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Hi, I'm Lilian Besson

» finishing my PhD in telecommunication and machine learning

» under supervision of Prof. Christophe Moy at IETR &
CentraleSupélec in Rennes (France)

» and Dr. Emilie Kaufmann in Inria in Lille
Thanks to Emilie Kaufmann for most of the slides material!

» Lilian.Besson @ Inria.fr

» < perso.crans.org/besson/ & GitHub.com/Naereen
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What is a bandit?

It's an old name for a casino machine!

< (© Dargaud, Lucky Luke tome 18.
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WHY BANDITS?
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A (single) agent facing (multiple) arms in a Multi-Armed Bandit.
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A (single) agent facing (multiple) arms in a Multi-Armed Bandit.

NO!
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Sequential resource a

Clinical trials

» K treatments for a given symptom (with unknown effect)

& @ =~

> What treatment should be allocated to the next patient, based on
responses observed on previous patients?

Lilian Besson & Emilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 6/ 92



Sequent
Clinical trials

> K treatments for a given symptom (with unknown effect)

@ W@ =

> What treatment should be allocated to the next patient, based on
responses observed on previous patients?

Online advertisement
» K adds that can be displayed

» Which add should be displayed for a user, based on the previous
clicks of previous (similar) users?
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Dynamic channel se

Opportunistic Spectrum Access

» K radio channels (orthogonal frequency bands)

Wiz

» In which channel should a radio device send a packet, based on the
quality of its previous communications?
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Dynamic channel s

Opportunistic Spectrum Access

» K radio channels (orthogonal frequency bands)

[T

Wiz

» In which channel should a radio device send a packet, based on the
quality of its previous communications? < see the next talk at 4pm !
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Opportunistic Spectrum Access

» K radio channels (orthogonal frequency bands)

Wiz

» In which channel should a radio device send a packet, based on the
quality of its previous communications? < see the next talk at 4pm !

Communications in presence of a central controller

» K assignments from n users to m antennas (~» combinatorial bandit)

> How to select the next matching based on the throughput observed in
previous communications?
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Dynamic allocation of

Numerical experiments (bandits for “black-box" optimization)

» where to evaluate a costly function in order to find its maximum?
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Dynamic allocatia

Numerical experiments (bandits for “black-box" optimization)

» where to evaluate a costly function in order to find its maximum?

Artificial intelligence for games

Selection Expansion Simulation Backpropagation

® ® @ ()
@ @O D) @ @ @ @O0 @ @
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:

» where to choose the next evaluation to perform in order to find the
best move to play next?
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Why talking ab

> rewards maximization in a stochastic bandit model
= the simplest Reinforcement Learning (RL) problem (one state)
—> good introduction to RL !

» bandits showcase the important exploration /exploitation dilemma

» bandit tools are useful for RL
(UCRL, bandit-based MCTS for planning in games. .. )

» a rich literature to tackle many specific applications

v

bandits have application beyond RL (i.e. without “reward")

» and bandits have great applications to Cognitive Radio
< see the next talk at 4pm !
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Outline of this t

Multi-armed Bandit
Performance measure (regret) and first strategies
Best possible regret? Lower bounds

Mixing Exploration and Exploitation

vV v.v v Y

The Optimism Principle and Upper Confidence Bounds (UCB)
Algorithms

v

A Bayesian Look at the Multi-Armed Bandit Model
> Many extensions of the stationary single-player bandit models

» Summary
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The Multi-Armec

K arms < K rewards streams (X ¢)ren

At round t, an agent:
» chooses an arm A;

> receives a reward R; = Xa, ¢ (from the environment)

Sequential sampling strategy (bandit algorithm):
At+1 - Ft(Ala Rl) s 7At7 Rt)

-
Goal: Maximize sum of rewards > R;.
t=1
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The

K arms < K probability distributions : v, has mean p,

%1 1% 1% |2 143

At round t, an agent:
» chooses an arm A;

> receives a reward Ry = Xa, + ~ va, (i.i.d. from a distribution)

Sequential sampling strategy (bandit algorithm):
At+1 — Ft(Al, R]_, . o ,At, Rt)

T
Goal: Maximize sum of rewards E | >~ R;
t=1
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Discover bandits by

Total Total
Reward Plays

14 24

‘ Arm 1 “ Arm 3 ‘ Arm 4 Arm 5

Rewards: 6 2 2 2 2

Pulls: 8 4 4 4 4
Estimated Probs:  0.750 0.500 0.500 0.500 0.500
UCBs: 1.641 1.761 1.761 1.761 1.761

— Interactive demo on this web-page
perso.crans.org/besson/phd/MAB_interactive_demo/
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Clinical trials

Historical motivation [Thompson 1933]

& @ =

B(pa) B(p2) B(u3) B(pa) B(us)
For the t-th patient in a clinical study,

» chooses a treatment A;
» observes a (Bernoulli) response Ry € {0,1} : P(Ry = 1|A: = a) = p;

Goal: maximize the expected number of patients healed.
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Online conte

Modern motivation ($$$$) [Li et al, 2010]
(recommender systems, online advertisement, etc)

1%1 1% V3 Va 14

For the t-th visitor of a website,
» recommend a movie A;

» observe a rating Ry ~ va, (e.g. R € {1,...,5})

Goal: maximize the sum of ratings.
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Cognitive radios

Opportunistic spectrum access [Zhzo et al. 10| [Anandkumar et al. 11]

streams indicating channel quality

Channel 1 X171 Xl,g - Xl,t A Xl,T ~ 1
Channel 2 X271 X2’2 A Xg,t A XQ,T ~ U2
Channel K XK,l XK’2 . XK,t . XK,T ~ VK

At round t, the device:

» selects a channel A;

» observes the quality of its communication Ry = Xa, ¢ € [0, 1]

Goal: Maximize the overall quality of communications.
< see the next talk at 4pm !
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PERFORMANCE MEASURE
AND FIRST STRATEGIES
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Regret of a bandit a

Bandit instance: v = (v1,1»,...,vk), mean of arm a: p, = Ex.,,[X].

= max and a, = argmax f,.
S o L T e
Maximizing rewards < selecting a, as much as possible
< minimizing the regret [Robbins, 52]

.
Ru(A, T) = T pix - E|) R
’ t=1

sum of rewards of

an oracle strategy
h sum of rewards of
always selecting ax the strategy. A
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Regret of a bandit algo

Bandit instance: v = (v1,1»,...,vk), mean of arm a: p, = Ex.,,[X].
[y = max p, and a, = argmax .
ac{l,...K} ac{l,..K}

Maximizing rewards < selecting a, as much as possible
< minimizing the regret [Robbins, 52|

T
Ru(AT):= L - E lz Rt]
) t=1
sum of rewards of

an oracle strategy
) sum of rewards of
always selecting ax the strategy. A

What regret rate can we achieve?
— consistency: Ry,(A, T)/T = 0 (when T — o)
— can we be more precise?
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Regret decomposition

N,(t) : number of selections of arm a in the first t rounds
A, = sy — iy : sub-optimality gap of arm a

Regret decomposition

Ru(A, T) = fj ALE[N,(T)] .
a=1
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Regret decomposition

N,(t) : number of selections of arm a in the first t rounds
A, = sy — iy : sub-optimality gap of arm a

Regret decomposition

Ru(A, T) = i ALE [Na(T)].

Proof. T T
rian < el nroffl

t=1 t=1

Z(:U’* lu’At
K

= Y (e ) E[tzzjln(Atz 2)|.

a=1

a

N,(T)
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Regret decomposition

N,(t) : number of selections of arm a in the first t rounds
A, = iy — iy : sub-optimality gap of arm a

Regret decomposition

Ru(Av T) = i AaIE [Na(T)] o
a=1

A strategy with small regret should:
> select not too often arms for which A, > 0 (sub-optimal arms)

» ... which requires to try all arms to estimate the values of the A,

— Exploration / Exploitation trade-off !
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Two naive strategies

» Idea 1: —> EXPLORATION
Draw each arm T /K times J

a:pa> e

— Ru(A,T) = ( ZA) Q(T)
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Two naive strategie

> Idea 1: —> EXPLORATION

Draw each arm T /K times J

a. [Ja>/J«*

> Ru(A,T) = ( > A) Q(T)
» Idea 2 : Always trust the empirical best arm — EXPLOITATION

Atr1 = argmax [i,(t) using estimates of the unknown means 1,
ae{1,...,K}

fa(t) = 77— ZXas (A=a)

= Ru(A, T) > (1 —p1) x p2 x (1 — p2) T =Q(T)
(with K = 2 Bernoulli arms of means p3 # p»2)
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A better idea: Explore

Given me {1,...,T/K},
» draw each arm m times
» compute the empirical best arm @ = argmax, ji,(Km)
» keep playing this arm until round T
Aiy1 =3 fort > Km

—> EXPLORATION followed by EXPLOITATION
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A better idea: Ex

Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm a = argmax, fi,(Km)
» keep playing this arm until round T
Aiy1 =3 fort > Km

—> EXPLORATION followed by EXPLOITATION

Analysis for K =2 arms. If u3 > p2, A = 1 — po.

Ry (ETC, T)

AE[Ny(T)]
= AE[m+ (T — Km)L (3 = 2)]
< Am+ (AT) x P (figm > fir.m)

[ta,m: empirical mean of the first m observations from arm a
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A better idea: E

Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm a = argmax, fi,(Km)
» keep playing this arm until round T
A1 =3 fort > Km

—> EXPLORATION followed by EXPLOITATION

Analysis for K =2 arms. If uy > pp, A = 1 — po.

R,(ETC, T) AE[Ny(T)]
= AE[m+ (T — Km)1l(a = 2)]
< Am+ (AT) X P(fio,m > [i1,m)
tam: empirical mean of the first m observations from arm a
= requires a concentration inequality
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A better idea: E

Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm a = argmax, fi.(Km)
» keep playing this arm until round T
A1 =3 fort > Km

—> EXPLORATION followed by EXPLOITATION

Analysis for two arms. pq > po, A = g — po.
Assumption 1: v, v, are bounded in [0, 1].

Ru(T) = AE[NA(T)]
= AE[m+ (T — Km)1 (a = 2)]
< Am+ (AT) x exp(—mA?/2)
Ita,m: empirical mean of the first m observations from arm a

— Hoeffding's inequality
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Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm a = argmax, fi.(Km)
» keep playing this arm until round T
A1 =3 fort > Km

—> EXPLORATION followed by EXPLOITATION

Analysis for two arms. pq > po, A = g — po.
Assumption 2: v; = N(u1,02),v0 = N(j2,02) are Gaussian arms.
Ru(ETC, T) = AE[N:(T)]
= AE[m+ (T — Km)l (3 = 2)]
< Am+(AT) x exp(—mA? /40?)
Ita,m: empirical mean of the first m observations from arm a

—> Gaussian tail inequality
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Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm a = argmax, fi.(Km)
» keep playing this arm until round T
A1 =3 fort > Km

—> EXPLORATION followed by EXPLOITATION

Analysis for two arms. pq > po, A = g — po.
Assumption 2: v; = N(u1,02),v0 = N(j2,02) are Gaussian arms.
Ru(ETC, T) = AE[N:(T)]
= AE[m+ (T — Km)l (3 = 2)]
< Am+(AT) x exp(—mA? /40?)
Ita,m: empirical mean of the first m observations from arm a

—> Gaussian tail inequality
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A better idea: Ex

Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm 3 = argmax, fi,(Km)
» keep playing this arm until round T
Aiy1 =23 fort > Km

—> EXPLORATION followed by EXPLOITATION

Analysis for two arms. py > po, A = p1 — po.

Assumption: vy = N(u1,02%),v2 = N(u2,0?) are Gaussian arms.

2 2
For m = %"2— log (%),

2 2
R (ETC, T) < 27 llog (TA ) +1

A 2

—0 (% Iog(T)) .
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Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm 3 = argmax, fi,(Km)
» keep playing this arm until round T
Aiy1 =23 fort > Km

—> EXPLORATION followed by EXPLOITATION

Analysis for two arms. py > po, A = p1 — po.

Assumption: vy = N(u1,02%),v2 = N(u2,0?) are Gaussian arms.

_ 40? TA?
For m = AT |Og T2 )

452 TA?
v ) S A
Ry(ETC, T) < —1 [Iog( 5 >+1

1
—0 (Z Iog(T)) .
+ logarithmic regret!

— requires the knowledge of T (~ OKAY) and A (NOT OKAY)
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Sequential Explore-

» explore uniformly until the random time
f-

=}

J’f‘

T
[ 200 400 600 800 1000

T= inf{t € N: |n(t) — fa(t)] > \ 802 Iog(T/t)}

> 3, =argmax , [I5(7) and (A1 =3;) fort e {r+1,..., T}

2

R (S-ETC, T) < 4% log (TA?) +Cy/log(T) = 0 (% Iog(T)) .

= same regret rate, without knowing A [Garivier et al. 2016
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Numerical illustrat

Two Gaussian arms: v; = N(1,1) and v, = N(1.5,1)

5001 Uniform s 40 4
— FTL g !
400{ = Sequential-ETC // 35 /
30 !
!
300 25 /
/
20 !
200 1
15 'l
100 10
5
0 0 , —— Sequential-ETC
400 600 800 1000 0 200 400 600 800 1000

Expected regret estimated over N = 500 runs for Sequential-ETC versus
our two naive baselines.
(dashed lines: empirical 0.05% and 0.95% quantiles of the regret)
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Is this a good regr

For two-armed Gaussian bandits,

402 1
< 2\ _ 7
Ry (ETC, T) £~ log (Ta?) =0 <A Iog(T)) .

— problem-dependent logarithmic regret bound
Ry (algo, T) = O(log(T)).

Observation: blows up when A tends to zero...
| 40? 5
Ry(ETC,T) < min |~ log (TA ),AT

4 2
< VT min [L log(u?),u| < CV'T.
u>0 u

—> problem-independent square-root regret bound
R (algo, T) = O(VT).
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BEST POSSIBLE REGRET?
LOWER BOUNDS
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The Lai and Robbins lowe

Context: a parametric bandit model where each arm is parameterized by
its mean v = (V5 .-+, Vpy ), pha € L.

distributions v < = (u1,..., k) means

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

dy
kl(p, 1) := KL (W, V) = Exos, llog dT:,(X)]

For uniformly efficient algorithms (R, (A, T) = o(T?) for all a € (0,1)
and p € TK),
(ry_ 1

fa <[4 :Ilmmf Eu[Na
2o Tooo  log T = kl(pa, ptx)
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The Lai and Robbins lo

Context: a parametric bandit model where each arm is parameterized by
its mean v = (Vyy, ..., Vi) fa € L.

distributions v < p = (u1,..., k) means

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence
(b —p')?
202

For uniformly efficient algorithms (R, (A, T) = o( T¢) for all a € (0, 1)
and p € TK),
(T 1

Pa < [ =>I|m|nf Eyu[Na
2o Tooo  log T = kl(pa, pts)

Kl(p, p') := (Gaussian bandits with variance o2)
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The Lai and Robbins lo

Context: a parametric bandit model where each arm is parameterized by
its mean v = (Vpy, ..., V) o € L.

distributions v < = (u1,..., k) means

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(p, 1) := plog < > + (1 — p)log (11—5/> (Bernoulli bandits)

For uniformly efficient algorithms (R, (A, T) = o(T?) for all a € (0,1)

and p € TK),
NL(T)] 1
R lim inf EulNa > .
fa =t == Im_’lgo log T~ kl(ua, p1s)
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Some room for be

» For two-armed Gaussian bandits, ETC satisfies
452 1
< 2\ _ _
Ry(ETC, T) £ log (TA?) =0 (A Iog(T)),
with A = |1 — pol.

» The Lai and Robbins' lower bound vyields, for large values of T,
202 1
> 2\ — -
Ru(A,T)z - log (TA%) =0 (A Iog(T)),

as kl(u1, 1) = (m uz)2

— Explore-Then-Commit is not asymptotically optimal.
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MIXING EXPLORATION AND
EXPLOITATION
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A simple strategy: c—gre

The e-greedy rule [Sutton and Barton, 98] is the simplest way to
alternate exploration and exploitation.

g-greedy strategy
At round t,
» with probability ¢
Ac~U{L,...,K})
» with probability 1 — ¢

A = argmax [i,(t).
a=1,...,.K

— Linear regret: R, (c-greedy, T) > E%Amin T.

Amin = min A,.
aiflg<[lx
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A simple strategy: c—gree

A simple fix: make & decreasing!

€;-greedy strategy

At round t,
» with probability €; := min (1, 3’§—t) probability \, with t

A ~U{T,...,K})
» with probability 1 — &;

A¢ = argmax [i,(t — 1).
a=1,...,.K

If 0 < d < Anin, Ry (ci-greedy, T) = O (L Klog(T)).

— requires the knowledge of a lower bound on Ap,.
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THE OPTIMISM PRINCIPLE

UPPER CONFIDENCE BOUNDS ALGORITHMS
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The optimism princ

Step 1: construct a set of statistically plausible models

» For each arm a, build a confidence interval Z,(t) on the mean p, :

Z,(t) = [LCB,(t), UCB,(t)]

LCB = Lower Confidence Bound
UCB = Upper Confidence Bound

Figure: Confidence intervals on the means after t rounds
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The optimism princi

Step 2: act as if the best possible model were the true model

(“optimism in face of uncertainty”)

Figure: Confidence intervals on the means after t rounds

Optimistic bandit model = argmax max p,
pec(t) a=1,...,.K

» That is, select

A¢+1 = argmax UCB,(t).
a=1,...,.K
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Optimistic Algorithms

Building Confidence Intervals

Analysis of UCB(«)
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How to buil
We need UCB,(t) such that

P(us < UCB,(1)) 21— 1/t.

= tool: concentration inequalities
Example: rewards are o sub-Gaussian

E[Z]=p and E M2 < M2, (1)

Hoeffding inequality

Z; i.i.d. satisfying (1). For all (fixed) s > 1

]P,<Zl+"'+zs

> ,U‘l’x) < e—sxz/(2c72)
S

» v, bounded in [0,1]: 1/4 sub-Gaussian
» v, = N(pa,02): 02 sub-Gaussian
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How to buil
We need UCB,(t) such that

P(us < UCB,(1)) 21— 1/t.

= tool: concentration inequalities
Example: rewards are o sub-Gaussian

E[Z]=p and E M2 < M2, (1)

Hoeffding inequality

Z; i.i.d. satisfying (1). For all (fixed) s > 1

]P,<Zl+"'+zs

< 'U/_X) < e—sz/(za'z)
S = =

» v, bounded in [0,1]: 1/4 sub-Gaussian
» v, = N(pa,02): 02 sub-Gaussian
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We need UCB,(t) such that

P(ua < UCB,y(t)) 21 -1/t

= tool: concentration inequalities
Example: rewards are o sub-Gaussian

E[Z]=p and E [e)‘(z_”)] < 72, (1)

Hoeffding inequality
Z; i.i.d. satisfying (1). For all (fixed) s > 1

P (M <u- X) < e52/(29?)

S|

/\ Cannot be used directly in a bandit model as the number of
observations s from each arm is random!
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How to build confidence

> Na(t) = >¢_; I (a,—a) number of selections of a after t rounds
> flas = %Zizl Y.k average of the first s observations from arm a

> [ia(t) = [ian,(r) empirical estimate of y, after t rounds

Hoeffding inequality + union bound

P(uasm(t)m/%ﬁ)) 21
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How to build confidenc

> N,(t) = > t_; 1 (a,—,) number of selections of a after t rounds
> flas = %Zi:1 Y.k average of the first s observations from arm a

> [ia(t) = fian,(r) empirical estimate of y, after t rounds

Hoeffding inequality + union bound

alog(t)) >1- 1

N,(t) 5-1

P(uagﬁa(t)—i-a 3

Proof.
log(t N log(t
B (110> a(t) + oy 28O} < p (36 < 2y > iy + 0y 2108
Na(t) s

t

R o log(t) 1 1
SZP<M3,S<MS_U s )Szm_tﬂﬂ_l'

s=1

l&uéz_--
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A first UCB algori

UCB(«) selects Apy1 = argmax, UCB,(t) where

N alog(t)
UCB,(t) = t
3( ) 1U’3( ) Na(t)
exploitation term
exploration bonus

» this form of UCB was first proposed for Gaussian rewards
[Katehakis and Robbins, 95]

» popularized by [Auer et al. 02] for bounded rewards:
UCBL, for a =2 — see the next talk at 4pm !

» the analysis was UCB(«) was further refined to hold for o > 1/2 in
that case [Bubeck, 11, Cappé et al. 13]
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A UCB algorithm in a

— Y _
¢
¢
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Optimistic Algorithms

Building Confidence Intervals

Analysis of UCB(«)
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Regret of UCB(«) for ba

UCB(«) with parameter oo = 2 satisfies

R.,(UCB1, T) < 8 ( > Ai) log(T) + <1 a %2> (i Aa> .

aipla<fhx & a=1

For every a > 1 and every sub-optimal arm a, there exists a constant
Co > 0 such that e
7O IR IN(T) < g loB(T) + G
(ps — 1a)

It follows that

R, (UCB(a), T) < 4a ( > Ai> log(T) + KC,.

apa<prx 9

l&vzép-
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Intermediate Summ

» Several ways to solve the exploration/exploitation trade-off
» Explore-Then-Commit
> c-greedy
» Upper Confidence Bound algorithms

» Good concentration inequalities are crucial to build good UCB
algorithms!

» Performance lower bounds motivate the design of (optimal)
algorithms
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A BAYESIAN LOOK AT THE
MAB MODEL
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Bayesian Bandits

Two points of view
Bayes-UCB

Thompson Sampling
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Historical perspecti

1952 Robbins, formulation of the MAB problem

1985 Lai and Robbins: lower bound, first asymptotically optimal algorithm

1987 Lai, asymptotic regret of kl-UCB

1995 Agrawal, UCB algorithms

1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits
2002 Auer et al: UCB1 with finite-time regret bound

2009 UCB-V, MOSS...

2011,13 Cappé et al: finite-time regret bound for kl-UCB
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Historical perspective

1933 Thompson: a Bayesian mechanism for clinical trials
1952 Robbins, formulation of the MAB problem
1956 Bradt et al, Bellman: optimal solution of a Bayesian MAB problem
1979 Gittins: first Bayesian index policy
1985 Lai and Robbins: lower bound, first asymptocally optimal algorithm
1985 Berry and Fristedt: Bandit Problems, a survey on the Bayesian MAB
1987 Lai, asymptotic regret of kI-UCB + study of its Bayesian regret
1995 Agrawal, UCB algorithms
1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits
2002 Auer et al: UCB1 with finite-time regret bound
2009 UCB-V, MOSS...
2010 Thompson Sampling is re-discovered

2011,13 Cappé et al: finite-time regret bound for kl-UCB

2012,13 Thompson Sampling is asymptotically optimal
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Frequentist versu

v, = (v, v e (P)K.
» Two probabilistic models two points of view!
Frequentist model Bayesian model
Hlyee ey UK U1, ..., i drawn from a
unknown parameters prior distribution : py ~ 7,
arm a: (Yas)s Hid- arm a: (Yas)s|p Lidpa
» The regret can be computed in each case
Frequentist Regret Bayesian regret
(regret) (Bayes risk)

Ru(A, T)=E,

t=1

= J Ru(A, T)dn(p)
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Frequentist and Baye

» Two types of tools to build bandit algorithms:

Frequentist tools | Bayesian tools
MLE estimators of the means Posterior distributions
Confidence Intervals 7y = L(1alYa1, - Yan,(e)

? ‘ —
&
° ¢
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Example: Bernoull
Bernoulli bandit model g = (p, .. ., k)

> Bayesian view: u1, ..., ux are random variables
prior distribution : s ~ U([0, 1])
= posterior distribution:
ma(t) = L(palRi,...,R:)
= Beta( Sa(t) +1, Na(t) — So(t) +1)
—— —_———

#ones #zeros

t
Sa(t) = >° Rsl(a,—s) sum of the rewards from arm a
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Bayesian algorithm

A Bayesian bandit algorithm exploits the posterior distributions of the
means to decide which arm to select.

| S
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Bayesian Bandits

Two points of view
Bayes-UCB

Thompson Sampling
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The Bayes-UCB al

» Mo = (m1(0),...,7k(0)) be a prior distribution over (u1, ..., fik)
» My = (m1(t),...,mk(t)) be the posterior distribution over the means
(pa, ..., 1K) after t observations

The Bayes-UCB algorithm chooses at time ¢

Ary1 = argmax Q <1 — t(l)c,wa(t)>

a=1,...,.K |0g t

where Q(c, ) is the quantile of order a of the distribution .

2.0
1.5 i a
1.0 /
/ y
0.5 '
001 0.20.30.40.50.60.70.!&9 1
Q(a,m)
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The Bayes-UCB

> Mo = (m1(0),...,7k(0)) be a prior distribution over (u1, ..., 1K)

» My = (m1(t),...,mk(t)) be the posterior distribution over the means
(pa, ..., 1k) after t observations

The Bayes-UCB algorithm chooses at time ¢

1
A1 = argmax Q <1 B taognc’”a‘f))

where Q(c, ) is the quantile of order « of the distribution .

Bernoulli reward with uniform prior:
> m,(0) &7 14([0,1]) = Beta(1,1)
> 7,(t) = Beta(Sa(t) + 1, Na(t) — Sa(t) +1)
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The Bayes-UCB ¢

» Mo = (7m1(0),...,7k(0)) be a prior distribution over (u1,. .., k)

» M = (m1(t),...,mk(t)) be the posterior distribution over the means
(pa, ..., k) after t observations

The Bayes-UCB algorithm chooses at time ¢

1
A1 = argmax Q <1 B taogtwa‘”)

where Q(c, ) is the quantile of order a of the distribution .

Gaussian rewards with Gaussian prior:
> 7a(0) AT N(0, K2)
2

Sa(t o
> m(t) =N (Na(r)+(o)2/n2’ Na(t)+a2/~2)
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Bayes UCB in acti
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Theoretical results in the

» Bayes-UCB is asymptotically optimal for Bernoulli rewards

Let € > 0. The Bayes-UCB algorithm using a uniform prior over the arms
and parameter ¢ > 5 satisfies

1+e

BulNa(T] < 30—y

log(T) + o0z, (log(T)).

Lilian Besson & Emilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 55/ 92



Bayesian Bandits

Insights from the Optimal Solution
Bayes-UCB

Thompson Sampling
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Historical perspe

1933 Thompson: in the context of clinical trial, the allocation of a treatment
should be some increasing function of its posterior probability to be optimal
2010 Thompson Sampling rediscovered under different names
Bayesian Learning Automaton [Granmo, 2010]
Randomized probability matching [Scott, 2010]
2011 An empirical evaluation of Thompson Sampling: an efficient algorithm,
beyond simple bandit models
[Li and Chapelle, 2011]

2012 First (logarithmic) regret bound for Thompson Sampling
[Agrawal and Goyal, 2012]

2012 Thompson Sampling is asymptotically optimal for Bernoulli bandits
[K., Korda and Munos, 2012][Agrawal and Goyal, 2013]

2013- Many successful uses of Thompson Sampling beyond Bernoulli bandits
(contextual bandits, reinforcement learning)
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Thompson Sampling

Two equivalent interpretations:
P> ‘“select an arm at random according to its probability of being the best"

» “draw a possible bandit model from the posterior distribution and act

optimally in this sampled model” £ optimistic

Thompson Sampling: a randomized Bayesian algorithm

Va e {1..K}, 0,(t) ~ ma(t)
Art1 = argmax 6,(t).
a=1..K
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Thompson Sampling is as

Problem-dependent regret

Ve >0, Eu[Ny(T)] < ﬁ 10g(T) + 0. (Iog(T)).

This results holds:

» for Bernoulli bandits, with a uniform prior
[K. Korda, Munos 12]|[Agrawal and Goyal 13]

» for Gaussian bandits, with Gaussian prior[Agrawal and Goyal 17]
» for exponential family bandits, with Jeffrey's prior [Korda et al. 13]

Problem-independent regret

For Bernoulli and Gaussian bandits, Thompson Sampling satisfies

Ru(TS, T)=0 (\/KT Iog(T)> .

» Thompson Sampling is also asymptotically optimal for Gaussian with
unknown mean and variance [Honda and Takemura, 14]
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Understanding Thompso

> a key ingredient in the analysis of [K. Korda and Munos 12]

Proposition

There exists constants b = b(u) € (0,1) and Cp < oo such that
ZP (Nl(t) < tb) < Gp.
=1

{Nl(t) < tb} = {there exists a time range of length at least t'7% — 1
with no draw of arm 1 }

9
sk
7k
oF
sk
af
3k
oF
e
0
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Bayesian versus Frequ

» Short horizon, T = 1000 (average over N = 10000 runs)

——— KLUCB
= = = KLucs*

= = KLUCB-H*
Bayes UCB
Thompson Sampling
——— FH-Gittins

L L L L L L L L L ,
0 100 200 300 400 500 600 700 800 900 1000

K =2 Bernoulli arms p3 = 0.2, u» = 0.25
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Bayesian versus

» Long horizon, T = 20000 (average over N = 50000 runs)

KLUCB KLUCBplus KLUCBHplus BayesUCB Thompson

o ® 1 ~ ®

® ® 100 ® ®

" “ 1 0 “

2 - 12 2 -

o o 10 ® o

o ® @ ® ®

@ @ @ @ @

« « « « «

2 2 2 Fl 2
i " o5 " i "
time et 1ime et tme et timo et time

K = 10 Bernoulli arms bandit problem
p = [0.10.05 0.05 0.05 0.02 0.02 0.02 0.01 0.01 0.01]
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OTHER BANDIT MODELS
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Other Bandit Models

Many different extensions
Piece-wise stationary bandits

Multi-player bandits
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Many other bandits mod

Most famous extensions:

» (centralized) multiple-actions

< Implemented in our library SMPyBandits!
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Many other bandits ma

Most famous extensions:

» (centralized) multiple-actions
» multiple choice : choose m € {2,..., K — 1} arms (fixed size)

< Implemented in our library SMPyBandits!
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Many other bandits

Most famous extensions:

» (centralized) multiple-actions

» multiple choice : choose m € {2,..., K — 1} arms (fixed size)
> combinatorial : choose a subset of arms S C {1,..., K} (large space)

< Implemented in our library SMPyBandits!
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Many other bandits

Most famous extensions:

» (centralized) multiple-actions

» multiple choice : choose m € {2,..., K — 1} arms (fixed size)
> combinatorial : choose a subset of arms S C {1,..., K} (large space)

» non stationary

< Implemented in our library SMPyBandits!
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Many other bandits

Most famous extensions:

» (centralized) multiple-actions

» multiple choice : choose m € {2,..., K — 1} arms (fixed size)
> combinatorial : choose a subset of arms S C {1,..., K} (large space)

» non stationary
> piece-wise stationary / abruptly changing

< Implemented in our library SMPyBandits!
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Many other bandits

Most famous extensions:

» (centralized) multiple-actions

» multiple choice : choose m € {2,..., K — 1} arms (fixed size)
> combinatorial : choose a subset of arms S C {1,..., K} (large space)

» non stationary
> piece-wise stationary / abruptly changing
» slowly-varying

< Implemented in our library SMPyBandits!
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Many other bandits

Most famous extensions:

» (centralized) multiple-actions

» multiple choice : choose m € {2,..., K — 1} arms (fixed size)
> combinatorial : choose a subset of arms S C {1,..., K} (large space)

» non stationary

> piece-wise stationary / abruptly changing
» slowly-varying
» adversarial. ..

< Implemented in our library SMPyBandits!
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Many other band

Most famous extensions:

» (centralized) multiple-actions

» multiple choice : choose m € {2,..., K — 1} arms (fixed size)
> combinatorial : choose a subset of arms S C {1,..., K} (large space)

» non stationary

> piece-wise stationary / abruptly changing
» slowly-varying
» adversarial. ..

» (decentralized) collaborative/communicating bandits over a graph

< Implemented in our library SMPyBandits!

Lilian Besson & Emilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92



Many other ban

Most famous extensions:

» (centralized) multiple-actions

» multiple choice : choose m € {2,..., K — 1} arms (fixed size)
> combinatorial : choose a subset of arms S C {1,..., K} (large space)

» non stationary

> piece-wise stationary / abruptly changing
» slowly-varying
» adversarial. ..

» (decentralized) collaborative/communicating bandits over a graph

» (decentralized) non communicating multi-player bandits

< Implemented in our library SMPyBandits!
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And many more extensions. . .
» non stochastic, Markov models rested /restless

> best arm identification (vs reward maximization)

> fixed budget setting
> fixed confidence setting
» PAC (probably approximately correct) algorithms

v

bandits with (differential) privacy constraints

» for some applications (content recommendation)

> contextual bandits : observe a reward and a context (C; € RY)
» cascading bandits
» delayed feedback bandits

» structured bandits (low-rank, many-armed, Lipschitz etc)

» X-armed, continuous-armed bandits
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Other Bandit Models

Many different extensions
Piece-wise stationary bandits

Multi-player bandits
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Piece-wise stationary bandit

Stationary MAB problems

Arm a gives rewards sampled from the same distribution for any time step

Vi, ra(t) S v, = B(ua)-
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Piece-wise statio

Stationary MAB problems

Arm a gives rewards sampled from the same distribution for any time step

Vt, ra(t) IS va = B(pa).

Non stationary MAB problems?

(possibly) different distributions for any time step !

Ve, ra(t) % va(t) = Blpa(t)).

= harder problem! And very hard if 1,(t) can change at any step!
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Piece-wise station

Stationary MAB problems

Arm a gives rewards sampled from the same distribution for any time step

Vt, ra(t) IS va = B(pa).

Non stationary MAB problems?

(possibly) different distributions for any time step !

Ve, ra(t) % va(t) = Blpa(t)).

= harder problem! And very hard if 1,(t) can change at any step!

Piece-wise stationary problems!

— the litterature usually focuses on the easier case, when there are at
most Y7 = o(v/ T) intervals, on which the means are all stationary.
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Example of a piece-wise ¢

We plots the means y1(t), 2(t), ps(t) of K =3 arms. There are Y7 =4
break-points and 5 sequences between t =1 and t = T = 5000:

History of means for Non-Stationary MAB, Bernoulli with 4 break-points

=@= Arm #0
O Arm #1
- am #2
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Time steps t=1...T, horizon T=5000
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Regret for piece-wise

The “oracle” algorithm plays the (unknown) best arm
k*(t) = argmax pk(t) (which changes between the Y7 > 1 stationary
sequences)

[zrm ] ZE[r tn—(zmaxuk ) Y B
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Regret for piece-wise

The “oracle” algorithm plays the (unknown) best arm
k*(t) = argmax pk(t) (which changes between the Y7 > 1 stationary
sequences)

[zrm ] ZE[r tn—(zmaxuk ) Y B

Typical regimes for piece-wise stationary bandits
» The lower-bound is R(A, T) > Q(+vKTYT)
» Currently, state-of-the-art algorithms A obtain

> R(A, T)<O(K\/TY7rlog(T)) if T and Y7 are known
> R(A, T)<O(KY7r+/Tlog(T)) if T and Y7 are unknown
» < our algorithm kIUCB index + BGLR detector is state-of-the-art!
[Besson and Kaufmann, 19] arXiv:1902.01575
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Results on a piece-wise

Idea: combine a good bandit algorithm with an break-point detector

:1 Cumulated regrets for different bandit algorithms, averaged 1000 times

=z 3 arms: Non-Stationary MAB, Bernoulli with T =4 break-points

g
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S Time steps t=1...7, horizon 7= 5000

kIUCB + BGLR achieves the best performance (among non-oracle)!
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Other Bandit Models

Many different extensions
Piece-wise stationary bandits

Multi-player bandits
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Multi-players ba

M players playing the same K-armed bandit (2 < M < K)

At round t:
> player m selects Ap, ¢ ; then observes Xa,, .t

» and receives the reward

X . Xame,t 1f no other player chose the same arm
mET 0  else (= collision)

Goal:

M T
» maximize centralized rewards > > Xn:
m=1t=1

> ... without communication between players

> trade off : exploration / exploitation / and collisions !

Cognitive radio: (OSA) sensing, attempt of transmission if no PU,
possible collisions with other SUs — see the next talk at 4pm !

l &de’a—— Lilian Besson & Emilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 73/ 92



Multi-players bandits:

Idea: combine a good bandit algorithm with an orthogonalization strategy
(collision avoidance protocol)

Example: UCB1 + p™". At round t each player
» has a stored rank Ry € {1,..., M}
selects the arm that has the R, ;-largest UCB

if a collision occurs, draws a new rank Ry ¢11 ~U({1,..., M})
any index policy may be used in place of UCB1
their proof was wrong. ..

vVvyvyVvyy

Early references: [Liu and Zhao, 10] [Anandkumar et al., 11]
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Multi-players bandits

Idea: combine a good bandit algorithm with an orthogonalization strategy
(collision avoidance protocol)

Example: our algorithm

» more complicated behavior (musical chair game)
> we obtain a R(A, T) = O(M3K12_ log(T)) regret upper bound
M

> lower bound is R(A, T) = Q(M 55 log(T))
M

» order optimal, not asymptotically optimal

» Recent references: [Besson and Kaufmann, 18] [Boursier et al, 19]
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Multi-players bandits

Idea: combine a good bandit algorithm with an orthogonalization strategy
(collision avoidance protocol)

Example: our algorithm

» Recent references: [Besson and Kaufmann, 18] [Boursier et al, 19]

Remarks:

» number of players M has to be known
— but it is possible to estimate it on the run

» does not handle an evolving number of devices
(entering/leaving the network)

> is it a fair orthogonalization rule?
» could players use the collision indicators to communicate? (yes!)
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Results on a multi-pla

Multi-players M =6 : Cumulated centralized regret, averaged 40 times
9 arms: [B(0.01), B(0.01), B(0.01), B(0.1)*, B(0.12) *, B(0.14) *, B(0.16) *, B(0.18) ", B(0.2) *]

SIC-MMAB(UCB-H, T, =265)
SIC-MMAB(UCB, T; =265)
SIC-MMAB(kI-UCB, T = 265)
RhoRand-UCB

RhoRand-kI-UCB

RandTopM-UCB

RandTopM-kl-UCB

MCTopM-UCB

MCTopM-kI-UCB

Selfish-UCB

Selfish-k-UCB
CentralizedMultiplePlay(UCB)
CentralizedMultiplePlay (kI-UCB)
MusicalChair(T, = 450)

MusicalChair(1; 0)

MusicalChair(T, = 1350)

Besson & Kaufmann lower-bound = 22
=== Anandkumar et al.'s lower-bound = 14
Centralized lower-bound = 3.79 log(t)

44

k=1

-
v

[ ¥btiettttted

3
Cumulative centralized regret zu;t— zukEm[Tk(t)]
=

10? 10° 10
Time steps ¢ =1... T, horizon T=50000,

For M = 6 objects, our strategy (MC-TopM) largely outperform SIC-MMAB and p™".
) !

MCTopM -+ kIUCB achieves the best performance (among decentralized algorithms
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SUMMARY
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Take-home message

Now you are aware of:
» several methods for facing an exploration/exploitation dilemma
» notably two powerful classes of methods

» optimistic “UCB" algorithms
» Bayesian approaches, mostly Thompson Sampling

= And you can learn more about more complex bandit problems and
Reinforcement Learning!
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Take-home messa

You also saw a bunch of important tools:
» performance lower bounds, guiding the design of algorithms
» Kullback-Leibler divergence to measure deviations

» applications of self-normalized concentration inequalities
» Bayesian tools. ..

And we presented many extensions of the single-player stationary MAB
model.

lhza’a—-
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Where to know more

Check out the

“The Bandit Book”

by Tor Lattimore and Csaba Szepesvari
Cambridge University Press, 2019.

— tor-lattimore.com/downloads/book/book.pdf
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Where to know more?

Reach me (or Emilie Kaufmann) out by email, if you have questions

Lilian.Besson @ Inria.fr
— perso.crans.org/besson/

Emilie.Kaufmann @ Univ-Lille.fr
<3 chercheurs.lille.inria.fr/ekaufman
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Experiment with bandits by yourself!

Interactive demo on this web-page
— perso.crans.org/besson/phd/MAB_interactive_demo/

Use our Python library for simulations of MAB problems SMPyBandits
— SMPyBandits.GitHub.io & GitHub.com/SMPyBandits

» Install with $ pip install SMPyBandits

» Free and open-source (MIT license)

> Easy to set up your own bandit experiments, add new algorithms etc.
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Welcome to SMPyBa

€>cC o

SMPyBandits
SMPyBandits module
to run the code ?

e 1 publications usin
con's SMPyBandits

1 algorithms

Multi-players simulation

environment

Doubling Trick for Multi-Arn
Bandits

Structure and Sparsity of
Stochastic Multi-Armed Bandi

ationary Stochastic Multi-
Am\ed Bandits

d the API
0DO
me illustrations for this project

Jupyter Notebooks B by Naereen
GitHut

List of notebook 1PyBandits

A note on execution times, d
nd profiling

UML diagrams

3andits.GitHub.io

'smpybandits.github.io,

Welcome to SMPyBandits documentation!

Open-Source Python package for Single- and Multi-Players multi-armed Bandits algorithms.

A research framework for Single and Multi-Players Multi-Arms Bandits (MAB) Algorithms: UCB,
KL-UCB, Thompson and many more for single-players, and MCTopM & RandTopM, MusicalChair,

ALOHA, MEGA, rhoRand for multi-players simulations. It runs on Python 2 and 3, and is publically
released as an open-source software under the MIT License.

See more on the GitHub page for this project: s
The project is also hosted on Inria GForge, and the documentation can 2 i
ithub.io/ or forge.inria.fr/ or

https:/smpybandits.readthedocs.io/.

This repository contains the code of my numerical environment, written in Python, in order to
perform numerical simulations on single-player and multi-players Multi-Armed Bandits (MAB)
algorithms.

=
[ [ouigesn

implamer ythan

© Open source

Waintained? |y

I (Lilian Besson) have started my PhD in October 2016, and this is a part of my on going research
since December 2016.

How to cite this work?

If you use this package for your own work, please consider citing it with this piece of BibTeX:

@misc{sMPyBandits,
title {{sMPyBandits: an Open-Source Research Framework for S
author = {Lilian Besson},
year = {2018},
url = {https://github.com/SMPyBandits/SHPyBandits/},

howpublished = {Online at: \url{GitHub.com/SMPyBandits/SMPyBandi
note =  {Code at https://github.com/SMPyBandits/SMPyBandits/, |
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Conclusion

Thanks for your attention !

Questions & Discussion ?
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Conclusion

Thanks for your attention !

Questions & Discussion ?

— Break and then next talk by Christophe Moy
“Decentralized Spectrum Learning for loT"
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It's weird how there's
all this crazy Al shit: going on
and nobody is really paying
any attention to it.

Uh hoh. Just like with
global warming. 8crew soccer,
ignorance is the oPficial sport
0P humanity.

- -

Copyright 20032015 ). Jacques

(© Jeph Jacques, 2015, QuestionableContent.net/view.php?comic=3074
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Let’s talk

Copyright 20032015 ). Jogoes

We are scientists. . .

Goals: inform ourselves, think, find, communicate!
» Inform ourselves of the causes and consequences of climatic crisis,
» Think of the all the problems, at political, local and individual scales,

» Find simple solutions !
— Aim at sobriety: transports, tourism, clothing, food,
computations, fighting smoking, etc.

» Communicate our awareness, and our actions !
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Main references

» My PhD thesis (Lilian Besson)
“Multi-players Bandit Algorithms for Internet of Things Networks"
— perso.crans.org/besson/phd/
— GitHub.com/Naereen/phd-thesis/

» Our Python library for simulations of MAB problems, SMPyBandits
<~ SMPyBandits.GitHub.io

» “The Bandit Book”, by Tor Lattimore and Csaba Szepesvari
— tor-lattimore.com/downloads/book/book.pdf

» “Introduction to Multi-Armed Bandits”, by Alex Slivkins
— arXiv.org/abs/1904.07272
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