m Any efficient policy must balance between exploration and exploitation: explore all
arms to discover the best one, while exploiting the arms known to be good so far.
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1. (Stationary) Multi-armed bandits problems Naive solutions

Two examples of bad solutions

i) Pure exploration &

m Play arm A(t) ~ U({1,..., K}) uniformly at random

ar K
m — Mean expected rewards %]E r(t)| = % 3k < maxy g S
=1 k=1
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1. (Stationary) Multi-armed bandits problems Naive solutions

Two examples of bad solutions

i) Pure exploration &

m Play arm A(t) ~ U({1,..., K}) uniformly at random

T K
m —> Mean expected rewards 1E lz r(t)] = £ > i < maxy jy, @
i=1 k=1

i1) Pure exploitation &

m Count the number of samples and the sum of rewards of each arm
Ni(t) = ;t 1(A(s) = k) and Xj(t) = ;tr(s)]l(A(s) =k)

m Estimate the unknown mean py, with p(t) = Xp(t)/Ng(t)

m Play the arm of maximum empirical mean : A(t) = argmaxy, fu(t)

m Performance depends on the first draws, and can be very poor! &

< Interactive demo perso.crans.org/besson/phd/MAB_interactive_demo/
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1. (Stationary) Multi-armed bandits problems The “Upper Confidence Bound” algorithm

A first solution: “Upper Confidence Bound” algorithm

m Compute UCB(t) = Xy (t)/Ni(t) + /alog(t)/Ni(t)

= an upper Confidence bound on the unknown mean f,

m Play the arm of maximal UCB : A(t) = argmaxy UCB(t)
— Principle of “optimism under uncertainty”

m o balances between exploitation (o — 0) and exploration (o — 00)

(foraa >1/2)
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1. (Stationary) Multi-armed bandits problems The “Upper Confidence Bound” algorithm

A first solution: “Upper Confidence Bound” algorithm

Compute UCB(t) = Xy (t)/Ni(t) + Valog(t)/Ni(t) (foraa >1/2)

= an upper Confidence bound on the unknown mean f,

Play the arm of maximal UCB : A(t) = arg maxy UCB(t)
— Principle of “optimism under uncertainty”

a balances between exploitation (o« — 0) and exploration (o — 00)

UCB is efficient: the best arm is identified correctly (with high probability)
if there are enough samples (for 7" large enough)

— Expected rewards attains the maximum @

1 T
For T' — oo, fJE LZ; r(t)] — max [y
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1. (Stationary) Multi-armed band; The “Upper Confidence Bound” algorith

Elements of the proof for UCB algorithm

Elements of proof of convergence (for K Bernoulli arms)

m Suppose the first arm is the best: ;1" = 11 > po > ... > g
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1. (Stationary) Multi-armed bandits problems The “Upper Confidence Bound” algorithm

Elements of the proof for UCB algorithm

Elements of proof of convergence (for K Bernoulli arms)

m Suppose the first arm is the best: /* = iy > pa > ... > ug

[ | UCBk(t) /Nk —{—«/alog /Nk

m Hoeffding’s 1nequal1ty gives P(UCBy(t) < px(t)) < O(t%)
= the different UCBy(t) are true “Upper Confidence Bounds” on the (unknown) s,
(most of the times)
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Elements of proof of convergence (for K Bernoulli arms)

m Suppose the first arm is the best: /* = iy > pa > ... > ug

[ | UCBk(t) /Nk —{—«/alog /Nk

m Hoeffding’s 1nequal1ty gives P(UCBy(t) < px(t)) < O(t%)
= the different UCBy(t) are true “Upper Confidence Bounds” on the (unknown) s,
(most of the times)

m And if a suboptimal arm k£ > 1 is sampled, it implies UCB(t) > UCB,(t), but py < p1:
Hoeffding’s inequality also proves that any “wrong ordering” of the UCBy(t) is
unlikely
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1. (Stationary) Multi-armed bandits problems The “Upper Confidence Bound” algorithm

Elements of the proof for UCB algorithm

Elements of proof of convergence (for K Bernoulli arms)

m Suppose the first arm is the best: /* = iy > pa > ... > ug

[ | UCBk(t) /Nk —{—«/alog /Nk

m Hoeffding’s 1nequal1ty gives P(UCBy(t) < px(t)) < O(ﬁ%)
= the different UCBy(t) are true “Upper Confidence Bounds” on the (unknown) s,
(most of the times)

m And if a suboptimal arm k£ > 1 is sampled, it implies UCB(t) > UCB,(t), but py < p1:
Hoeffding’s inequality also proves that any “wrong ordering” of the UCBy(t) is
unlikely

m We can prove that suboptimal arms k are sampled about o(T") times
T
— E|>Xr@t)| — p"xO0T)+ Y wmwxoT)=®
t—=1 T—o0

k:Ap>0
But... at which speed do we have this convergence?
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1. (Stationary) Multi-armed bandits problems Regret of a bandit algorithm

Measure the performance of algorithm A by its mean regret R 4(7')

m Difference in the accumulated rewards between an “oracle” and A

m The “oracle” algorithm always plays the (unknown) best arm k* = arg max;, 11, (We
note the best mean pp« = ")

m Maximize the sum of expected rewards <= minimize the regret

T

T T
RA(T) =E [2 g <t>] ~SCEE)] = Tut - S E[@).
t=1 t=1

t=1
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1. (Stationary) Multi-armed bandits problems Regret of a bandit algorithm

Measure the performance of algorithm .A by its mean regret R 4(7')

m Difference in the accumulated rewards between an “oracle” and A

m The “oracle” algorithm always plays the (unknown) best arm k* = arg max;, 11, (We
note the best mean pp« = ")

m Maximize the sum of expected rewards <= minimize the regret

T

T T
RA(T) =E [2 g <t>] ~SEr()] =Tt - Y E[r(0)].
t=1 t=1

t=1

Typical regime for stationary bandits (lower & upper bounds)

m No algorithm A can obtain a regret better than RA(T)
® And an efficient algorithm A obtains RA(T)
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1. (Stationary) Multi-armed bandits problems

Regret of two UCB algorithms

Regret of the UCB algorithm and another algorithm

For any problem with K arms following Bernoulli distributions, of means
ik € [0,1], and optimal mean p*, then

For the UCB algorithm

TP

)1log(T) + o(log(T)).

,,,,,

Lilian Besson

BGLR test and Non-Stationary MAB

Thursday 6™ of June, 2019



1. (Stationary) Multi-armed bandits problems

Regret of two UCB algorithms

Regret of the UCB algorithm and another algorithm

For any problem with K arms following Bernoulli distributions, of means
pi, -, pi € 10,1], and optimal mean ., then

For the UCB algorithm

2 Gy 8T +ollestD)

,,,,,

y

For the kl-UCB algorithm: a smaller regret upper-bound

kl-UCB (e — ") o oo _
REITS( D i gy 8D+ oo8T) =0 | Cl

opix) log(T)
pp<p”

—_———
Difficulty of the problem

If Kl(z,y) = zlog(z/y) + (1 — z)log((1 — z)/(1 — y)) is the binary relative entropy
(ie, Kullback-Leibler divergence of two Bernoulli of means = and y)

Lilian Besson
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2. Piece-wise stationary multi-armed bandits problems

2. Piece-wise stationary MAB problems

@ (Stationary) Multi-armed bandits problems

@ Piece-wise stationary multi-armed bandits problems
© The BGLR test and its finite time properties

© The BGLR-T + kIUCB algorithm

@ Regret analysis

@ Numerical simulations
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2. Piece-wise stationary multi-armed bandits problems

Non stationary MAB problems

Stationary MAB problems

Arm k gives rewards sampled from the same distribution for any time step:

Vt, ri(t) = v, = Bernoulli(py).

Lilian Besson BGLR test and Non-Stationary MAB rs 6th of June, 2019 13 /47



2. Piece-wise stationary multi-armed bandits problems

Non stationary MAB problems

Stationary MAB problems

Arm k gives rewards sampled from the same distribution for any time step:

Vi, ri(t) s v, = Bernoulli(puyg).

Non stationary MAB problems?

Arm k gives rewards sampled a (possibly) different distributions for any time step:
Vt, r(t) % vy (t) = Bernoulli(uy (t)).

—> @ harder problem! And very hard if y(t) can change at any step!
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2. Piece-wise stationary multi-armed bandits problems

Non stationary MAB problems

Stationary MAB problems

Arm k g1ves rewards sampled from the same distribution for any time step:
iid
Vt, ri(t) ~ v = Bernoulli(uy,).

Non stationary MAB problems?

Arm k gives rewards sampled a (possibly) different distributions for any time step:
Vt, re(t) % v (t) = Bernoulli(uy (t)).

= @ harder problem! And very hard if ;4 (¢) can change at any step!

Piece-wise stationary problems!

< we focus on the easier case when there are at most o(1/T') intervals on which the means
are all stationary (= sequence)
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Definitions

2. Piece-wise stationary multi-armed bandits problems

Break-points and stationary sequences
Define

m The number of break-points
T-1
Tr=3% 13k e {1,..., K}« pp(t) # pu(t + 1))

m The i-th break-point
o =inf{t > 771 Tk pg(t) # u(t+1)}

(with 79

=0)
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2. Piece-wise stationary multi-armed bandits problems Definitions

Break-points and stationary sequences
Define

m The number of break-points
T-1
Tr=3% 13k e {1,..., K}« pp(t) # pu(t + 1))

m The i-th break-point
rt=inf{t > 771 3k pup(t) # pe(t+ 1)} (with 70 = 0)

Hypotheses on piece-wise stationary problems

m The rewards ry(t) generated by each arm k are iid on each interval [r + 1, 771 (the
i-th sequence)

m There are Y1 = o(/T) break-points

m And Y can be known before-hand

m All sequences are “long enough”
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Example of a piece-wise stationary MAB problem

We plots the means 11 (), j12(1), us(t) of K = 3 arms. There are Y7 = 4 break-points and 5
sequences between ¢t = 1 and t = 7' = 5000:

History of means for Non-Stationary MAB, Bernoulli with 4 break-points

= Arm #0
Am #1
am #2
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£
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©
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o
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€04
v
2
7
7
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I+
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0 0.2
0 1000 2000 3000 4000 5000

Time steps t=1...T, horizon 7= 5000



2. Piece-wise stationary multi-armed bandits problems Extending the definition of regret

Regret for piece-wise stationary bandits?

The “oracle” algorithm know plays the (unknown) best arm £*(t) = arg max 4 (¢) (which
changes between stationary sequences)

T T T
Ru(T) =E lz Thx(t) (t)] - E[r()] = <Z max Mk(ﬂ) - E[r@).
t=1 t=1 t=1

t=1
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2. Piece-wise stationary multi-armed bandits problems Extending the definition of regret

Regret for piece-wise stationary bandits?

The “oracle” algorithm know plays the (unknown) best arm £*(t) = arg max 4 (¢) (which
changes between stationary sequences)

T T T
Ru(T) =E lz Thx(t) (t)] - E[r()] = <Z max Mk(ﬂ) - E[r@).
t=1 t=1 t=1

t=1

Typical regimes for piece-wise stationary bandits

m The lower-bound is RA(T') > Q(vVKTYr)
m Currently, state-of-the-art algorithms A obtain

o Ru(T) < O(K+/TYrlog(T))if T and Y1 are known
o RA(T) < O(KYr1+/Tlog(T)) if T and Y7 are unknown
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3. The BGLR test and its finite time properties

3. The BGLR test and its finite time properties

@ (Stationary) Multi-armed bandits problems

@ Piece-wise stationary multi-armed bandits problems
© The BGLR test and its finite time properties

© The BGLR-T + kIUCB algorithm

@ Regret analysis

@ Numerical simulations
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3. The BGLR test and its finite time properties Break-point detection

The break-point detection problem

Imagine the following problem...

® You observe data X, Xy, -+, Xy, -+ € [0, 1] sequentially...
m You know that X; is generated by a certain unknown distribution. ..
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3. The BGLR test and its finite time properties Break-point detection

The break-point detection problem

Imagine the following problem...

® You observe data X, Xy, -+, Xy, -+ € [0, 1] sequentially...

m You know that X; is generated by a certain unknown distribution. ..
m Your goal is to distinguish between two hypotheses:

Ho The distributions all have the same mean (“no break-point”)
Fuo, B[X1] = E[Xo] = -+ = E[Xy] = po

‘H; The distributions have changed mean at a break-point at time 7
Jpo, p1, T, E[Xq] = - - = E[X;] = po, o # 1, E[ X1 =E[X 42] =+ = 1

m You stop at time 7, as soon as you detect a change
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3. The BGLR test and its finite time properties Break-point detection

The break-point detection problem

Imagine the following problem...

® You observe data X, Xy, -+, Xy, -+ € [0, 1] sequentially...

m You know that X; is generated by a certain unknown distribution. ..
m Your goal is to distinguish between two hypotheses:

Ho The distributions all have the same mean (“no break-point”)
Fuo, B[X1] = E[Xo] = -+ = E[Xy] = po

‘H; The distributions have changed mean at a break-point at time 7
Jpo, p1, T, E[Xq] = - - = E[X;] = po, o # 1, E[ X1 =E[X 42] =+ = 1

m You stop at time 7, as soon as you detect a change

A sequential break-point detection is a stopping time 7, measurable under
Fi =o(Xy,- -+, X¢), which rejects the hypothesis 7y, when 7 < cc.
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3. The BGLR test and its finite time properties Likelihood ratio test for Bernoulli observations

Bernoulli likelihood ratio test

Hypothesis: all distributions are Bernoulli
The problem boils down to distinguishing
Ho: (Fpo : Vi € N* X iid. (10)), against the alternative
o -
7‘[12 <3/1,() 7& Wi, 7 > 1 : X],' e ,XT RS (/1,(]) et XT+1. N (/1,1)).
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3. The BGLR test and its finite time properties Likelihood ratio test for Bernoulli observations

Bernoulli likelihood ratio test

Hypothesis: all distributions are Bernoulli
The problem boils down to distinguishing

Ho: (Fpo : Vi € N* X iid. (10)), against the alternative

. -
7‘[12 <3/1,() 7& Wi, 7 > 1 : X],' e ,XT RS (/1,(]) et XT+1. N (/1,1)).
The Likelihood Ratio statistic for this hypothesis test, after observing X1,--- , X, is

sup  A( X1, -+, Xnjpio, i1, 7)

£ n) — O, 11, T<N :
( ) Supg(Xla"' 7Xn;//L0)
10
where (X1, -+, Xp; po) (resp. £(Xq, -+, Xn; 1o 01, 7)) is the likelihood of the
observations under a model in #Hg (resp. #1).
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3. The BGLR test and its finite time properties Likelihood ratio test for Bernoulli observations

Bernoulli likelihood ratio test

Hypothesis: all distributions are Bernoulli
The problem boils down to distinguishing

Ho: (Fpo : Vi € N* X iid. (10)), against the alternative

. -
7‘[12 <3/1,() 7& Wi, 7 > 1 : X],' e ,XT RS (/1,(]) et XT+1. N (/1,1)).
The Likelihood Ratio statistic for this hypothesis test, after observing X1,--- , X, is

sup  A( X1, -+, Xnjpio, i1, 7)

£ n) — O, 11, T<N :
( ) Supg(Xla"' 7Xn;//L0)
10
where (X1, -+, Xp; po) (resp. £(Xq, -+, Xn; 1o 01, 7)) is the likelihood of the
observations under a model in #Hg (resp. #1).

— High values of this statistic £(n) tends to reject o over ;.
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3. The BGLR test and its finite time properties Likelihood ratio test for Bernoulli observations

Expression of the Bernoulli Likelihood ratio

sup A X1, ,Xn;00.001,7)
KOs, T<N
sup £(X1,,Xn;u0)
Ko

We can rewrite this statistic £(n) =

, by using Bernoulli likelihood,

k‘l

oy ~ . 1 .

and shifting means fix.x = =77 2 kX s
s=

~—

logL(n) = max [sxklI( fi1s , fim
se{2,-,n—1} ~—~ —~
before change all data

+(n - S) X kl( ,aerl:n ’ ﬂl:n )]
—— —~—
after change all data

Where kl(z, y) = = ln(m/y) + (1 —x) ln((l —x)/(1 — y)) is the binary relative entropy
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3. The BGLR test and its finite time properties The BGLR-T

The Bernoulli Generalized likelihood ratio test (BGLR)

m We can extend the Bernoulli likelihood ratio test if the observations are sub-Bernoulli.
® And any bounded distributions on [0, 1] is sub-Bernoulli
m — the BGLR test can be applied for any bounded observations & !
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3. The BGLR test and its finite time properties The BGLR-T

The Bernoulli Generalized likelihood ratio test (BGLR)

m We can extend the Bernoulli likelihood ratio test if the observations are sub-Bernoulli.
® And any bounded distributions on [0, 1] is sub-Bernoulli
m — the BGLR test can be applied for any bounded observations & !

The BGRL-T sequential break-point detection test

The BGLR-T is the stopping time defined by

7=inffn €N': _ max | [akl e i) + (0= 5) K (Brgaons )] 2 B, 0))
m with a threshold function 5(n, §) specified later,
m n is the number of observations,
m ¢ is the confidence level.
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3. The BGLR test and its finite time properties False alarm

Probability of false alarm

A good test should not detect any break-point if there is no break-point to detect. ..

Lilian Besson BGLR test and Non-Stationary MAB rs 6th of June, 2019 22 /47



3. The BGLR test and its finite time properties

False alarm

Probability of false alarm

A good test should not detect any break-point if there is no break-point to detect. ..

Definition: False alarm

The stopping time is 75, and a break-point is detected if 75 < oc.

Let P,, be a probability model under which the observations are V¢, X; € [0,1] and
Vta E[Xt] = Mo-

The false alarm probability is P,,, (75 < 00).

— Goal: controlling the false alarm event! (in high probability)
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3. The BGLR test and its finite time properties False alarm

First result for the BGLR test @

Controlling the false alarm probability

For any confidence level 0 < § < 1, the BGLR test satisfies
P, (75 < 00) <6

with the threshold function

B(n,0) =2T (W) +61In(1 + In(n)) ~ In(3ny/n/d) = O(log(n/d)).

Where T (x) verifies T (z) ~ x + In(z) for x large enough
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3. The BGLR test and its finite time properties False alarm

First result for the BGLR test @

Controlling the false alarm probability

For any confidence level 0 < § < 1, the BGLR test satisfies
P, (75 < 00) <6

with the threshold function

B(n,0) =2T (W) +61In(1 + In(n)) ~ In(3ny/n/d) = O(log(n/d)).

Where T (x) verifies T (z) ~ x + In(z) for x large enough

Hard to explain in a short time. ..
— see the article, on HAL-02006471 and arXiv:1902.01575
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3. The BGLR test and its finite time properties Delay of detection

Delay of detection

A good test should detect a break-point “fast enough” if there is a break-point to detect,
with enough samples before the break-point...
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3. The BGLR test and its finite time properties Delay of detection

Delay of detection

A good test should detect a break-point “fast enough” if there is a break-point to detect,
with enough samples before the break-point...

Definition: Delay of detection

LetP,, ., - be a probability model under which V¢, X; € [0,1] and V¢ < 7. [E[.X}] = 1 and
Vit > 74+ 1, E[X}] = p1, with pg # p1.

The gap of this break-point is A = |ug — p1]-

The delay of detectionis u = 75 — 7 € N.

— Goal: controlling the delay of detection! (in high probability)
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3. The BGLR test and its finite time properties Delay of detection

Second result for the BGLR test @

Controlling the delay of detection
On a break-point of amplitude A = |1 — po|, the BGLRT test satisfies

o,A—\/‘"+“ﬁ(/~+u,5)

T+ u 27U

with the same threshold function 5(n, ) ~ In(3n+/n/0).

| A

Consequence

In high probability, the delay 75 of BGLR is bounded by O(A~21n(1/4)) if enough samples
are observed before the break-point at time 7.

4
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3. The BGLR test and its finite time properties Summary of results for BGLR-T

BGLR is an efficient break-point detection test = !

m We just saw that by choosing

e a confidence level 6,
e and a good threshold function (n, §) ~ In(3n\/n/d§) = O(log(n/9J))
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3. The BGLR test and its finite time properties Summary of results for BGLR-T

BGLR is an efficient break-point detection test = !

m We just saw that by choosing

e a confidence level 6,

e and a good threshold function (n, §) ~ In(3n\/n/d§) = O(log(n/9J))
m we can control the two properties of the BGLR test:

e its false alarm probability: P, (75 < 00) <&
o its detection delay: P, ,,, - (75 > T + u) decreases exponentially fast wrt
(if there are enough samples before and after the break-point)

m — The BGLR is an efficient break-point detection test ©
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3. The BGLR test and its finite time properties Summary of results for BGLR-T

BGLR is an efficient break-point detection test = !

m We just saw that by choosing

e a confidence level 6,

e and a good threshold function (n, §) ~ In(3n\/n/d§) = O(log(n/9J))
m we can control the two properties of the BGLR test:

e its false alarm probability: P, (75 < 00) <&
o its detection delay: P, ,,, - (75 > T + u) decreases exponentially fast wrt
(if there are enough samples before and after the break-point)

m — The BGLR is an efficient break-point detection test ©

Finite time guarantees &
Such finite time (non asymptotic) guarantees are recent results!
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4. The BGLR-T + kIUCB algorithm

4. The BGLR-T + kIUCB algorithm

@ (Stationary) Multi-armed bandits problems

@ Piece-wise stationary multi-armed bandits problems
© The BGLR test and its finite time properties

@ The BGLR-T + kIUCB algorithm

@ Regret analysis

@ Numerical simulations
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4. The BGLR-T + kIUCB algorithm BGRL test + kI-UCB index

Main ideas of our algorithm: BGRL test + kI-UCB index

m We compute a UCB index on each arm k
m Most of the times, we select A(t) = arg i glax }kl-UCBk(t)
€

gesay

m We use a BGLR test to detect changes on the played arm A(t)

m If a break-point is detected, we reset the memories of all arms
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4. The BGLR-T + kIUCB algorithm BGRL test + kI-UCB index

Main ideas of our algorithm: BGRL test + kI-UCB index

Main ideas

m We compute a UCB index on each arm k
m Most of the times, we select A(t) = arg i glax }kl-UCBk(t)
€

gesay

m We use a BGLR test to detect changes on the played arm A(t)

m If a break-point is detected, we reset the memories of all arms

The kl-UCB indexes
7k (t) is the time of last reset of arm k before time ¢,

ni(t) counts the the selections

fir(t) is the empirical means of observations since the last reset of arm £,
Let kI-UCBy,(t) = max{q € [0,1] : ny(¢) x Kl (1i(t), q) < f(t — 7(2))}

f(t) =1In(t) + 31n(In(t)) controls the width of the UCB.
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4. The BGLR-T + kIUCB algorithm BGRL test + klI-UCB index

Two details of our algorithm: BGRL test + klI-UCB index

i) How do we use the BGLR test? (parameter ¢)

From observations 7, - - - , Z, we detect a break-point with confidence level § when

sup {s x kil (21:5, 21%) + (n—s) xkl (2;+1:n, Zl;n)] > B(n,0)

1<s<n
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4. The BGLR-T + kIUCB algorithm BGRL test + kI-UCB index

Two details of our algorithm: BGRL test + kl-UCB index

i) How do we use the BGLR test? (parameter ¢)

From observations 7, - - - , Z, we detect a break-point with confidence level § when

sup {s x kil (21:5, 21:n) + (n—s) xkl (25“:”, Zl;n)] > B(n,0)

1<s<n

v

i) Forced exploration (parameter «)

m We use a forced exploration uniformly on all arms. ..
ie, in average, arm k is forced to be sampled at least 7' x o/ K times

m —> so we can detect break-points on all the arms

m and not only on the arm played by the kI-UCB indexes
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4. The BGLR-T + kIUCB algorithm BGRL test + klI-UCB index

The BGLR + kI-UCB algorithm

1 Data: Parameters of the problem : T € N*, K € N*

2 Data: Parameters of the algorithm : o € (0,1),6 > 0 // can depend on T and/or Yr
3 Initialisation: Vk € {1,..., K}, 7 =0andni =0

4 fort=1,2,...,7T do
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4. The BGLR-T + kIUCB algorithm

BGRL test + kI-UCB index

The BGLR + kI-UCB algorithm

1 Data: Parameters of the problem : T € N*, K € N*
2 Data: Parameters of the algorithm : o € (0,1),6 > 0
3 Initialisation: Vk € {1,..., K}, 7 =0andni =0

4 fort=1,2,...,7T do

5 if t mod LKJE{L...,K}then

«

6 ‘ A(t) =t mod L%J
7 else
8 ‘ A(t) = arg k:egil,%?(,K} kI-UCBy(t)

Lilian Besson

BGLR test and Non-Stationary MAB

// can depend on T and/or Yr

// forced exploration

// highest UCB index
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4. The BGLR-T + kIUCB algorithm BGRL test + klI-UCB index

The BGLR + kI-UCB algorithm

1 Data: Parameters of the problem : T € N*, K € N*

2 Data: Parameters of the algorithm : o € (0,1),6 > 0 // can depend on T and/or Yr
3 Initialisation: Vk € {1,..., K}, 7 =0andni =0

4 fort=1,2,...,7T do

5 if t mod LKJE{L...,K}then

«

6 ‘ A(t) =t mod L%J // forced exploration

7 else

8 ‘ A(t) =arg max kI-UCBg(t) // highest UCB index
ke{1,...,K}

9 Play arm k = A(t), and update play count n ) = nau) + 1
10 Observe a reward X 4(),+, and store it ZA(t>1”A(t) = Xaw)t
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4. The BGLR-T + kIUCB algorithm BGRL test + klI-UCB index

The BGLR + kI-UCB algorithm

1 Data: Parameters of the problem : T € N*, K € N*

2 Data: Parameters of the algorithm : o € (0,1),6 > 0 // can depend on T and/or Yr
3 Initialisation: Vk € {1,..., K}, 7 =0andni =0

4 fort=1,2,...,7T do

5 if t mod LKJE{L...,K}then

«

6 ‘ A(t) =t mod L%J // forced exploration
7 else

8 ‘ A(t) =arg max kI-UCBg(t) // highest UCB index

ke{1,...,K}

9 Play arm k = A(t), and update play count n ) = nau) + 1

10 Observe a reward X 4(),+, and store it ZA(t)a”A(t) = Xaw)t

11 if BGLRTS(Za),1, s ZA(t)n 4y, ) = True then

12 ‘ Vk, 7o =tand nr =0 // reset memories of all arms
13 end
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5. Regret analysis

5. Regret analysis

@ (Stationary) Multi-armed bandits problems

@ Piece-wise stationary multi-armed bandits problems
© The BGLR test and its finite time properties

© The BGLR-T + kIUCB algorithm

© Regret analysis

@ Numerical simulations

th
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5. Regret analysis Hypotheses

Hypotheses of our theoretical analysis

m Denote 7 the position of break-point i (7" = 0)

m and 4}, the mean of arm k on the segment [7¢, 7]

m and b(i) € arg maxy, ui, (one of) the best arm(s) on the i-th segment
m and the largest gap at break-point i is A? = max | — u}:1| >0

=1,...,
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5. Regret analysis Hypotheses

Hypotheses of our theoretical analysis

m Denote ¢ the position of break-point i (79 = 0)

m and 4}, the mean of arm k on the segment [7¢, 7]

m and b(i) € arg maxy, ui, (one of) the best arm(s) on the i-th segment
m and the largest gap at break-point i is A? = max | — ,u};_1| >0

=1,...,

Fix the parameters « and d, and let d' = d'(a, §) = [ 2B(T )+ £7(d° = 0).
We assume that all sequences are “long enough”:

Vie{l,...,Yr}, 7 —77t>2max(d,dY).
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5. Regret analysis Hypotheses

Hypotheses of our theoretical analysis

m Denote ¢ the position of break-point i (79 = 0)

m and 4}, the mean of arm k on the segment [7¢, 7]

m and b(i) € arg maxy, ui, (one of) the best arm(s) on the i-th segment
m and the largest gap at break-point i is A? = max | — ,u};_1| >0

=1,...,

Fix the parameters « and d, and let d' = d'(a, §) = [ 2B(T )+ £7(d° = 0).
We assume that all sequences are “long enough”:

Vie{l,...,Yr}, 7 —77t>2max(d,dY).

— The minimum length of the i-th sequence depends on the amplitude of the changes at
the beginning and the end of the sequence (A’ and A").

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6™ of June, 2019 32/47



5. Regret analysis

Regret upper-bound

Theoretical result

Under this hypothesis, we obtained a finite time upper-bound on the regret Ry, with
explicit dependency from the problem difficulty.

The exact bound uses:

m the divergences kl(u?, ,ui(i)) account for the difficulty of the stationary problem on
sequence ,

m the gaps A’ account for the difficulty of detecting break-point i,

as well as

m the parameter « : probability of forced exploration,

m and the parameter § : confidence level of the break-point detection algorithm.

Lilian Besson
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5. Regret analysis Regret upper-bound

Simplified form of the regret upper-bound for BGLR + kl-UCB

Regret upper bound for BGLR + kI-UCB €

® On a problem satisfying our assumption. ..

mleta=/YrIn(T)/Tand § =1/y/TYr (if T and Y are known),
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5. Regret analysis

Regret upper-bound

Simplified form of the regret upper-bound for BGLR + kl-UCB

® On a problem satisfying our assumption. ..

mleta=/YrIn(T)/Tand § =1/y/TYr (if T and Y are known),
m then if BGLR + kI-UCB uses parameters o and ¢, its regret satisfies

K (K —1)

RT = O ((Achange)Q TTT ID(T) + WTT h’l(T)) 5

o with A®han8¢ = min; A? = the smallest detection gap between two stationary segments
= Difficulty of the break-point detection problems!

e and A°P' = the smallest value of sub-optimality gap on a stationary segment
= Difficulty of the stationary bandit problems!
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5. Regret analysis

Regret upper-bound

Simplified form of the regret upper-bound for BGLR + kl-UCB

® On a problem satisfying our assumption. ..

mleta=/YrIn(T)/Tand § =1/y/TYr (if T and Y are known),
m then if BGLR + kI-UCB uses parameters o and ¢, its regret satisfies

K (K —1)

RT = O ((Achange)Q TTT ID(T) + WTT h’l(T)) 5

o with A®han8¢ = min; A? = the smallest detection gap between two stationary segments
= Difficulty of the break-point detection problems!

e and A°P' = the smallest value of sub-optimality gap on a stationary segment
= Difficulty of the stationary bandit problems!

= Ry = O(K/TYrlog(T)) if we hide the dependency on the gaps.
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5. Regret analysis Comparison with other algorithms

Comparison with other state-of-the-art approaches

Our algorithm (BGLR + kI-UCB)

m Hypotheses: bounded rewards, known T, known Y7 = o(+/T), and “long enough”
stationary sequences

m We obtain Ry = O(K /T Y1 log(T))
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5. Regret analysis Comparison with other algorithms

Comparison with other state-of-the-art approaches

Our algorithm (BGLR + kI-UCB)

m Hypotheses: bounded rewards, known T, known Y7 = o(+/T), and “long enough”
stationary sequences

m We obtain Ry = O(K /T Y1 log(T))

Two recent competitors use a similar assumption but they both require prior knowledge of
a lower-bound on the gaps

m They obtained Ry = O(K+\/TYr1log(T/YT1))

m They obtained Ry = O(K /T Y7 log(T)) l
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6. Numerical simulations

6. Numerical simulations

O (Stationary) Multi-armed bandits problems

@ Piece-wise stationary multi-armed bandits problems
© The BGLR test and its finite time properties

@ The BGLR-T + kIUCB algorithm

@ Regret analysis

@ Numerical simulations
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6. Numerical simulations Setup of the experiments

Numerical simulations

We consider three problems with

m K = 3 arms, Bernoulli distributed
m T = 5000 time steps (fixed horizon)

m Y1 = 4 break-points (= 5 stationary sequences)
Algorithms can use this prior knowledge of 7" and Y

m 1000 independent runs, we plot the average regret

Lilian Besson BGLR test and Non-Stationary MAB
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6. Numerical simulations Setup of the experiments

Numerical simulations

We consider three problems with

m K = 3 arms, Bernoulli distributed
m T = 5000 time steps (fixed horizon)

m Y1 = 4 break-points (= 5 stationary sequences)
Algorithms can use this prior knowledge of 7" and Y7

m 1000 independent runs, we plot the average regret

Reference

m We used my open-source Python library for simulations of multi-armed bandits
problems, SMPyBandits — Published online at SMPyBandits.GitHub.io

m More experiments are included in the long version of the paper!
— pre-print on HAL-02006471 and arXiv:1902.01575
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Problem 1: only local changes

History of means for Non-Stationary MAB, Bernoulli with 4 break-points
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We plots the means: 111 (), 112(1), pa(t).



Results on problem 1

i; Cumulated regrets for different bandit algorithms, averaged 1000 times
) 3 arms: Non-Stationary MAB, Bernoulli with T =4 break-points
0
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—> BGLR achieves the best performance among non-oracle algorithms = !



Problem 2: only global changes

History of means for Non-Stationary MAB, Bernoulli with 4 break-points
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Results on problem 2

E Cumulated regrets for different bandit algorithms, averaged 1000 times

= 3 arms: Non-Stationary MAB, Bernoulli with T =4 break-points
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—> BGLR again achieves the best performance ® !



Pb 3: non-uniform lenghts of stationary sequences

History of means for Non-Stationary MAB, Bernoulli with 4 break-points
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Results on problem 3

Cumulated regrets for different bandit algorithms, averaged 1000 times
3 arms: Non-Stationary MAB, Bernoulli with Y =4 break-points
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—> BGLR achieves the best performance among non-oracle algorithms = !



6. Numerical simulations Conclusions from the simulations

Interpretation of the simulations (1/2)

Conclusions in terms of regret

m Empirically we can check that the BGLR test is efficient & :

e it has a low false alarm probability,
o it has a small delay if the stationary sequences are long enough.

And this is true even if the hypotheses of our analysis are not satisfied
m Using the kI-UCB indexes policy gives good performance =

= Our algorithm (BGLR test + kl-UCB) is efficient
—> We verified that it obtains state-of-the-art performance!
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6. Numerical simulations

Conclusions from the simulations

Interpretation of the simulations (2/2)

What about the efficiency in terms of memory and time complexity?

Memory: efficient @

Our algorithm is as efficient as other state-of-the-art strategies!
Memory cost = O(K dmax) for K arms.

(dmax = max 7" — 7071 = duration of the longer stationary sequence, T < (1 + Y1)dmax)
T
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6. Numerical simulations

Conclusions from the simulations

Interpretation of the simulations (2/2)

What about the efficiency in terms of memory and time complexity?

Memory: efficient @

Our algorithm is as efficient as other state-of-the-art strategies!
Memory cost = O(K dmax) for K arms.

Time: slow & !

| \

But it is too slow! Time cost = O(Ktdmax) at every time step ¢, s0 O(KT?dpay) in total.
— we proposed two numerical tweaks to speed it up
—> BGLR test + kl-UCB can be as fast as M-UCB or CUSUM-UCB

A\

(dmax = max 7" — 7071 = duration of the longer stationary sequence, T < (1 + Y1)dmax)
T

Lilian Besson BGLR test and Non-Stationary MAB Thursday 6™ of June, 2019 45 /47



Conclusion Summary

Summary

What we just presented. ..

m Stationary or piece-wise stationary Multi-Armed Bandits problems (MAB)
m The efficient Bernoulli Generalized Likelihood Ratio test ® (BGLR-T)

o to detect break-points with no false alarm and low delay

e for Bernoulli data, and can also be used for sub-Bernoulli data (any bounded
distributions),

o and does not need to know the amplitude of the break-point

m We can combine it with an efficient MAB policy: BGLR + kl-UCB &
m Its regret bound is Ry = O(K+/TYrlog(T")) ® (state-of-the-art)

m Our algorithm outperforms other efficient policies on numerical simulations @
and BGLR + kl-UCB can be as fast as its best competitors.
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Conclusion Thanks

Conclusion

Thanks for your attention.

Questions & Discussion ?
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